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Strategy: combine integrated modeling and 
experiments to address rampup challenges 

•  Heat startup plasma with EC to maximize H/CD efficiency 
•  Combine RF and NBI for current profile optimization 
•  Optimize NBI source combination for CD and stability.  
•  Maintain control over position, current profile, MHD stability.  

startup 
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2nd NB line can ramp current from HHFW-
heated plasma and sustain 900kA 

HHFW @ t<0.5 è ~400kA 

ne,lin = 0.85 nGW è~900kA non-inductive, 

  ~60% bootstrap 
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At the previous PAC meeting  
Focus was on ramp-up and  

sustainment with NBI 

Focus today is on start-up and early ramp-up 
    [F. Poli et al, Nucl. Fusion 55 (2015) 123011] 
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•  Select NSTX discharges, compare transport models on: 
– RF and NB at low, constant current 
– NB in the ramp-up and at high current flattop 

•  CAVEAT: Startup/rampup not the same as relaxed, flattop 
plasma. 

•  Transport assumptions will be updated using new NSTX-U data 
–  pedestal structure, confinement, rotation, turbulence ...  

•  All simulations run with free-boundary TRANSP 
–  ISOLVER for equilibrium evolution and coil currents 
–  TORIC (full wave) for HHFW,  
– NUBEAM (Monte Carlo) for NBI, 
– GENRAY (ray-tracing) for ECH 
– Multi Mode Model for thermal transport [Lehigh univ.] 
–  Prescribe IP waveform and maximize non-inductive current drive 

Assumptions in the simulations 
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Identify challenges and needs towards    
non-inductive operation 

• Optimizing non-inductive current at startup with NBI. 

• Optimizing non-inductive current at startup with HHFW. 

• Prepare a target plasma with EC Heating. 

• Why is ECH a game changer?      
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NBI losses too large in low-density,          
low-current plasma target 

~50% of NBI power lost due 
to low density shine-thru 
Results in low current drive 
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Experiments: optimize NBI @low density:  
–  ︎minimize shine-thru and losses 
–  ︎maximize non-inductive current 

Modeling: current and q profile control  
[W. Wehner, Lehigh univ., D. Boyer, PPPL] 

Need: optimization of the first 
200ms of discharge 

non-induc(ve	

L-H transition 

1A 
1B 

1C 
2C 
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HHFW can provide the needed current,  
but efficiency drops after L-H transition 

Modeling:  validation of wave absorption against experiments 
Experiments:  Wave coupling and FWCD at low density, low current [see 

      presentation by Gerhardt] 
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Issue:  after L-H transition  
-  HHFW heating less efficiency 
-  current drive efficiency drops  

dominant electron heating  
in the early ramp-up 

L-H transition 

Issue: expect peaked pressure and 
current  profiles. 
MHD stability to be assessed 
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Combine HHFW and NBI to drive current 
when HHFW becomes less efficient 

Issue:  large absorption to fast ions 
=> reduces efficiency 

Path: switch from HHFW to NBI 
and ramp-up to full current 

delay NBI to minimize losses and 
maximize current drive 
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Experiments (future):  HHFW+NBI at low current and density 
Modeling:   validation of fast ion absorption 

Need: optimization of the first 
100ms of discharge 

L-H transition 
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•  TRANSP time-dependent simulations 
with 1 MW of 28 GHz O-mode ECH 
predict a rapid increase in first-pass 
absorption from 5% to 75%  
as Te(0) increases from 10 eV  
to 1 keV in ~10 ms 

•  Issue: ECH can be used for ~150 
ms before the plasma ne > ncutoff 

Simulations predict that 28 GHz ECH is very effective 
at heating NSTX-U start-up plasmas 

Experiments:  get new density information  
from CHI and low-IP RF target plasmas 

Modeling:  assess EC heating against plasma parameter variations 
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ECH generates a high Te start-up plasma that can 
significantly improve HHFW current drive 

No ECH With ECH 

Even with unfavorable CD 
phasing (k//=3 m-1) 

 

Strong synergy observed in 
simulations of NI plasma   
start-up that combine           
EC and HHFW heating  

 
No FWCD w/o ECH 
almost 400kA with 1MW of ECH 

Modeling: assess EC+HHFW heating against plasma parameter variations and 
HHFW phasing [backup slide] 

HHFW HHFW 
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28 GHz EBW start-up on NSTX-U will test power 
scaling of MAST and QUEST results 

Grooved reflecting polarizer machined 
into center column in MAST => 100% 

O-X-B conversion 

•  MAST achieved Ip~75 kA with ~75 kW power. 

•  EBW start-up on NSTX-U at megawatt level  

  will test viability of technique at much higher RF power 

•  EBW current drive might scale much weaker than linearly with RF power 

=> Pursuing modeling of EBW at startup and flattop using kinetic models 

•  future collaboration with QUEST on EBW startup modeling 

•  SAMI diagnostic on loan from University of York [see backup slide] 
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Summary and future work 

•  All sources needed for non-inductive current ramp-up 
–  EC: game changer => reduces by 4 HHFW power needed to drive 300kA 

on CHI-like target. 

–   HHFW: drives current where NBI losses are larger 

•  Close connection between integrated modeling and experiments 

is critical for development of this phase 

•  Longer term: EBW start-up may allow more time to control 

plasma position and discharge evolution than CHI start-up 
–  In progress: EC/EBW startup simulations for direct transition to NBI phase 

[N. Lopez, Princeton University] 
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Backup slides 
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HHFW can provide the needed current,  
but good heating is critical 

•  Need 4 MW for ∼350kA current (to be verified in exp.) 
•  FWCD drops after L-H: higher ne, lower electron absorption. 

•  Current profiles peaked => challenge for control and MHD. 
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ECH improves HHFW efficiency 

•  when combined with EC, lowest phasing most favorable  
•  ︎ half power needed to drive 400kA compared to w/o EC  
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•  High k// => lower fast ions  absorption 

•  Low k// => higher CD efficiency 

 

•  Synergy: with 1 MW of EC heating, 
only 1 MW of absorbed HHFW power  
is predicted to drive 300 kA 

Dynamic phasing of HHFW antenna needed              
to maximize FWCD. 
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Experiments:  assess phase changing (response time) 
Modeling:  optimize EC->HHFW->NBI transition based on experiments 
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Design and implement 28 GHz EC/EBW heating 
system to support NI operation* 

•  Plan to use ~2 MW Gyrotron being 
developed by Tsukuba Univ.** 

-  Fixed horn antenna & low-loss  
HE11 corrugated waveguide 

-  Initially use 28 GHz system to heat 
CHI start-up plasmas 

-  Later install grooved tile on center  
column to allow EBW plasma start-up 

-  EBW start-up technique will be same 
as used successfully on MAST 

 

 

 
 

 

 

 

 * G. Taylor et al., EPJ Web Conf. 87 (2015) 02013  
** T. Kariya et al., Fusion Science and Technology 68 (2015) 147  
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MMM95 reproduces amplitude and peaking of 
electron temperature during the HHFW phase 
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Profiles averaged over the heating phase 

•  MMM95 reproduces the average amplitude and 
peaking in HHFW discharges and in discharges with 
HHFW+NBI. 

•  Ion temperature overestimated in NBI discharges 

•  Electron temperature too peaked in NBI discharges  
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•  EBW simulations for an NSTX-U H-mode 
predict ηeff ~ 25 kA/MW on axis for  
ne(0) = 9 x 1019m-3 and Te(0) = 1.2 keV: 
– Can generate significant EBWCD  

at r/a > 0.8, where NBICD is negligible  
–  Extend simulations to include realistic 

SOL and edge fluctuations 

 

 
 

Develop 28 GHz EBW (O-X-B) heating  
and current drive system for NSTX-U H-modes 

•  In FY16 measure O-X-B coupling on 
NSTX-U with synthetic aperture microwave 
imaging (SAMI)* [Collaboration with UK] 

•  Can test 28 GHz O-X-B heating with  
fixed horn antenna: 
-  Use B-X-O emission data acquired  

by SAMI to guide antenna aiming 
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Synthetic aperture microwave imaging 
(SAMI) antenna array 

Develop 28 GHz EBW (O-X-B) heating  
and current drive system for NSTX-U H-modes 

•  EBW simulations for an NSTX-U H-mode 
predict ηeff ~ 25 kA/MW on axis for  
ne(0) = 9 x 1019m-3 and Te(0) = 1.2 keV: 
– Can generate significant EBWCD  

at r/a > 0.8, where NBICD is negligible  
–  Extend simulations to include realistic 

SOL and edge fluctuations 

 

 
 

•  In FY16 measure O-X-B coupling on       
NSTX-U with synthetic aperture microwave 
imaging (SAMI)* [Collaboration with Univ. York, UK] 

•  Can test 28 GHz O-X-B heating with  
fixed horn antenna: 
-  Use B-X-O emission data acquired  

by SAMI to guide antenna aiming 

* V.F. Shevchenko et al.,  AIP Conference Proceedings 1612 (2014) 53 
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Develop and design 28 GHz EBW (O-X-B) heating  
and CD system for NSTX-U H-modes 

Synthetic aperture microwave imaging 
(SAMI) antenna array 

MAST SAMI EBW Emission Data 

 

•  EBW simulations for an NSTX-U H-mode 
predict ηeff ~ 25 kA/MW on axis for  
ne(0) = 9 x 1019m-3 and Te(0) = 1.2 keV: 
– Can generate significant EBWCD  

at r/a > 0.8, where NBICD is negligible  
–  Extend simulations to include realistic 

SOL and edge fluctuations 

 

 
 

•  In FY16 measure O-X-B coupling on 
NSTX-U with synthetic aperture microwave 
imaging (SAMI)* [Collaboration with UK] 

•  Can test 28 GHz O-X-B heating with  
fixed horn antenna: 
-  Use B-X-O emission data acquired  

by SAMI to guide antenna aiming 

* V.F. Shevchenko et al., AIP Conference Proceedings 1612 53 (2014) 

 
 

 

 

 


