

Supported by

Progress and Plans for Macroscopic Stability

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U Nova Photonics **Old Dominion** ORNL PPPL Princeton U Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

Jack Berkery (Columbia University)

Jong-Kyu Park, Allen Boozer and the NSTX-U Research Team

> **NSTX-U PAC-35 Meeting PPPL – B318** June 11-13, 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Office of

Outline

- Introduction
 - Macroscopic stability (MS) group research in stability, 3D fields, and disruptions is key for NSTX-U, ITER, and FNSF
 - MS research is prominent in NSTX-U milestones as well as JRTs
- Progress in the last year in preparation for upcoming run
 - Collaborations at KSTAR and DIII-D
 - Three main areas: Stability, 3D fields, and disruptions
 - Non-axisymmetric control coil (NCC) design
- MS research goals and plans for FY15
- MS research goals and plans for FY16
- Key results expected by the end of the FY16 run, and how they will impact further NSTX-U operation and future devices

Macroscopic stability research is crucial for the successful sustainment of high performance in future devices

- Demonstrate 100% non-inductive sustainment at performance that extrapolates to ≥ 1MW/m² neutron wall loading in FNSF
- 5. Access reduced v^* and high- β combined with ability to vary q and rotation to dramatically extend ST physics understanding
- Macroscopic stability research is in three key areas:
 - Thrust 1, <u>Stability</u>:

Understand and advance passive and active feedback control to sustain macroscopic stability at low collisionality

- Thrust 2, <u>3D Fields</u>:

Understand 3D field effects and provide physics basis for optimizing stability through equilibrium profile control by 3D fields

- Thrust 3, Disruptions:

Understand disruption dynamics and develop techniques for disruption prediction, avoidance, and mitigation in high-performance ST plasmas

Macroscopic stability research and capabilities play an instrumental role in the success of NSTX-U

Collaborations at KSTAR and DIII-D support macroscopic stability research thrusts on NSTX-U

Kinetic stability theory and comparison to NSTX is setting the stage for practical use in NSTX-U for disruption avoidance

- Moving kinetic RWM stability theory from successful theory/experiment comparison to actual implementation
 - MISK (perturbative) benchmarked with other leading codes
 - A simplified model based on these results will be implemented in the NSTX-U disruption avoidance algorithm
- Ideal Wall Mode destabilization by rotational shear vs. stabilization by kinetic effects explained with MARS-K
 - Also may help explain lowdensity/ramp-up disruptions in NSTX in prep for low ν operation (fast ions important)

Non-resonant Neoclassical Toroidal Viscosity (NTV) physics analysis progresses, will be used for rotation feedback control

NTV torque profile (n = 3)

- Leading theory/codes under active development
 - IPEC-PENT, MARS-K, MARS-Q, and POCA (δf guiding-center particle code) have been benchmarked
- NTVTOK code analysis
 - NTVTOK modified, incl. Shaing's connected NTV model, covers all v, superbanana plateau regimes (like MARS-Q)
 - Full 3D geometry and coil, ion & ele. effects
 - Plasma response from penetrated 3D field used in exp. analysis matches M3D-C¹ single fluid model
 - <u>FY14</u>: Analyzing NTV data from 6 experiments on v dependence and other NTV characteristics

(Columbia U., GA)

Rotation feedback controller using NTV designed; supported by key results from international collaboration research

- NSTX-U controller will use Neoclassical Toroidal Viscosity (NTV) physics for the first time in rotation feedback control
- Dedicated long-pulse KSTAR experiments show no hysteresis in ω_φ profile vs. applied 3D field strength (important for control)

Non-axisymmetric control coils (NCC) (incremental) will enhance physics studies and control

- NCC design NCC designed with multiple physics metrics for error field, (on passive plates) RWM, rotation control by NTV, and RMP characteristics
- Analysis updated with IPEC-PENT and more NSTX-U targets (see back-up)
- Now utilizing stellarator optimization tools without coil constraints to determine theoretical max performance (PAC recommendation)
 - The IPECOPT code developed (from STELLOPT) to optimize IPEC equilibrium for core and edge NTV Torque
 - IPECOPT will be extended to analyze additional figures of merit: EF, RMP
 - Deliverable: assess physics benefits of potentially improved coil sets within 9 months to drive subsequent engineering analysis

PPPL Theory Partnership,

JRT-14

Existing coils

Active control techniques ($B_r + B_p$, RWM state-space (RWMSC)) will enable long pulse, high β operation

- FY14:
 - Offline RWMSC already
 expanded for 6 coil control and n > 1 physics
 - Now comparing past 3 coil algorithm with open-loop 6 coil tests in generalized code
- Stability plans, FY15:
 - EFIT, available Day 0
 - New parallel CPUs implemented, increased between-shots spatial / time resolution
 - Examine RWMSC with:
 - six control coils and multi-mode control with n up to 3 JRT-16
 - Establish B_r + B_p active control capability in new operational regime

Correction of intrinsic error fields is critical for performance; NSTX-U will have new disruption research capabilities

- 3D fields research plans, FY15:
 - Assess intrinsic EFs in NSTX-U
 - Optimize dynamic EF correction, including n>1 and using 6 SPAs and RWMSC
 - Resonant EF effects on tearing mode onset (+Resistive DCON)
- Disruption research plans, FY15:
 - FY14: substantial contributions to the ITPA disruption database
 - Investigate halo current toroidal asymmetry and loading on the center column, using 18 newly installed shunt tiles
 - Commission MGI system
 - ITER-like valves tested to pressure above spec: fast rise time

Disruption prediction by multiple means will enable avoidance via profile or mode control or mitigation by MGI

- Disruption research plans, FY16:
 - Compare the mismatch between the RWMSC observer model and sensor measurements, and disruption occurrence
 - Study spatial extent and timing of the heat deposition during VDEs
 - Eroding thermocouples and new IR cameras
 - Characterize density assimilation vs. poloidal location of MGI system
 - JRT-16 support, DEGAS-2 modelling
 - Valves in poloidal location 2 & 3 identical to location 1 or 4 (locations 1, 2 & 4 for FY15)
 - Injection into the private flux region is possible

NSTX-U will investigate NTV and stability theory in lower v regime for implementation in active rotation control

- 3D fields plans, FY16:
 - Assess NTV profile and strength at reduced v, examine NTV offset rotation at long pulse, at zero torque
 - Prepare an initial real-time model of NTV profile for use in initial tests of the plasma rotation control system JRT-16
- Stability plans, FY16:
 - Examine RWMSC with rotational stabilization in the controller model
 - Investigate the dependence of stability on reduced v through MHD spectroscopy; compare to kinetic stabilization theory

strongly resonant at low collisionality

Summary: MS research during FY2015-16 will enable longpulse high performance in NSTX-U and future devices

- Advancing passive <u>stability</u> and active feedback control will be integrated into a disruption avoidance system, allowing us to sustain macroscopic stability in the new low collisionality regime
- Understanding <u>3D field</u> effects will provide a physics basis for optimizing stability through new capabilities of equilibrium profile control
- Understanding <u>disruption</u> dynamics, and development of techniques for disruption prediction, avoidance, and mitigation in high-performance ST plasmas will be greatly beneficial to future devices

Backup

Disruption prediction by multiple means will enable avoidance via profile or mode control or mitigation by MGI

Disruption prediction by multiple means will enable avoidance via profile or mode control or mitigation by MGI (2)

Participated in DIII-D National Campaign on Radiation Asymmetry XP

- Thermal imaging indicates MGI location cooler than nearby wall
 - ITER concerned about localized melting near gas injection port location
- # of injectors had little effect on TQ/CQ
 P_{rad} asymmetry
 - No significant variation with valve delay

Valve has same time response for operation in <0.4T magnetic fields

- Vacuum solenoid field is 0.67T
- Skin depth in AI is 2.2cm, valve wall thickness is 1cm. Fields inside valve side wall ~0.4T
- Future tests will use SS304L valve and further slow down solenoid current waveform

ITER-like MGI Valve Designed, Built and Tested for Installation on NSTX-U

NSTX-U MGI Valve

- FY15 MGI Research Plans
 - Operate valves at ~5000 Torr (200 Torr.L Neon)
 - Compare mid-plane and PFR locations for gas assimilations studies using identical gas injection set-up
 - Possible Poloidal injection effect on VDE (multimachine experiment with DIII-D & C-MOD)
 - 3 valves to be installed for FY15 Experiments

Version 4 Valve evacuates into chamber in < 3ms, for gas injection amounts of 200 Torr.L N₂

NSTX-U MGI Valve

🔘 NSTX-U

Physics analysis for Non-axisymmetric Control Coil (NCC) has been updated with IPEC-PENT and more NSTX-U targets

- NTV calculations are updated using IPEC-PENT, without previous large-aspectratio approximation and pitch-angle simplification
 - In NSTX and NSTX-U, PENT torque is typically larger than previous analysis by a factor of 2~3
- 1.5MA~2MA NSTX-U targets were studied
 - 2x6-odd is better than 12U or 2x6-even in general, but its advantages decrease when $I_P = 1.5 \rightarrow 2MA$
 - FOM table updated accordingly (Purple : 2MA)

Figures of Merit	Favorable values	MID	12U	2x6-Odd	2x12
EF (n=1) $F_{N-R} \equiv \frac{T_{NTV}}{\sum_{\psi_N < 0.85} \delta B_{mn}^2}$	High F _{N-R}	0.07	0.13	1.24	1.24
RWM (n=1) $F_{\beta} \equiv \frac{\beta_{active}}{\beta_{no-wall}}$	High F _β	1.25	1.54	1.61	1.70
NTV (n ≥ 3) $\Delta \left(F_{N-N} \equiv \frac{T_{NTV}(\psi_N < 0.5)}{T_{NTV}(\psi_N < 1)} \right)$	Wide ΔF_{N-N}	1.00	1.44~6.08	1.75~11.33	6.38~ 59.4
$(c)^{\dagger}$	High F _{N-C}	0.25~0.30	0.31~1.04	0.43~0.77	1.18~3.53
RMP (n ≥ 3) $F_{N-C} \equiv \frac{(C_{vacuum, \psi_N=0.85})}{T_{NTV}}$	Wide ΔF_{N-C}	1.00	2.20~12.3	10.4~17.4	888~14400

Non-axisymmetric Control Coil (NCC) capability on NTV braking has been successfully studied with STELLOPT

- The IPECOPT code has been developed from STELLOPT to optimize IPEC equilibrium for NTV Torque
 - Initial attempts focus on variation of boundary harmonics for core and edge torque

Unconstrained

- The applied n=1 spectrum shows the possibility to drive core (rho < 0.5) torque while minimizing edge torque
- The applied n=3 spectrum shows the ability to drive a broad edge torque

Constrained to partial NCC + Midplane coil

🔘 NSTX-U

RWM active control capability of the NCC continues to be assessed

Extensive benchmark among various NTV codes has been active and successful

- There are three main branches in semi-analytic NTV codes as described in details below
- All three have been successfully benchmarked
- A particle code POCA also shows consistent trends with semi-analytic NTV codes, with some quantitative differences depending on regimes

	Connected NTV formula		Combined NTV theory		Drift kinetic energy theory			
•	 Analytic NTV formulation is derived in the collisionality regimes, SBP, v-√v regime and 1/v regime separately. Pade approximation to smoothly connect the formulations in different colisionality regimes. 	•	NTV torque due to different particle motions are combined by a generalized equation. No need to separate the collisionality regimes	•	Drift kinetic energy is studied to determine ideal MHD instabilities e.g. Resistive Wall Modes. The torque is calculated based on the equivalence between NTV torque and drift kinetic energy. $T_{\phi}=2in\delta W_{K}$			
	Precession resonance	Precession resonance + Bounce-harmonic resonance						
Pitch angle scattering collisional operator (accurate in the v-√v regime)			Krook collisional operator (allows to derive one generic equation of NTV torque and drift kinetic energy)					
Geometric simplification			Full toroidal geometry					
MARS-Q			IPEC-PENT		MARS-K			
Liu and Sun, PoP 20 (2013) 022505 Sun et al, NF 51 (2011) 053015 Shaing et al, NF 50 (2010) 025022			Park et al, PRL 102 (2009) 065002 Logan et al, PoP 20 (2013) 122507		Park, PoP 18 (2011) 110702 Liu et al, PoP 15 (2008) 112503			

In lower v regime, NSTX-U will investigate NTV for rotation control and stability theory implemented in active control

- 3D fields research plans, FY16:
 - Assess NTV profile and strength at reduced v and examine the NTV offset rotation at long pulse
 - Prepare an initial real-time model of NTV profile for use in initial tests of the plasma rotation control system
- Stability research plans, FY16:
 - Examine RWMSC with:
 - rotational stabilization in the controller model
 - Investigate the dependence of stability on reduced v through MHD spectroscopy; compare to kinetic stabilization theory

Drift-kinetic effects on 3D plasma response and non-resonant error field effects are being actively investigated

- Drift-kinetic 3D plasma response
 - MARS-K self-consistent calculations successfully compared with n=1 DIII-D RFA
 - Preliminary NSTX RFA calculations indicate kinetic stabilization effects important (especially near no-wall limit), and rotation can be destabilizing

• Res. and non-res. error field effects

- Resonant-coupling schemes (IPEC-PENT) are being used to optimize n=2 error field correction in DIII-D and n=1-4 correction in TBM mock-up
- Extremely small resonant errors were found so far in KSTAR, and non-resonant error field will be investigated
- Non-resonant error field effects on locking/tearing are being investigated in NSTX, with newly developed resistive DCON

KSTAR 3 rows of internal coils were used to produce n=1 pitch-crossing field lines and to find rotational resonances

- The unique 3 rows of internal coils in KSTAR were utilized to produce pitchcrossing field lines (orthogonal to pitch-aligned field lines)
- This n=1 field is almost purely non-resonant :
 - Successfully induced NTV without n=1 resonant perturbation
 - Used to find the 1st bounce-harmonic rotational resonance, as the gap to 2nd resonance is the widest with n=1 (predicted by and agreed with theory and computation)

Non-resonant Neoclassical Toroidal Viscosity (NTV) physics will be used for the first time in rotation feedback control

 $Description Constraints = \frac{1}{2} Momentum force balance - \omega_{\phi} decomposed into Bessel function states$ $<math display="block"> \sum_{i} n_{i} m_{i} \left\langle R^{2} \right\rangle \frac{\partial \omega}{\partial t} = \left(\frac{\partial V}{\partial \rho} \right)^{-1} \frac{\partial}{\partial \rho} \left[\frac{\partial V}{\partial \rho} \sum_{i} n_{i} m_{i} \chi_{\phi} \left\langle \left(R \nabla \rho \right)^{2} \right\rangle \frac{\partial \omega}{\partial \rho} \right] + T_{NBI} + T_{NTV}$

NTV torque:

$$T_{NTV} \propto K \times f\left(n_{e,i}^{K1} T_{e,i}^{K2}\right) g\left(\delta B(\rho)\right) \left[I_{coil}^{2} \omega\right] \quad (\text{non-linear})$$

🔘 NSTX-U

Plasma rotation control has been demonstrated for the first time with TRANSP using NBI and NTV actuators

WNSTX-U

Plasma response from fully-penetrated 3D field used in NTV experimental analysis matches M3D-C¹ single fluid model

<u>Surface-averaged </u> δ B from fully penetrated model vs. M3D-C¹ single fluid model

NTVTOK analysis (S.A. Sabbagh) M3D-C¹ analysis (Evans/Ferraro (GA), Jardin (PPPL))

- NTV experimental data is a strong quantitative constraint on plasma response of δB
 - Because the measured NTV scales as $T_{NTV} \propto \delta B^2,$
- Level of agreement varies with profile
 - Good agreement between NTVTOK / M3D-C¹ single fluid models in strong NTV region
 - M3D-C¹ core <δB> larger than NTVTOK
 - Core mode in M3D-C¹
 - M3D-C¹ edge $<\delta B>$ smaller
 - Experimental T_{NTV} too small in this region to constraint δB
- Analysis ongoing in 2014

🔘 NSTX-U

Model-based RWM state space controller including 3D plasma response and wall currents used at high β_N in NSTX

🔘 NSTX-U

Dual-component PID ($B_r + B_p$) and model-based RWM state-space (RWMSC) active control will enable long pulse, high β operation

- 2014:
 - Expand/analyze RWMSC for 6 coil control and n > 1 physics
- 2015 and 2016:
 - Establish B_r + B_p active control capability in new machine, use with snowflake divertor
 - Examine RWMSC with:
 - independent actuation of six coils
 - multi-mode control with n up to 3
 - rotational stabilization in the model
- 2017 and 2018:

 Upgrade for NCC, utilize model-based active control with the new NCC to demonstrate improved global MHD mode stability and very low plasma disruptivity, producing highest-performance, longest-pulse plasmas

Research plans and needs for this year (FY2014) in preparation for NSTX-U operations in FY2015

- RWM State-space Controller generalization available "Day 0"
 - Offline IDL version of code already generalized
 - Changes to r/t version to be made. Small PCS programming support will be needed
- NSTX EFIT (of course, "Day 0")
 - Plan to upgrade to faster processing to support increased betweenshots spatial resolution / time resolution (eta 2014-2015); present code available as default
 - New code components acquired Dec 2013; new dedicated prototype 32 core CPU computer online at PPPL (planned to be expanded); consistent with PPPL IT plan
- NSTX rotation control
 - Continuing work with PU student (I. Goumiri) on rotation control algorithm
 - Present quantitative NTV analysis of Columbia U. NSTX experiments supports this

MISK analysis of DIII-D discharges is helping to enable their path to high beta operation

NSTX-U/KSTAR 2013: Stability/rotation results for plasmas at/near n = 1 limit (S.A. Sabbagh, et al.) Oct. 2

Oct. 21st, 2013 36

Collaborations at KSTAR have aided high beta operation

KSTAR collaboration

- High β_N , over no-wall limit has been achieved