Status of the MAST Upgrade project and future plans

IT Chapman on behalf of the MAST Upgrade Team

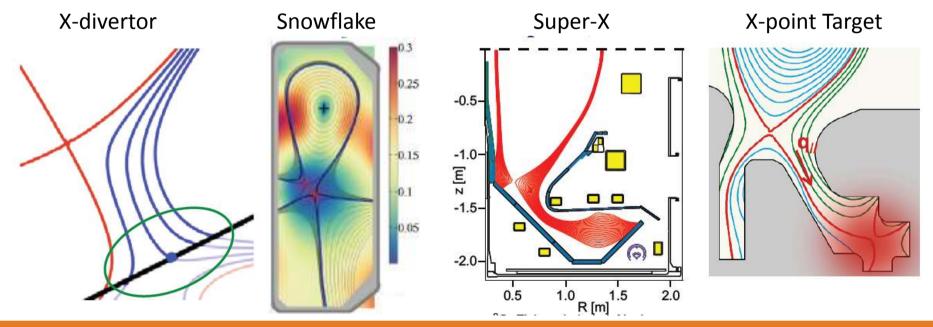
PPPL 26 January 2016

CCFE is the fusion research arm of the **United Kingdom Atomic Energy Authority.** This work was funded by the RCUK Energy Programme [grant number EP/I501045].

Science issues to tackle with MAST Upgrade

Main issues for fusion tokamaks

- Divertor Challenge $P_h/R \sim 7$ 20 JET < ITER <
 - High heat flux needs to be mitigated ⇒ radiation, novel divertor concepts

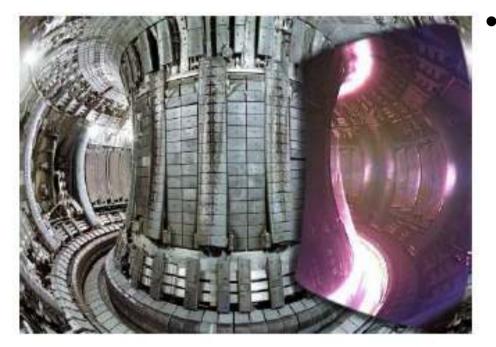


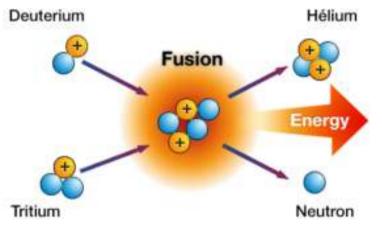
80-100

DEMO

Plasma exhaust in DEMO

- To have viable heat flux on divertor plates must either:
 - Radiate many 100's MW inside separatrix
 - But is this compatible with good core plasma performance?
 - Use alternative divertor to increase divertor radiated power by ~15x
 - Limited by radiating volume, impurity density which controls power loss
 - Does it make sense from engineering perspective?

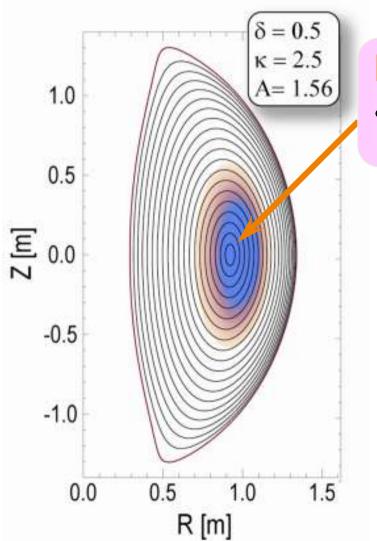

Main issues for fusion tokamaks


- Divertor Challenge $r_h/R \sim 7$ 20 JET < ITER < 80-100 DEMO
 - High heat flux needs to be mitigated \Rightarrow radiation, novel divertor concepts
- Fast-ion physics $9x10^5$ m/s $8x10^6$ m/s $12x10^6$ m/s $6x10^7$ m/s
 - Fast particle driven instabilities may change confinement, current drive, fast-ion redistribution

For ITER

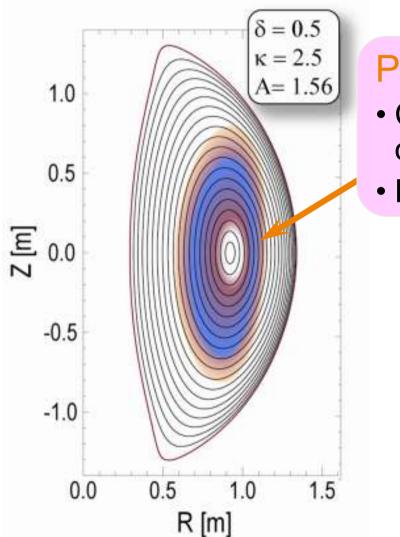
Fast particle physics

 Perhaps the biggest change in ITER will be a dominant source of fusionborn alpha particles



- Why do we care?
 - Loss of bulk heating
 - Unacceptable for efficient
 power plant
 - Possible ignition problems
 - Damage to first wall
 - Can only tolerate a few % losses

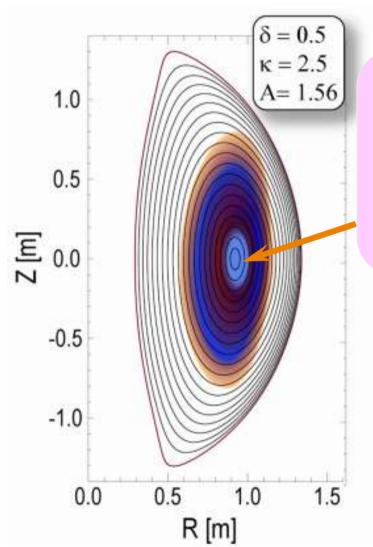
Tailoring the fast ion distribution



Provide enhanced profile control
Core heating and current drive with on-axis NBI

6 / 39

Tailoring the fast ion distribution


Provide enhanced profile control

- Core heating and current drive with on-axis NBI
- Hollow deposition with off-axis NBI

Tailoring the fast ion distribution

Provide enhanced profile control

- Core heating and current drive with on-axis NBI
- Hollow deposition with off-axis NBI
- Broad profiles with both systems

Main issues for fusion tokamaks

- Divertor Challenge
- $\frac{P_{h}/R \sim 7}{JET} < \frac{20}{ITER} < \frac{80-100}{DEMO}$
 - High heat flux needs to be mitigated \Rightarrow radiation, novel divertor concepts

 $9x10^{5}$ m/s $8x10^{6}$ m/s $12x10^{6}$ m/s $6x10^{7}$ m/s

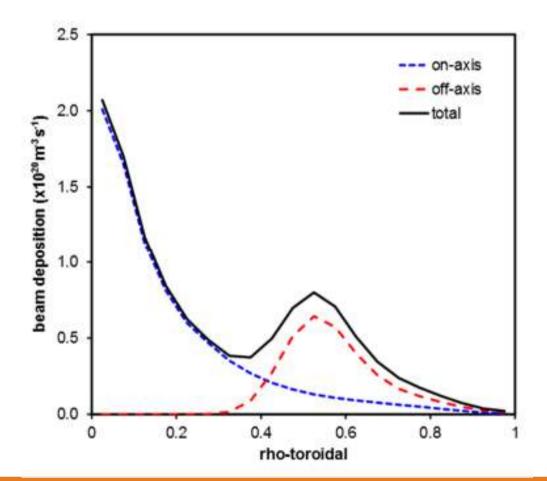
• Fast-ion physics $\sum_{V_{Ti}}^{V_{Ti}}$

$$<$$
 V_A $<$ V_A $<$ V_{Te}

 Fast particle driven instabilities may change confinement, current drive, fast-ion redistribution

(∼¾ h)

- Long pulse (steady state) <u>JET < ITER < DEMO</u>
 - Need means to sustain the plasma current ⇒ current drive schemes (NBI, RF), optimise bootstrap fraction

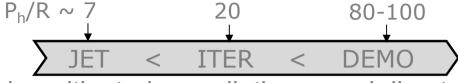


For ITER

d's – wk's

Current drive studies

Off-axis NBI will provide ability to study current drive physics



10 / 39

Main issues for fusion tokamaks

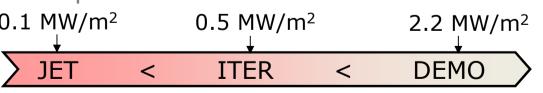
• Divertor Challenge

- High heat flux needs to be mitigated \Rightarrow radiation, novel divertor concepts

• Fast-ion physics $9x10^5$ m/s $8x10^6$ m/s $12x10^6$ m/s $6x10^7$ m/s $V_{Ti} << V_A < V_a < V_{Ta}$ For

For ITER

DFMO

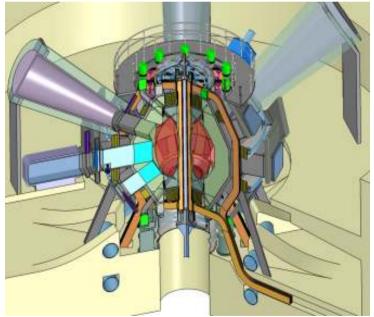

 $(\sim^{3}/_{4} h) d's - wk's$

 Fast particle driven instabilities may change confinement, current drive, fast-ion redistribution

- Long pulse (steady state) JET < ITER
 - Need means to sustain the plasma current \Rightarrow current drive schemes (NBI, RF), optimise bootstrap fraction

 $\Gamma_{\rm n} < 0.1 \; {\rm MW}/{\rm m}^2$ 0.5 MW/m^2

Neutron load



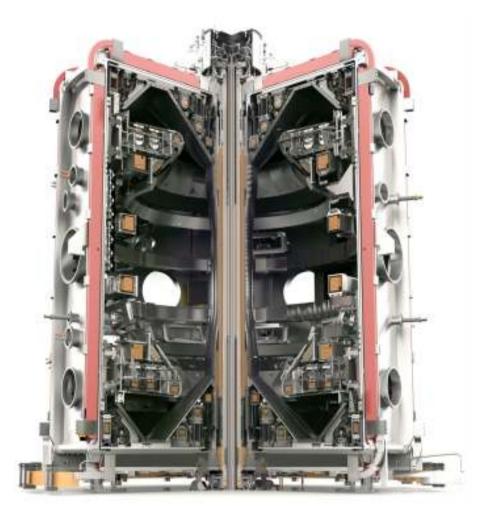
- Structural integrity needs to be maintained \Rightarrow materials testing, components testing

Components Test Facility (CTF)

- A CTF is for prototyping components (~1m³) in a fusion reactor environment (neutrons, heat loads, magnetic fields, cyclic stresses)
 - Smaller/cheaper [O(€1Bn) construction cost]/lower risk than a DEMO/reactor scale device
- Significant plasma physics challenges to address with MAST-U (with enhancements):
 - Starting-up the plasma (no solenoid)
 - Heat exhaust (many times present limits)
 - Particle exhaust
 - Energy confinement

MAST Upgrade

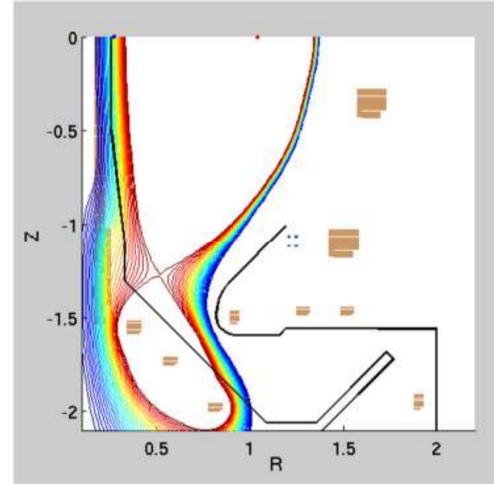
Increased TF

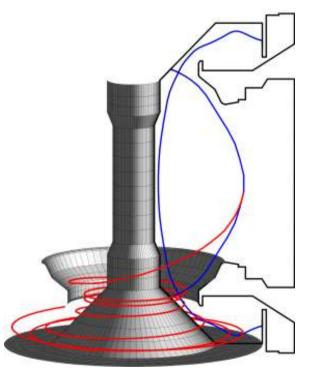

Improved confinement

New Solenoid Greater I_p, pulse duration

19 New PF Coils Improved shaping

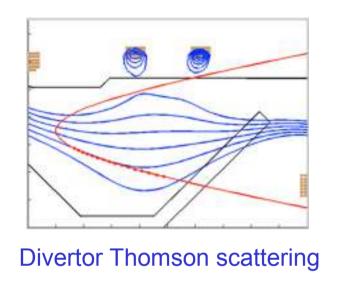
Super-X Divertor Improved power handling

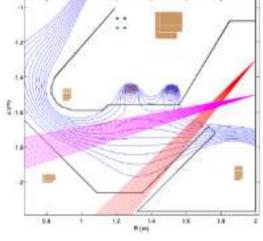

Off-Axis NBI Improved profile control MAST-Upgrade after initial construction ("core scope")



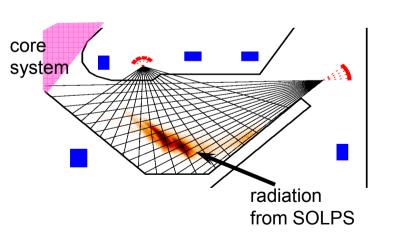
Divertor configurations in MAST Upgrade

 Flexible poloidal field coil set allows for a wide variety of magnetic geometries in MAST Upgrade

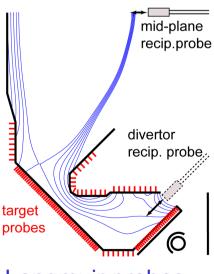


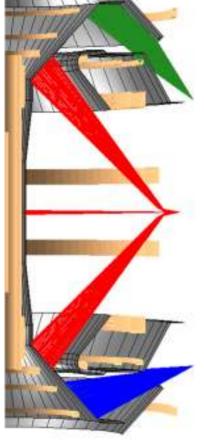


S Lisgo, EPS, 2009 G Fishpool, J Nucl Mat 2012



Divertor diagnostics (main systems)




Spectroscopy

Bolometer arrays for divertor

Langmuir probes

Infra red views of PFCs

Others, especially

- Coherence imaging (flows)
- Divertor science facility

15 / 39

Scientific Goals of MAST-U (Core Scope)

- Improving the understanding of exhaust physics
 - Closure and connection length
 - Flux expansion at the divertor targets
 - Volumetric losses and detachment
- Fast ion physics and current drive
 - Tailoring super-Alfvenic fast ion distribution
 - High elongation plasmas with reduced fast ion redistribution
- Other high-priority ITER, DEMO and CTF needs
 - RMP ELM control
 - Pedestal & core turbulence at low collisionality

New diagnostics for 2017

- Divertor Thomson scattering system (MST2)
- Fast ion loss detector (CIEMAT)
- Adaptable reciprocating probe head (MST2)
- Doppler backscattering (SWIP)
- Plus bids for other systems:
 - Improvements to coherence imaging (Durham)
 - MANTIS array of high speed cameras (York)
 - X-pt imaging bolometer (Mexico)

MAST Upgrade project status

Progress against milestones

Serial No.	MILESTONE	Stretch Target	Status	Latest plan
	1.3. LOAD ASSEMBLY			
B3.M52	Lower Divertor Cassette installed in MAST-U Vacuum Vessel	30-Jun-15	Complete	24/09/2015
B3.M58	Strengthened legs for MAST vessel installed	30-Sep-15	Complete	30-Sep-15
B3.M60	Lower End plate assembly available for installation	31-Oct-15		18/01/2016
B3.M61	MAST-U Vacuum Vessel installed in MAST Blockhouse	30-Nov-15		10/02/2016
	1.4. HEATING AND FUELLING			
B3.M62	Neutral Beam mechanical pre-assemblies completed	30-Nov-15	Complete	27-Nov-15
	1.6. POWER SUPPLIES			
B3.M53	Local Commissioning of the TFPS Completed	30-Jun-15	Complete	02-Jul-15
B3.M65	Local Commissioning of the DFPS Completed	31-Dec-15		29-Jan-16
B3.M66	MAST Power Supply Area, ready for RFPS Commissioning	29-Feb-16		04-Mar-16
	1.7. BUILDINGS AND INFRASTRUCTURE			
B3.M56	Services complete for TARDIS room	31-Aug-15	Complete	02-Sep-15
B3.M57	Blockhouse pit area and services complete	31-Aug-15	Complete	28-Aug-15
B3.M63	Fibre Backbone Network installed	30-Nov-15		24-Dec-15
B3.M67	Blockhouse area and services complete	29-Feb-16		12-Feb-16
	1.8. MACHINE CONTROL, PROTECTION AND DATA ACQUISITION			
B3.M54	PASS for the PS Area, ready for DFPS Off-coil Commissioning	30-Jun-15	Complete	17-Jul-15
B3.M55	Local tests completed for the TF hardwired protection	31-Jul-15	Complete	11-Aug-15
B3.M59	Local tests of the P1 coil hardwired protection completed	30-Sep-15	Complete	22-Oct-15
B3.M68	Core Datac hardware installed	29-Feb-16		03-Mar-16
B3.M69	Plasma Control System hardware installed	29-Feb-16		08-Mar-16
	NON-MAST-U FUNDED REFURBISHMENTS			
B3.M64	New Control room available for Handover	30-Jun-15	Complete	29-Jun-15

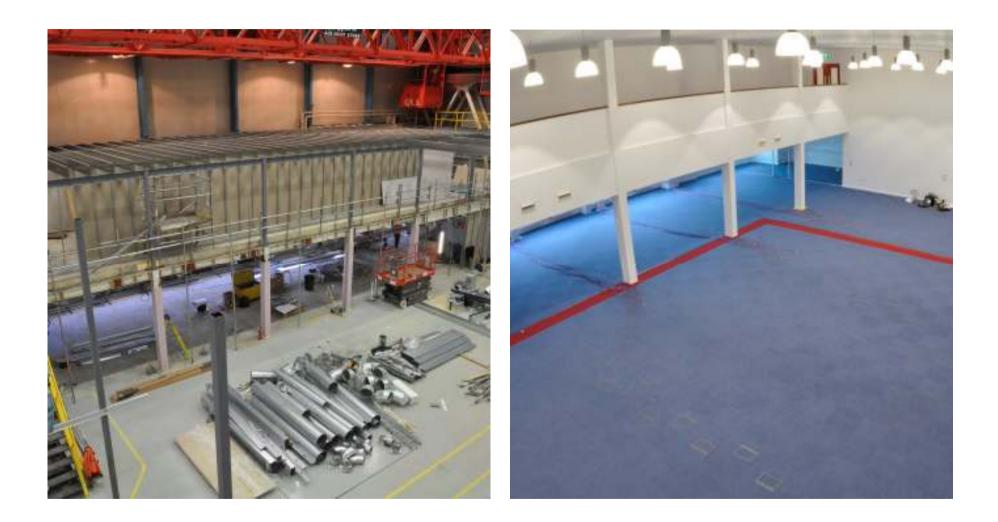
Load Assembly

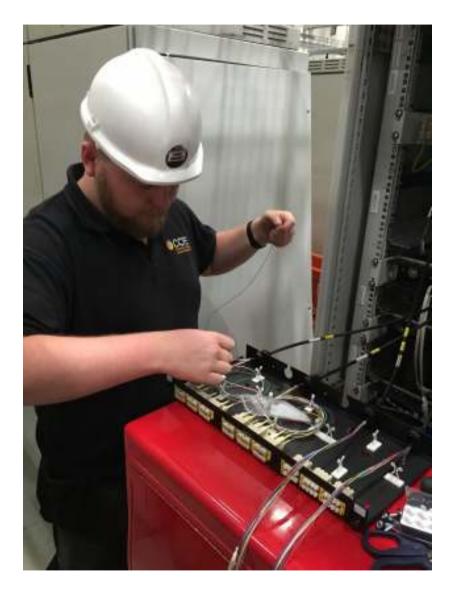
Load Assembly

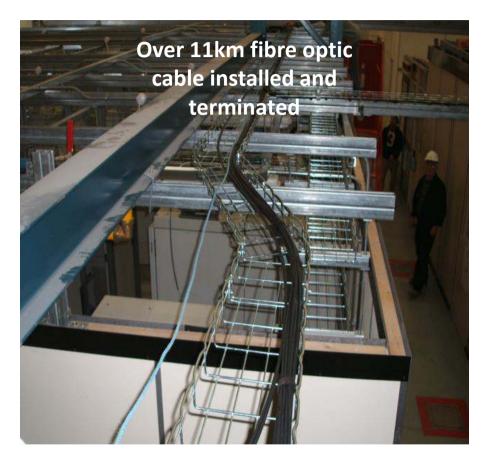
21/39

Strengthened vessel supports

All NBI components ahead of schedule

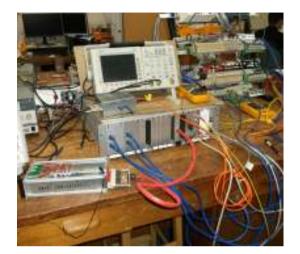

All centre column diagnostics fitted


Control room completed on time



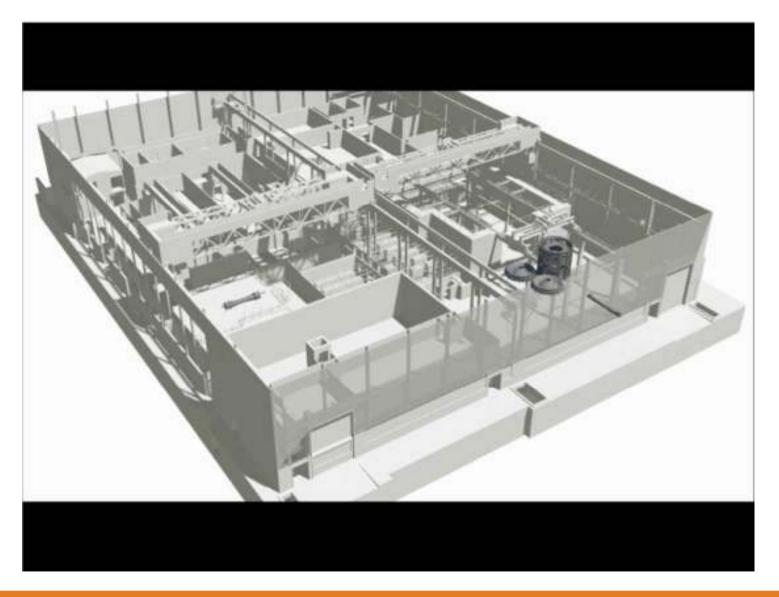
25/39

New networks on schedule



Other infrastructure needed

Other infrastructure needed



28/39

Begin putting it all back together soon

29 / 39

Begin putting it all back together soon

30 / 39

MAST Upgrade future plans

EUROfusion Plasma Exhaust Call

- Proposals for EU support for enhancements to existing facilities / new facilities to advance plasma exhaust strategy due Jan '16
 - Expect funding of order €50M in total
 - Opportunity to secure EUROfusion support for Stage 1&2 enhancements

MAST Upgrade with enhancements

Cryoplant

Divertor particle control

Double NBI Box 10MW auxiliary heating

Flexible Fuelling HFPI + 48 gas valves

Upgraded control *New RFPS and software*

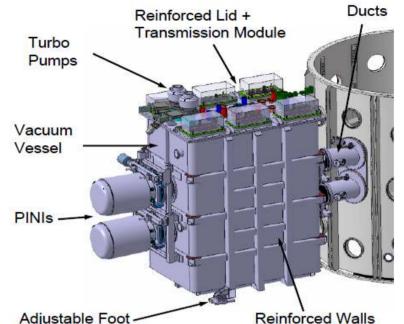
Extra diagnostics X-pnt Thomson scattering RT Langmuir probes Multiple extra IR cameras

2x1MHz visible cameras

-0.5 Point -1.5 Divertor 0.5 1.5 R (m)

Core

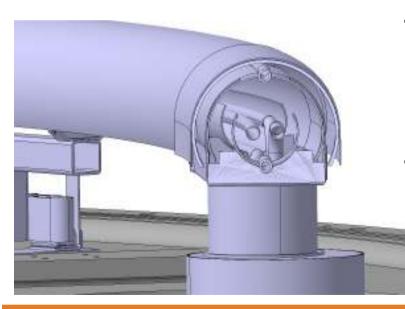
2


MAST-U + Enhancements

- Proposed enhancements would provide a uniquely flexible machine for exhaust physics:
 - Understanding exhaust physics in both conventional and novel divertor geometries;
 - Demonstrating specific requirements for successful adoption of novel divertors different to the needs of conventional configurations;
 - Demonstration of exhaust control schemes and credible integration with high-performance core scenarios

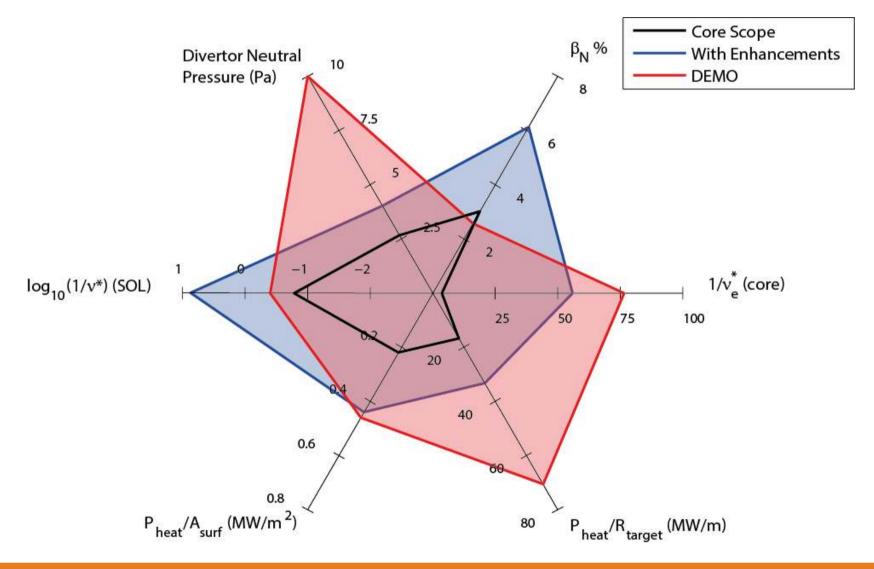
MAST Upgrade Enhancements: Heating

- NBI power up to 10MW
 - Increased divertor heat flux, P/R~8, wider window of detachment etc
 - Access to high β physics
 - Flexible fast ion & torque profiles



- Widens H-mode operating space in B_t , I_p and n_e
 - More robust access for type-I ELMy H-mode
- Higher probability to allow operation at q_{min} > 1.3 enabling longer pulses
 - Broader heating profile, increased off-axis current drive

MAST Upgrade Enhancements: Cryoplant

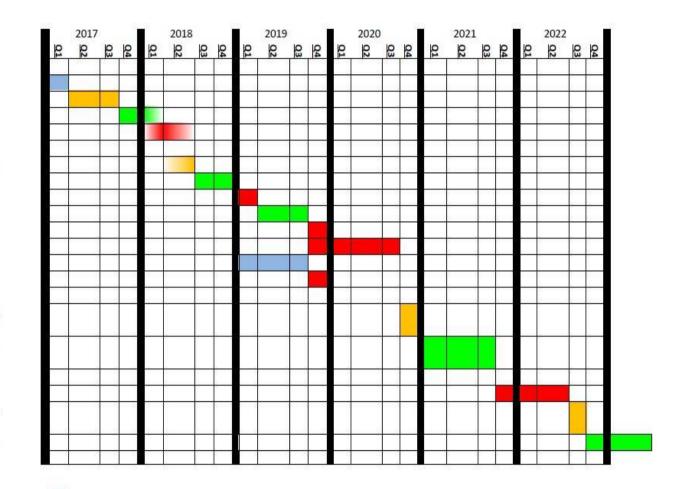

- Provision of cryoplant for installed cryopumps
 - Access to stationary divertor conditions
 - Access to lower density and lower collisionality
 - Increased fast particle fraction
 - Hotter plasma (pedestal) \Rightarrow broader T_e profile

- May enable better access to type-I ELMy H-mode
 - Cleaner due to impurity gas pumping
- May enable access to longer pulses due to more efficient offaxis current drive

Much wider operational space

Timeline

Operations activities


Integrated commisioning of power supplies into coils Plasma restart and scenario development 1st physics campaign Shutdown (TF sliding joint, NBI getter + other maintanence)

Plasma restart and scenario development (for 2nd campaign) 2nd physics campaign Engineering break (limited activity) 3rd physics campaign Shutdown (Installation of Galden cooling, chilled air etc) Installation of 3rd NBI (if funding avaialble) Installation and local commissioning of cryoplant Local connection of cryoplant to machine

Plasma restart and scenario development (for 3rd campaign) commisioningof cryoplant and/or 3rd beam 4th physics campaign (longer pulse length + 3rd beam and/or cryoplant (funding permitting)

Shutdown (Installation of 4th beam - funding permitting) Plasma restart and scenario development (for 4th campaign) commisioning of 4th beam 5th physics campaign (Stage 2 complete (funding permitting)

Off load commissioning Plasma restart Physics campaign Shutdown

38 / 39

Summary

- MAST Upgrade is an exciting new facility focussed on exhaust & advancing ST physics
- MAST Upgrade Research Plan found here: <u>http://www.ccfe.ac.uk/assets/documents/other/</u> <u>MAST-U_RP_v3.pdf</u>
- Assembly complete by end of 2016
- Commissioning and new start (not restart!) for much of 2017 with first campaign from September 2017

