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Overview of the NSTX-U Disruption Prediction, Avoidance, 
and Mitigation (DPAM) Working Group - OUTLINE 

 Motivation and connection to DOE FES priorities 

 Mission statement and Scope 

 Disruption Prediction: Characterization and forecasting 
approach, implementation, and development 

 Disruption Avoidance: Mode stabilization and control 

 Disruption Mitigation: Preparation of NSTX-U MGI system 

 Connection to JRT-16 Joint Research Target Milestones 
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Disruption avoidance is a critical need for future tokamaks; 
NSTX-U is focusing stability research on this 

 The new “grand challenge” in tokamak stability research 
 Can be done! (JET: < 4% disruptions w/C wall, < 10% w/ITER-like wall) 

• ITER disruption rate: < 1 - 2% (energy load, halo current); << 1% (runaways) 

 Strategic plan: utilize/expand stability/control research success  
 Synergize and build upon disruption prediction and avoidance successes 

attained in present tokamaks (don’t just repeat them!)  

 FESAC 2014 Strategic Planning report defined “Control of 
Deleterious Transient Events” highest priority (Tier 1) initiative 
 Working group members had significant leadership roles in the 2015 DOE 

Workshops on solving issues of “Transient Events in Tokamaks” 

 NSTX-U will produce focused research on disruption avoidance 
with quantitative measures of progress 
 Long-term goal: many sequential shots (~3 shot-mins) without disruption 
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DPAM Working Group - Mission Statement and Scope 

 Mission statement 
 Satisfy gaps in understanding prediction, avoidance, and mitigation of 

disruptions in tokamaks, applying this knowledge to move toward 
acceptable levels of disruption frequency/severity using quantified 
metrics 

 Scope 
 Location: Initiate and base the study at NSTX-U, expand to a national 

program and international collaboration (multi-tokamak data) 

 Timescale: Multi-year effort, planning/executing experiments of various 
approaches (leveraging the 5 NSTX-U Year Plan) to reduce plasma 
disruptivity/severity at high performance 

 Breadth: High-level focus on quantified mission goal, with detailed 
physics areas expected to expand/evolve within the group, soliciting 
research input/efforts from new collaborations as needed 
 More than 50 members presently on email list; 3 meetings held to date  
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Disruption Prediction 
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Disruption event chain characterization capability started 
for NSTX-U as next step in disruption avoidance plan  

 Approach to 
disruption prevention 
 Identify disruption 

event chains and 
elements 

 Predict events in 
disruption chains 

 Cues disruption 
avoidance systems to 
break event chains 
• Attack events at 

several places with 
active control 

 Synergizes and builds 
upon both physics 
and control successes 
of NSTX 
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Disruption prediction/avoidance framework 
(from upcoming DOE “Transient Events” report) 

 New Disruption Event Characterization and Forecasting (DECAF) code created  
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Disruption Event Characterization And Forecasting Code 
(DECAF) yielding initial results (pressure peaking example) 

PRP warnings 

PRP VDE IPR SCL 

Detected at: 0.4194s 0.4380s 0.4522s 0.4732s 

NSTX 
142270 

Disruption 

 10 physical events presently defined in 
code with quantitative warning points 
 Builds on manual analysis of de Vries 

 
 Builds on warning algorithm of Gerhardt 

 
 New code written (in Python), easily 

expandable, portable to other tokamaks 
(recent capability to process DIII-D data) 

 Example: Pressure peaking (PRP) 
disruption event chain identified by 
code before disruption 
1. (PRP) Pressure peaking warnings 

identified first 
2. (VDE) VDE condition subsequently 

found 19 ms after last PRP warning 
3. (IPR) Plasma current request not met 
4. (SCL) Shape control warning issued 

 
 

Event 
chain 

P.C. de Vries et al., Nucl. Fusion 51 (2011) 053018  

S.P. Gerhardt et al., Nucl. Fusion 53 (2013) 063021  

J.W. Berkery, S.A. Sabbagh, Y.S. Park (Columbia U.) 
and the NSTX-U Disruption PAM Working Group 
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DECAF is structured to ease parallel development of 
disruption characterization, event criteria, and forecasting 

 Physical event modules 
encapsulate disruption 
chain events 
 Development focused on 

improving these modules 
 Structure eases 

development 
• E.g. separate code by    

C. Myers that improved 
disruption timing definition 
was quickly imported 

 Physical events are objects 
in physics modules 
 e.g. VDE, LOQ, RWM are 

objects in “Stability”  
 Carry metadata, event 

forecasting criteria, event 
linkages, etc. 

 

Main data 
structure 

Code 
control 

workbooks Density Limits 

Confinement 

Stability 

Tokamak 
dynamics 

Power/current 
handling 

Technical issues 

Physical event 
modules 

Output 
processing 
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Initial DECAF results detect disruption chain events when 
applied to dedicated 44 shot NSTX RWM disruption database 

 Several events detected 
for all shots 
 RWM: RWM event warning 
 SCL: Loss of shape control 
 IPR: Plasma current request not 

met 
 DIS: Disruption occurred 
 LOQ: Low edge q warning 
 VDE: VDE warning (40 shots) 

 

 Others: 
 PRP: Pressure peaking warning 
 GWL: Greenwald limit 
 LON: Low density warning 
 LTM: Locked tearing mode 

Occur 
with or 
after 
RWM  
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Initial DECAF results detects disruption chain events when 
applied to dedicated 44 shot NSTX RWM disruption database 

 Most RWM near major disruption 
 61% of RWM occur within 20 τw of 

disruption time (τw = 5 ms) 

 Earlier RWM events NOT false positives – 
cause large decreases in βN with recovery 
(minor disruptions) 
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Initial DECAF analysis already finding common disruption 
event chains (44 shot NSTX disruption database) 

 Common disruption event chains (52.3%) 
 
 

 Related chains 
• RWM  SCL  VDE  IPR  DIS 
• VDE  RWM  SCL  IPR  DIS 
• VDE  RWM  IPR  DIS  SCL 
• RWM  SCL  VDE  GWL  IPR  DIS 

 Disruption event chains w/o VDE (11.4%) 

 New insights being gained 
 Chains starting with GWL are found that show 

rotation and βN rollover before RWM (6.8%) 
 Related chains 

• GWL  VDE  RWM  SCL  IPR  DIS 
• GWL  SCL  RWM  IPR  DIS 

 

Disruption event 
chains with RWM 

VDE SCL IPR RWM DIS 

Event 
chains 

with 
RWM 

and VDE 
(52.3%) 

No 
VDE 

(11.4%) 

Other 
(29.5%) 

GWL start 
(6.8%) 
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 Important capability of DECAF to 
compare analysis using offline vs. 
real-time data 
 Simple, initial test 

 PCS Shut-down conditions are 
analogous to DECAF events 
 PCS loss of vertical control 

  DECAF 

 DECAF comparison:VDE event 
 Matches PCS when r/t signal used 

(1 criterion) 
 VDE event 13 ms earlier using 

offline EFIT signals (3 criteria) 

 

First DECAF results for NSTX-U replicate the triggers found 
in new real-time state machine shutdown capability 

See talk by S. Gerhardt (next) for detail of new NSTX-U automated shutdown capability  

VDE 

PCS trigger 
For VDE 

(t = 0.733s) 

VDE 

Using r/t data (t = 0.733s) 
Using EFIT (t = 0.720s) 
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Disruption Avoidance 
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Predictor/Sensor 
(CY available) 

Control/Actuator 
(CY available) Modes REFER TO 

Rotating and low freq. MHD 
(n=1,2,3) 2003 
 

Dual-component RWM sensor 
control 
(closed loop 2008) 

NTM 
RWM 

- Menard NF 2001 
- Sabbagh NF 2013;   

+ backup slides 

Low freq. MHD spectroscopy 
(open loop 2005); 
Kinetic RWM modeling (2008) 

Control of βN 
(closed loop 2007) 

Kink/ball 
RWM 

- Sontag NF 2007 
- Berkery (2009–15) 
- Gerhardt FST 2012 

r/t RWM state-space 
controller observer (2010) 

Physics model-based RWM 
state-space control (2010) 

NTM, RWM 
Kink/ball, 
VDE 

- THIS TALK 
- Sabbagh NF 2013;   
+ backup slides 

Real-time Vφ measurement 
(2016) 

Plasma Vφ control (NTV 2004) 
(NTV + NBI rotation control 
closed loop ~ 2017) 

NTM 
Kink/ball 
RWM 

- Podesta RSI 2012 
- Zhu PRL 06 +backup 
- THIS TALK 

Kinetic RWM stabilization 
real-time model (2016-17) 

Safety factor, li control 
(closed loop ~ 2016-17) 

NTM, RWM 
Kink/ball, 
VDE 

- Berkery, NF 2015 
- D. Boyer’s TALK 

MHD spectroscopy (real-time) 
(in 5 Year Plan) 

Upgraded 3D coils (NCC): 
improved Vφ and mode control 
(in 5 Year Plan) 

NTM, RWM 
Kink/ball, 
VDE 

- NSTX-U 5 Year Plan 
- THIS TALK 

NSTX-U is building on past strength, creating an arsenal of 
capabilities for disruption avoidance 
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 Joint NSTX / DIII-D experiments and analysis gives unified 
kinetic RWM physics understanding for disruption avoidance 

 RWM Dynamics 
 RWM rotation and 

mode growth 
observed 

 No strong NTM 
activity 

 Some weak bursting 
MHD in DIII-D 
plasma 

• Alters RWM phase 

 No bursting MHD in 
NSTX plasma 
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S. Sabbagh et al., APS Invited talk 2014 
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Evolution of plasma rotation profile leads to kinetic RWM 
instability as disruption is approached  

DIII-D (minor disruption) NSTX (major disruption) 
 

MISK MISK 

unstable 

stable 

unstable 

stable 

increasing time 

increasing time 

γτ
w

al
l 

γτ
w

al
l 

S. Sabbagh et al., APS Invited talk 2014 

 Kinetic RWM stabilization occurs from broad resonances between plasma rotation 
and particle precession drift, bounce/circulating, and collision frequencies 
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State space rotation controller designed for NSTX-U using 
non-resonant NTV and NBI to maintain stable profiles 
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 Momentum force balance – ωφ decomposed into Bessel function states 
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I. Goumiri, et al., submitted 
to NF (2016) 
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State space rotation controller designed for NSTX-U using 
non-resonant NTV and NBI to maintain stable profiles 
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 Momentum force balance – ωφ decomposed into Bessel function states 
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State space rotation controller designed for NSTX-U can 
evolve plasma rotation profile toward global mode stability  

 I. Goumiri (Princeton student), S.A. Sabbagh (Columbia U.), C. Rowley (P.U.), D.A. Gates, S.P. Gerhardt (PPPL)  
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With planned NCC coil upgrade, rotation controller can reach 
desired rotation profile faster, with greater fidelity 

 I. Goumiri (Princeton student), S.A. Sabbagh (Columbia U.), C. Rowley (P.U.), D.A. Gates, S.P. Gerhardt (PPPL)  

 NSTX-U ωφ control with 
 6 NBI sources 
 Greater core NTV from 

planned NCC upgrade 

 Better performance 
 Faster to target t ~ 0.5τm 

 Matches target ωφ better 

Planned NCC upgrade 
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NCC 2x12 with favorable sensors, optimal gain NCC 2x6 odd parity, with favorable sensors 

 Full NCC coil set allows 
control close to ideal wall limit 
 NCC 2x6 odd parity coils: active 

control to βN/βN
no-wall = 1.58 

 NCC 2x12 coils, optimal sensors: 
active control to βN/βN

no-wall = 1.67 

 
 

Active RWM control design study for proposed NSTX-U 3D 
coil upgrade (NCC coils) shows superior capability 

NCC (plasma 
facing side) 



22 NSTX-U PAC-37 Meeting: Overview of Disruption PAM Working Group and Initial Results (S.A. Sabbagh, et al.) Jan 27th, 2016 

NSTX RWM state space controller sustains high βN, low li 
plasma – available for NSTX-U with independent coil control 

RWM state space feedback (12 states) 

 n = 1 applied field 
suppression 
 Suppressed 

disruption due 
to n = 1 field 
 
 

 Feedback phase 
scan 
 Best feedback 
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pulse, βN = 6.4, 
βN/li = 13 
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 Run time has been allocated for continued 
experiments on NSTX-U in 2016 

S. Sabbagh et al., Nucl. Fusion 53 (2013) 104007 
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In addition to active mode control, the NSTX-U RWM state 
space controller can be used for real-time disruption warning 

Sensor 
data 

Controller 
(observer) 

 The controller “observer” 
produces a physics model-
based calculation of the 
expected sensor data – a 
synthetic diagnostic 

 If the real-time synthetic 
diagnostic doesn’t match the 
measured sensor data, a r/t 
disruption warning signal can 
be triggered 
 Technique will be assessed using 

the DECAF code 
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Disruption Mitigation 
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NSTX-U Disruption Mitigation Research Aims to Develop MGI 
and EPI Technologies in Support ITER and FNSF 

 Massive Gas Injection (MGI): (starting 2016) 
 ITER-type MGI valve will be used on NSTX-U in a configuration to do 

nearly exact comparison experiments 
 Experimental results to be studied using M3D-C1 (A. Fil, S. Jardin, et al.) 

• Develop understanding of gas assimilation fraction by the plasma 
• Use to project to ITER plasmas 

 Similar plasma poloidal size, shape of DIII-D and NSTX-U allows multi-
machine comparison studies 

 Electromagnetic Particle Injector (EPI): (in 5 Year Plan) 
 Motivation: Handle fast disruptions 

• For warning times < 10 ms, MGI may not be a viable option 
 Rapid delivery of impurities deeper into plasma with fast time-response 

• Under 5ms from trigger to delivery at 7m from plasma 
• Efficiency of system improves in a magnetic field environment 
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New double solenoid valve design (zero net JxB torque) pass 
tests for reliability and magnetic field limits 

MGI 
Valve 

Magnets Magnets 

Test stand 

Fast Baratron 

Baratron traces with and without magnetic field 

MGI 
Valve MGI 

Valve University of 
Washington Test Stand 

R. Raman, et al., RSI 85 (2014) 11E801  
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NSTX-U MGI will study poloidal injection location variation 
using identical MGI valves and gas transit piping 

 Assess benefits of 
injection into the 
private flux region & 
the high-field side vs. 
LFS midplane 

 Quantify MGI gas 
assimilation fractions 
and extend model to 
larger machines 

 Model gas penetration 
and assimilation results 
using 3D MHD codes 
(incl. M3D-C1) 

 First plasma tests April, 
experiment May 2016 1a: Private 

flux region 
1b: Lower SOL, 
Lower divertor 

3: Upper divertor 

2: mid- 
plane 

4: future 
position 
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DPAM Working Group is fulfilling DOE Joint Research Target 
JRT-16 milestones to start NSTX-U 5 YP research goals 

 FY16 DOE Joint Research Target summary (1 page) 
 http://nstx.pppl.gov/DragNDrop/Working_Groups/DPAM/Repository/JRT

16QuarterlyMilestones-V9.pdf 

 

 Prediction / Avoidance 
 Use disruption prediction algorithm to characterize the reliability of 

predicting a few types of common disruptions from at least two devices 
 Report on capability to reduce disruption rate through active 

improvement of plasma stability  
 Test on at least one facility to detect in real time an impending disruption 

and take corrective measures to safely terminate the plasma discharge  

 Mitigation 
 Test newly-designed ITER-type massive gas injection valve to study 

benefits of private flux region massive gas injection vs. mid-plane inj. 

 
 

Culminating Milestones for 2016 
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 Disruption PAM Working Group Mission 
 Satisfy gaps in understanding disruption prediction, avoidance, mitigation 
 Apply knowledge to demonstrate acceptable levels of disruption 

frequency/severity using quantified metrics 

 PAC charges are directly addressed 
 FESAC/FES Initiatives: NSTX-U DPAM Working group effort was born 

from 2015 FES effort - is identically aligned with it. Urgent ITER need. 
 Research: Disruption Event Characterization And Forecasting effort 

started to unify physics understanding for disruption avoidance (5 YP 
Committee member recommendation); MGI to start in 2016. 

 Facility enhancements: Quantified disruptivity metrics will assess new 
capabilities (e.g. plasma rotation, q, active mode control ) and guide future 
improvements (e.g. planned NCC 3D coil upgrade, et al.) 

 PPPL Theory partnership: Is highly leveraged in this effort (10 members) 

NSTX-U Research is building upon physics understanding 
and synergizing control for disruption PAM in tokamaks 

(see talk by A. Bhattacharjee) 
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Supporting Slides Follow 
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RWM active stabilization coils 

RWM poloidal 
sensors (Bp) 

RWM radial sensors (Br) 

Stabilizer 
plates 

 High beta, low aspect ratio 
 R = 0.86 m, A > 1.27 
 Ip < 1.5 MA, Bt = 5.5 kG 
  βt < 40%, βN > 7 

 
 Copper stabilizer plates for kink 

mode stabilization 
 

 Midplane control coils 
 n = 1 – 3 field correction, 

magnetic braking of ωφ by NTV 

 n = 1 RWM control 
 

 Combined sensor sets now used 
for RWM feedback 
 48 upper/lower Bp, Br 

NSTX is a spherical torus equipped to study passive and 
active global MHD control 

3D Conducting Structure Model 
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 Initially used for NSTX since simple critical scalar ωφ threshold stability 
models did not describe RWM stability 

 

 Kinetic modification to ideal MHD growth rate 
 Trapped / circulating ions, trapped electrons, etc. 

 Energetic particle (EP) stabilization 

 Stability depends on 
 Integrated ωφ profile: resonances in δWK (e.g. ion precession drift) 

 Particle collisionality, EP fraction 
 

Trapped ion component of δWK (plasma integral over energy) 

K
w

wall K

W W
W W
δ δγτ

δ δ
∞ +

= −
+

collisionality 

ωφ profile (enters through ExB frequency) 

Hu and Betti, Phys. Rev. Lett 93 (2004) 
105002 

Sontag, et al., Nucl. Fusion 47 (2007) 1005 

precession drift bounce 

Modification of Ideal Stability by Kinetic theory (MISK code) is 
used to determine proximity of plasmas to stability boundary  

J. Berkery et al., PRL 104, 035003 (2010) 
S. Sabbagh, et al., NF 50, 025020 (2010) 
J. Berkery et al., PRL 106, 075004 (2011) 
S. Sabbagh et al., NF 53, 104007 (2013) 
J. Berkery et al., PoP 21, 056112 (2014) 
J. Berkery et al., PoP 21, 052505 (2014) 
J. Berkery et al., NF 55, 123007 (2015) 

Some NSTX / MISK 
analysis references 
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Kinetic RWM stability evaluated for DIII-D and NSTX plasmas, 
reproduces experiments over wide rotation range 

 Summary of results 
 Plasmas free of other MHD 

modes can reach or exceed 
linear kinetic RWM marginal 
stability 

 Bursting MHD modes can 
lead to non-linear 
destabilization before linear 
stability limits are reached 

 Extrapolations of DIII-D 
plasmas to different Vφ 
show marginal stability is 
bounded by 1.6 < qmin < 2.8 

 
 

 

Kinetic RWM stability analysis for experiments (MISK) 

Plasma rotation [krad/s] (ψN = 0.5) 

N
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major disruption 
minor disruption 

DIII-D 
NSTX 

stable 

unstable 

extrapolation 

qmin = 2.8 

qmin = 1.6 

“weak stability” region 

J.W. Berkery, J.M. Hanson, S.A. Sabbagh (Columbia U.) 
S. Sabbagh et al., APS Invited talk 2014 

Extensive NSTX / MISK analysis 
references spanning ~ 7 years 

(8 references given in supporting slides) 
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JET disruption event characterization provides framework 
to follow for understanding / quantifying DPAM progress 

P.C. de Vries et al., Nucl. Fusion 51 (2011) 053018  

JET disruption event chains Related disruption event statistics 

 JET disruption event chain analysis performed by hand, desire to automate 
 General code written (DECAF) to address the first step – initial analysis 

started using NSTX data 
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Disruption Characterization Code now yielding initial results: 
disruption event chains, with related quantitative warnings (2) 

J.W. Berkery, S.A. Sabbagh, Y.S. Park 

 This example: Greenwald limit 
warning during Ip rampdown 

1. (GWL) Greenwald limit warning 
issued 

2. (VDE) VDE condition then found 
0.6 ms after GWL warning 

3. (IPR) Plasma current request not 
met 

 
 

GWL warnings 

NSTX 
138854 

GWL VDE IPR 

Detected at: 0.7442s 0.7448s 0.7502s 

Disruption during 
Ip ramp-down 

Event 
chain 
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NTV physics studies for rotation control: measured NTV 
torque density profiles quantitatively compare well to theory 

 TNTV (theory) scaled to match peak value of measured -dL/dt  
 Scale factor ((dL/dt)/TNTV) = 1.7 and 0.6 for cases shown above – O(1) agreement 

 KSTAR n = 2 NTV experiments do not exhibit hysteresis 
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See recent NTV review paper: K.C. Shaing, K. Ida, S.A. Sabbagh, et al., Nucl. Fusion 55 (2015) 125001  
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Active RWM control: dual Br + Bp sensor feedback gain and 
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 Favorable Bp + Br feedback (FB) 
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 Time-evolved theory simulation of 
Br+Bp feedback follows experiment 
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 Controller model can 
compensate for wall currents 
 Includes linear plasma mode-

induced current model (DCON) 
 Potential to allow control coils to 

be moved further from plasma, 
and be shielded (e.g. for ITER) 
 

 Straightforward inclusion of 
multiple modes (n = 1, or n > 1) 

39 

Model-based RWM state space controller including 3D 
model of plasma and wall currents used at high βN 

Balancing 
transformation 

~3000+ 
states 

Full 3-D model 

… 

RWM 
eigenfunction

(2 phases,    
2 states) 
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State Derivative Feedback Algorithm needed for Current 
Control 

 Previously published approach found to be formally “uncontrollable” when 
applied to current control 

 State derivative feedback control approach 
 
 
 
 new Ricatti equations to solve to derive control matrices – still “standard” 

solutions for this in control theory literature 
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Advance discrete state vector 

(time update) 

(measurement 
update) 
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e.g. T.H.S. Abdelaziz, M. Valasek., Proc. of 16th IFAC World 
Congress, 2005 

 State equations to advance 

- General (portable) matrix 
output file for operator 

Written into the PCS 
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NSTX RWM state space controller sustains high βN, low li 
plasma – available for NSTX-U with independent coil control 

RWM state space feedback (12 states) 

 n = 1 applied field 
suppression 
 Suppressed 

disruption due 
to n = 1 field 
 
 

 Feedback phase 
scan 
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phase 
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pulse, βN = 6.4, 
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 Run time has been allocated for continued 
experiments on NSTX-U in 2016 

S. Sabbagh et al., Nucl. Fusion 53 (2013) 104007 
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RWM state space controller sustains otherwise disrupted 
plasma caused by DC n = 1 applied field 

 n = 1 DC applied field 
test 
 Generate resonant 

field amplication, 
disruption 

 Use of RWM state 
space controller 
sustains discharge 
 

 RWM state space 
controller sustains 
discharge at high βN 
 Best feedback 

phase produced 
long pulse, βN = 
6.4, βN/li = 13 
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 Improved agreement with sufficient 
number of states (wall detail) 

Open-loop comparisons between measurements and RWM 
state space controller show importance of states and model 

A) Effect of Number of States Used 
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In addition to active mode control, the NSTX-U RWM state 
space controller can be used for r/t disruption warning 

Sensor 
data 

Controller 
(observer) 

 The controller “observer” 
produces a physics model-
based calculation of the 
expected sensor data – a 
synthetic diagnostic 

 If the real-time synthetic 
diagnostic doesn’t match the 
measured sensor data, a r/t 
disruption warning signal can 
be triggered 
 Technique will be assessed using 

the DECAF code 
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In addition to active mode control, the NSTX-U RWM state 
space controller can be used for real-time disruption warning 

Sensor 
data 

Controller 
(observer) 

 The controller “observer” 
produces a physics model-
based calculation of the 
expected sensor data – a 
synthetic diagnostic 

 If the real-time synthetic 
diagnostic doesn’t match the 
measured sensor data, a r/t 
disruption warning signal can 
be triggered 
 Technique will be assessed using 
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Bounce resonance stabilization dominates for DIII-D vs. 
precession drift resonance for NSTX at similar, high rotation  

DIII-D experimental rotation profile NSTX experimental rotation profile 

|δWK| for trapped resonant ions vs. scaled experimental rotation (MISK) 

133103 @ 3.330 s 
stable plasma 

133776 @ 0.861 s 
stable plasma 

precession 
resonance 

bounce / 
circulating 
resonance 

precession 
resonance 

bounce / 
circulating 
resonance 

DIII-D NSTX 
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Increased RWM stability measured in DIII-D plasmas as qmin 
is reduced is consistent with kinetic RWM theory 

|δWK| for trapped resonant ions vs. scaled experimental rotation (MISK) 
Measured plasma response to 

20 Hz, n = 1 field vs qmin 
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DIII-D experimental rotation profile 

precession drift 
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circulating 
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DIII-D (qmin = 1.2) 
DIII-D (qmin = 1.6) 
DIII-D (qmin = 2.8) 

 Bounce resonance dominates 
precession drift resonance for all qmin 
examined at the experimental rotation 
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NSTX-U: RWM active control capability increases as 
proposed 3D coils upgrade (NCC coils) are added 

 Partial 1x12 NCC coil set 
significantly enhances control 
 Present RWM coils: active 

control to βN/βN
no-wall = 1.25 
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ITER High Priority need: What levels of plasma 
disturbances (δBp; δBp/Bp(a)) are permissible to avoid 

disruption? 
• NSTX RWM-induced 

disruptions analyzed 
 Same database 

analyzed by DECAF in 
prior slides 
 

• Compare maximum 
δBp (n = 1 amplitude) 
causing disruption vs Ip 

• Maximum δBp increases with Ip 
• Next step: add results from other devices 

NSTX 
RWM-induced 
Disruptions 
(n = 1 global 
MHD mode) 
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Maximum δBp might follow a de Vries-style engineering 
scaling Ipp1lip2/ap3q95

p4 
• NSTX RWM-

induced 
disruptions 

• Compare 
maximum δBp 
causing disruption 
to de Vries locked 
NTM scaling 
 engineering 

parameters 
 Data shows 

significant scatter 
(as does de Vries’ 
analysis for NTM) 

NSTX 
RWM-induced 
Disruptions 
(n = 1 global 
MHD mode) 
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Maximum δBp/<Bp(a)> might follow a de Vries-style 
scaling lip1/q95

p2 • NSTX RWM-
induced 
disruptions 

• Compare 
maximum δBp 
causing disruption 
vs. de Vries locked 
NTM scaling 
 Normalized 

parameters 

• NSTX analysis 
uses kinetic EFIT 
reconstructions 
 li instead of li(3) 
 <Bp(a)>fsa used 

NSTX 
RWM-induced 
Disruptions 
(n = 1 global 
MHD mode) 
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In contrast, maximum δBp/<Bp(a)> seems independent 
of scaling on (li) or (Fp)  (or (Fp/li)) 

• Fp = ptot(0)/<ptot>vol (from kinetic equilibrium reconstructions) 

• Dependence on li, Fp expected for RWM marginal stability points 

NSTX 
RWM-induced 
Disruptions 
(n = 1 global 
MHD mode) 

internal inductance total pressure peaking factor 
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