JET Results and plans for DT operation

George Sips on behalf of the EFDA-JET Contributors

 $\mathbf{\times}$

 $\mathbf{\star}$

 \bigstar

Part I: Recent JET Results

- ITER like Wall: Impurities and retention
- Disruptions, $L \rightarrow H$ transition
- H-mode confinement with the ITER-like Wall
- Tungsten Melt Experiment

Part II: Plans for DT operation

- JET & mitigation of risks to ITER
- Building a case: Physics, Operational and Technology
- Schedule, programme and shutdowns

JET: ITER-like Wall

2010-2011: Remote handling installation of all new PFCs in JET

- PFCs are inertially cooled
- PFCs are optimised with respect to power handling and material stress
- Predicted power handling verified by dedicated experiments

- Plasma Facing Components were replaced in 1 shutdown
- More than 80 000 parts with 350 tools installed by RH
- Real-time protection (T_{surface}) during plasma operation

Evolution of C and O content

Following the installation of the ITER-like Wall:

- Very low residual C content in the plasma;
- Oxygen is gettered by Be;
- Averaged Z_{eff} dropped from 2.0 (JET-C) to 1.2-1.4 (JET-ILW), this is lower than expected (source strength also different).

→ Many operational consequences (expected and unexpected)

EFJEAT Fuel retention with the ITER-like Wall

- Measured fuel retention is more than an order of magnitude lower with the ILW, consistent with predictions made before the wall was installed.
- Residual retention consistent with co-deposition in Be layers.

gas balances with different conditions

Loarer et al., J. Nucl. Mater. 438, S108 (2013)

Disruption dynamics

- The dynamics of disruptions are very different with the ILW
 - \succ Higher plasma purity \rightarrow lower radiation during disruption
 - \rightarrow slower current quench
 - → higher heat loads and halo currents
 - \rightarrow higher reaction forces on the vessel

- Massive gas injection as a disruption mitigation tool is now mandatory for JET experiments at or above 2.0 MA;
- Closed loop disruption detection, avoidance and mitigation
- 2014: Two MGI valves at the top and mid-plane (2015: Add 1 top MGI)

$\bigcirc EF_{feff} \quad L \rightarrow H \text{ transition: JET-C vs. JET-ILW}$

Favourable minimum in L-H transition observed in the high density branch in Deuterium:

- Pure D plasma show reduction of threshold power as function of magnetic field, density and <u>configuration</u> at typical low Z_{eff} for JET-ILW [C.F. Maggi NF2014]
- Strong nitrogen seeding and associated increase of Z_{eff} recover almost JET-C behaviour

H-mode operation with the ITER-like Wall

- Already in the first ILW campaigns, the reference ITER operating regime was re-established (up to 3.5 MA, 26 MW NBI + 3 MW ICRH)
- Plasma purity is higher
- Gas fuelling is required to keep the discharge stable against W accumulation

Bucalossi, EPS Plasma Phys. Conf, 2012

H-mode confinement: ITER-like Wall

Both JET-ILW and AUG show degradation of confinement with respect to carbon wall operation:

- Degradation partially governed by fuelling requirements to allow safe operation in W
- Degradation is dominated by changes in the pedestal, with the strongest degradation for JET high triangularity plasmas (by about 25%)
- Pedestal recovery: (1) by impurity seeding and (2) by increasing β_N

(1) Nitrogen seeding in JET

Stationary H-mode operation:

#85415 : D_2 only #85417: N_2 and D_2 – low $\delta \rightarrow \tau_E \uparrow 15\%$ #85419: N_2 and D_2 – high $\delta \rightarrow \tau_E \uparrow 40\%$

- Radiation cooling
- Semi-detached divertor operation in both legs

→ Strong reduction in power flow to target plates.

(2) Confinement at high beta

General observation: H₉₈ increases with beta

- Experiments in DIII-D: Advanced Inductive
- Experiments in AUG, JET: Hybrid scenario

- Energy confinement time ~10% higher at high δ compared with low δ (mainly through density increase)
- Power degradation similar for both shapes and weaker than IPB98(y,2)

Special W lamellae → melt experiment

-BVO

Typical pulse used ..

After several H-mode discharges

Case for future DT experiments at JET

- JET & mitigation of risks to ITER
- Building a case:
 - ✓ Physics
 - ✓ Operational
 - ✓ Technology
- Schedule, programme and shutdowns

A new DT campaign is being proposed:

- With the ITER-like Wall;
- Enhanced heating systems (compared to 1997);

Deremeter	Neutral beam heating:	Gas species											
		H ₂	D ₂	T ₂	⁴He								
Maximum beam er	nergy (keV)	90	125	118	120								
Maximum beam cu	irrent (A)	50	65	45	42								
Maximum power p	er PINI (MW)	1.0	2.16	2.2	1.56								
Maximum power p	er NBI box (MW)	8.0	17.3	17.6	12.5								
Maximum total pov	wer (MW)	16.0	34.6	35.2	25.0								
DTE1 (1997), maximum power (MW)		10.0	18.6	10.7	14.0								

- Active gas handling system, providing/reprocessing tritium to JET and provide accurate accounting of the tritium used;
- Specific (new) diagnostics...

The ITER research plan calls for a rapid development of DT operation. JET DT experiments will demonstrate:

Operation with various hydrogen isotopes and helium

- Transfer of ITER scenarios from H (He) \rightarrow D \rightarrow DT and T
- Operation with 100% tritium, using 35 MW NBI power
- Optimise performance in DT (not just repeats of DD)

Tritium inventory control during operations

- Test and validate tritium removal techniques with tritium
- Accurate tracking the inventory during operation

Operational experience with tritium

- Prepare and operate in DT, competence in using tritium
- Develop and implement safety procedures (nuclear installation)
- Training of staff (IO operators) + international involvement

ITER regimes of operation in DT

DTE1 scenarios:

- Transient Hot-ion H-mode
- Transient strong ITB
- 3 Steady ELMy H-mode

Substantial ITER scenario development since DTE1

Aim for sustained high fusion performance

Scenarios at high plasma beta (β_N =2.5-3) with their control requirements in DT (ITER regimes of operation).

- Stationary H-modes \rightarrow Verification of ITER operating scenarios
- Steady 10-20 MW fusion power with margin (higher I_P)
- Realistic range of uncertainty : Q_{total}~0.3-0.5

→ JET operation at maximum plasma current (3.5-4.5 MA) and toroidal field (3.85T)

Compared to 1997, JET has superior diagnostic capabilities

• Isotope effects, fuel retention, ICRF heating and alpha particles

Example from DTE1 (1997)

- Tritium plasmas had lowest frequency of instabilities at the plasma edge (ELMs)
- How does this scale to ITER ?

Operational: DT Campaign options

DT Campaign	options	Full DT phase	DT phase ~DTE1	100% tritium only	Trace tritium	ITER risk mitigation
	14 MeV budget	1.7x10 ²¹	2.5x10 ²⁰	5.0x10 ¹⁹	5.0x10 ¹⁸	DT at JET
ITER	Baseline	20	8	200		Maximum
Scenarios	Hybrid	40	2	200		
in DT*	Steady State	20	0	50		Limited
	Tritium retention					No
Technology	14 MeV calibration					
	Use 14 MeV Fluence					
	Retention removal					
Physics	Isotope scaling					
	α -particle effects					
	Fuelling & DT mix control				transport	

*Number of high power (>25MW, 5s) pulses in DT (or 100% tritium) is indicated.

\rightarrow 1.7x10²¹ budget: Full exploitation of JET for mitigating the risks for ITER.

Vessel - Activation

Technology: In-vessel 14 MeV neutron calibration

Neutron detector calibration at 2.5 MeV was completed in April 2013.

Plans for in-vessel 14 MeV neutron calibration in 2016

- Benchmark the calibration procedure for ITER
- Assess the sources of uncertainties (point source, RH tools, streaming)

Now:

Procurement of DT neutron generator of suitable intensity

Technology: Shutdown dose-rates

Numerical tools for calculation of shutdown dose-rates in JET and ITER

JET:

Following DT operation:

Compare measurements with numerical predictions

2014: Extend operation to 4.5MA, high power (34 MW NBI + 6 MW ICRH)

2014 shutdown (October 2014 – March 2015)

- ITER-like antenna, DT diagnostics, optimise pellet tracks
- Take samples from the ITER-like Wall

High power campaigns (mid 2015 – early 2016)

- Full exploitation of ITER-like wall
- Prepare scenarios for DT

Pre-DT shutdown (early 2016 – November 2016)

- 14 MeV neutron calibration, install and mount samples.
- Remove some diagnostics and complete DT modifications

27

DT operation (2017 – early 2018)

Post DT shut down (2018)

DT campaigns

				2016									2017												2018											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
Preparing for DT																																				
Pre-DT shutdown																																				
Restart prior to DT																																				
Expand T ₂ boundary (trace)																																				
DTE2																																				
H-phase																																				
T-phase																																				
Check systems																																				
DT phase																																				
Cleanup with plasma																																				
Post-DT																																				
Shutdown																																				
Handover to NDA																																				

- Restart after pre-DT shutdown, expand the tritium boundary (trace)
- Operation in hydrogen for 1-2 months
- Operation in 100% tritium for 2-3 months
- DT operation for 3-4 months (100 high power discharges)
- Tritium removal and taking final references in deuterium, ~3 months

Reference Scenario:

Alternative Scenario:

Conclusion: We "must do" DT experiments in JET

JET results and plans for DT