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Strategy: combine integrated modeling and
experiments to address rampup challenges
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« Heat startup plasma with EC to maximize H/CD efficiency
« Combine RF and NBI for current profile optimization
» Optimize NBI source combination for CD and stability.

Time

» Maintain control over position, current profile, MHD stability.
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2"d NB line can ramp current from HHF V-
heated plasma and sustain 900kA
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Focus today is on start-up and early ramp-up
[F. Poli et al, Nucl. Fusion 55 (2015) 123011]
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Assumptions in the simulations

« Select NSTX discharges, compare transport models on:
— RF and NB at low, constant current
— NB in the ramp-up and at high current flattop

« CAVEAT: Startup/rampup not the same as relaxed, flattop
plasma.

* Transport assumptions will be updated using new NSTX-U data
— pedestal structure, confinement, rotation, turbulence ...

 All simulations run with free-boundary TRANSP
— ISOLVER for equilibrium evolution and coil currents
— TORIC (full wave) for HHFW,
— NUBEAM (Monte Carlo) for NBI,
— GENRAY (ray-tracing) for ECH
— Multi Mode Model for thermal transport [Lehigh univ.]
— Prescribe I, waveform and maximize non-inductive current drive
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ldentify challenges and needs towards
non-inductive operation

« Optimizing non-inductive current at startup with NBI.
* Optimizing non-inductive current at startup with HHFW.
* Prepare a target plasma with EC Heating.

* Why is ECH a game changer?
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NBI losses too large in low-density,
low-current plasma target
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HHFW can provide the needed current,
but efficiency drops after L-H transition
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Modeling: validation of wave absorption against experiments

Experiments: Wave coupling and FWCD at low density, low current [see
presentation by Gerhardt]
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Combine HHFW and NBI to drive current
when HHFW becomes less efficient
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Issue: large absorption to fast ions
=> reduces efficiency

Path: switch from HHFW to NBI
and ramp-up to full current

delay NBI to minimize losses and
maximize current drive

Need: optimization of the first
100ms of discharge

Experiments (future): HHFW+NBI at low current and density

Modeling:

validation of fast ion absorption
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Simulations predict that 28 GHz ECH is very effective
at heating NSTX-U start-up plasmas
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Modeling: assess EC heating against plasma parameter variations

@NSTX—U PAC37, non-inductive ramp-up, Francesca Poli, Jan 26 2016 9



ECH generates a high T, start-up plasma that can
significantly improve HHFW current drive
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Modeling: assess EC+HHFW heating against plasma parameter variations and
HHFW phasing [backup slide]
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28 GHz EBW start-up on NSTX-U will test power
scaling of MAST and QUEST results
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g -20
* MAST achieved | ~75 kA with ~75 kW power.
« EBW start-up on NSTX-U at megawatt level B

Major Radius, cm

will test viability of technique at much higher RF power
« EBW current drive might scale much weaker than linearly with RF power
=> Pursuing modeling of EBW at startup and flattop using kinetic models
« future collaboration with QUEST on EBW startup modeling

* SAMI diagnostic on loan from University of York [see backup slide]
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Summary and future work

 All sources needed for non-inductive current ramp-up

— EC: game changer => reduces by 4 HHFW power needed to drive 300kA
on CHI-like target.

— HHFW: drives current where NBI losses are larger

» Close connection between integrated modeling and experiments

Is critical for development of this phase

* Longer term: EBW start-up may allow more time to control
plasma position and discharge evolution than CHI start-up

— In progress: EC/EBW startup simulations for direct transition to NBI phase

[N. Lopez, Princeton University]
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HHFW can provide the needed current,
but good heating is critical
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* Need 4 MW for ~350KA current (to be verified in exp.)
« FWCD drops after L-H: higher n., lower electron absorption.

« Current profiles peaked => challenge for control and MHD.
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ECH improves HHFW efficiency
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« when combined with EC, lowest phasing most favorable
» half power needed to drive 400kA compared to w/o EC

@UNSTX-U
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Dynamic phasing of HHFW antenna needed
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Modeling: optimize EC->HHFW->NBI transition based on experiments
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Design and implement 28 GHz EC/EBW heating

system to support NI operation®

* Plan to use ~2 MW Gyrotron being
developed by Tsukuba Univ.**

Fixed horn antenna & low-loss
HE11 corrugated waveguide

Initially use 28 GHz system to heat
CHI start-up plasmas

Later install grooved tile on center
column to allow EBW plasma start-up

EBW start-up technique will be same
as used successfully on MAST

* G. Taylor et al., EPJ Web Conf. 87 (2015) 02013
**T. Kariya et al., Fusion Science and Technology 68 (2015) 147

— Axis of Center Column =———————————————

f =28 GHz
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MMMO95 reproduces amplitude and peaking of
electron temperature during the HHFW phase
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Develop 28 GHz EBW (O-X-B) heating
and current drive system for NSTX-U H-modes

« EBW simulations for an NSTX-U H-mode S S
predict n ¢ ~ 25 KA/MW on axis for —> wf e | T
n.(0) =9 x10"™m=3and T,(0) = 1.2 keV: o -

urrent
— Can generate significant EBWCD e |
at r/a > 0.8, where NBICD is negligible ) |
— Extend simulations to include realistic B
SOL and edge fluctuations sl ]

Poloidal Angle (deg.)
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Develop 28 GHz EBW (O-X-B) heating
and current drive system for NSTX-U H-modes

Synthetic aperture microwave imaging
(SAMI) antenna array

* In FY16 measure O-X-B coupling on
NSTX-U with synthetic aperture microwave
imaging (SAMI)* [Collaboration with Univ. York, UK]

* V.F. Shevchenko et al., AIP Conference Proceedings 1612 (2014) 53
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Develop and design 28 GHz EBW (O-X-B) heating
and CD system for NSTX-U H-modes

Synthetic aperture microwave imaging

100%

EBW Coupling
Efficiency

* In FY16 measure O-X-B coupling on

) ] ) (SAMI) antenna array
NSTX-U with synthetic aperture microwave |
fixed horn antenna: Eogrees)

- Use B-X-O emission data acquired ‘

imaging (SAMI)* [Collaboration with UK]
e Can test 28 GHz O-X-B heating with  vertear _
by SAMI to guide antenna aiming "o Hoﬁzomam:gle ogrecs)
MAST SAMI EBW Emission Data

0%

* V.F. Shevchenko et al., AIP Conference Proceedings 1612 53 (2014)
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