

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

NSTX-U PAC-39 Program Overview

J. Menard

For the NSTX-U Research and Recovery Teams

PPPL January 9, 2018

Outline

- PAC Members and charge questions
- ST and NSTX-U research goals
- Program impacts from extended outage
- Key questions addressed by NSTX-U
- World-leading ST capabilities during initial ops
- Summary

Outline

- PAC Members and charge questions
- ST and NSTX-U research goals
- Program impacts from extended outage
- Key questions addressed by NSTX-U
- World-leading ST capabilities during initial ops
- Summary

Thank you to PAC-39 members

	Cary Forest	University of Wisconsin — PAC chair
new	Richard Buttery	General Atomics
Remote	lan Chapman	Culham Center for Fusion Energy
	Jerry Hughes	Massachusetts Institute of Technology
	Tony Leonard	General Atomics
new	Yijun Lin	Massachusetts Institute of Technology
Jnavailable	Piero Martin	Eurofusion and Consorzio RFX, University of Padua, Italy
new	Rachael McDermott	IPP Garching
Jnavailable	Kouji Shinohara	National Institutes for Quantum and Radiological Science and Technology
	George Sips	EFDA Close Support Unit, Culham Science Centre, UK
	Ezekial Unterberg	Oak Ridge National Laboratory
	Xueqiao Xu	Lawrence Livermore National Laboratory
	Dennis Youchison	Oak Ridge National Laboratory
	Phil Efthimion	Princeton Plasma Physics Laboratory

Process for this PAC

- We request "real-time" PAC assistance in helping our team put forward the most compelling arguments for NSTX-U – the mission, program, facility / Recovery
 - We encourage the PAC to request improved arguments and slide content homework - overnight especially, longer-term
 - It would be most valuable to have any PAC consensus and endorsement of NSTX-U major strengths in the PPT debrief
- Technical discussions should focus on the charges
- Keep questions until end of talks to help stay on time

PAC-39 Charge Questions

The NSTX-U research program requests PAC-39 comments and recommendations on:

- 1. Quality and importance of recent NSTX / NSTX-U research results
- 2. Uniqueness / timeliness of important questions NSTX-U will answer for fusion science
- 3. How / whether NSTX-U will be world-leading when operation resumes in 2020
- 4. Important scientific and technological findings since:
 - Original physics design of NSTX-U (2009)
 - And/or since the last 5 year plan was written (2014)

And how such findings influence the impact of medium-term research on NSTX-U (2020-2025) and the long-term NSTX-U vision (2025-2030).

Outline

- PAC Members and charge questions
- ST and NSTX-U research goals
- Program impacts from extended outage
- Key questions addressed by NSTX-U
- World-leading ST capabilities during initial ops
- Summary

Low aspect ratio "Spherical Torus / Tokamak" (ST) vital for predictive capability for toroidal science and fusion energy

- ST accesses unique regime of high normalized p
 - Fundamental changes in nature of turbulence, MHD stability
 Enhanced electromagnetic and super-Alfvénic effects
 - STs can more easily study electron-scale turbulence at high temperature → Important for all toroidal configurations
 - Neutral beam fast-ions in present STs mimic ITER DT fusion products → Study burning plasma science
- If physics results favorable, STs could provide more economical fusion development & energy systems

- Potentially reduced magnet and device size and cost

Electromagnetic turbulence

ITER

NSTX-U

High-current-density rare earth barium copper oxide (REBCO) superconductors motivate consideration of low-A pilot plants

Conductor on Round Core Cables (CORC): High winding pack current density at high magnetic field $J_{WP} \sim 70MA/m^2$ at 19T Higher current densities, B likely possible...

7 kA CORC (4.2K, 19 T) cable

Base cable: 50 tapes YBCO Tapes with 38 µm substrate (Van Der Laan, HTS4Fusion, 2015)

Example: A=2, $R_0 = 3m$ HTS-TF Pilot Plant

Cryostat volume ~ 1/3 of ITER

J. Menard, et al., Nucl. Fusion 56 (2016) 106023

NSTX-U vital for predictive capability, fusion science Will access new physics with 2 new tools:

1. New Central Magnet High normalized pressure at high T \rightarrow Unique regime, study new

transport and stability physics

2. Tangential 2nd Neutral Beam

NSTX / MAST confinement increased at higher T_e Will confinement trend continue, or look like conventional A?

ST scaling: $\tau_{E, th} \propto \nu_{*e}^{-0.8} \beta^{-0.0}$ ITER 98y,2: $\tau_{E, th} \propto \nu_{*e}^{-0.1} \beta^{-0.9}$

> Continued favorable confinement trends could lead to more compact ST reactors

Normalized electron collisionality $v_e^* \propto n_e^{-1}/T_e^{-2}$

Low $v^* \rightarrow$ need higher plasma current, toroidal field, heating power, density control

NSTX-U will access and measure novel regimes of electron turbulent transport driven by high beta

• Energy confinement scaling from "micro-tearing" modes simulated to be similar to NSTX results

Visualization courtesy F. Scotti (LLNL)

Dissipative trapped electron modes (DTEM) \rightarrow similar scaling

NSTX-U design enables access to 3× higher plasma pressure, temperature than MAST-U

NSTX-U design provides $1.4 \times$ higher B_T and $2 \times$ higher B_T²

Conducting plates suppress kink instabilities, 1.5× higher β_N, β_T

 $\mathbf{p} \propto \beta_{\mathrm{T}} \mathbf{B}_{\mathrm{T}}^2$ 3× higher

NSTX-U will test whether high-performance STs can be sustained for future fusion applications

NSTX-U

NSTX-U will be leading (only) ST able to access and study kinetic RWM physics in-depth

• NSTX showed that resonant damping can stabilize resistive wall mode (RWM)

3.0 [mm]

4.1 [mm]

3.0 [mm]

- **NSTX-U** at high plasma current will play important role in understanding power exhaust width scaling
- Significant uncertainty (factor of 2) in projected scrape-off layer heat flux width λ_{a} at full performance NSTX-U (2MA, 1T, 10MW)
- Heuristic Drift Scaling [Eich, PRL 2011]: 1.9 [mm]

 $\lambda_a \sim B_T^{-7/8} q_{cvl}^{9/8}$ (used for Recovery PFC re-design – see Gerhardt presentation)

- Multi-machine Eich Scaling (Eich, NF 2013): 2.0 [mm]
- NSTX scaling (Gray, JNM 2011):
- MAST scaling (Thornton, PPCF 2014):
- XGC-1 simulation (unpublished see backup):

See M. Reinke presentation for more detail

NSTX-U PAC-39 Program Overview

Outline

- PAC Members and charge questions
- ST and NSTX-U research goals
- Program impacts from extended outage
- Key questions addressed by NSTX-U
- World-leading ST capabilities during initial ops
- Summary

REMINDER: In FY2016 NSTX-U had scientifically productive 1st year, but had to cease operations due to failed divertor PF coil

- Achieved H-mode on 8th day of 10 weeks of operation
- Surpassed magnetic field and pulse-duration of NSTX
- Matched best NSTX H-mode performance at ~1MA
- Identified, corrected dominant error fields (more to do...)
- Commissioned all magnetic and kinetic profile diagnostics
- New 2nd NBI suppresses Global Alfven Eigenmodes (GAE)
 - Fredrickson APS invited, PRL 2017
- Implemented techniques for controlled plasma shut down, disruption detection, commissioned new tools for mitigation

Several papers on NSTX-U results published, in-press, or submitted

• PF1A upper coil failed very slowly over ~1000 pulses

Section of failed PF1AU

NSTX-U targeting major increase in performance

Achieving NSTX-U Ultimate Performance Goals requires Recovery Project (see S. Gerhardt presentation)

 FY2017: DOE requested PPPL to review "Extent of Condition" of entire NSTX-U facility including reliability, submit Corrective Action Plan (CAP)

- Recovery = Implement CAP using operations funding: \$48M base + \$15M contingency
- Normal / planned maintenance and run preparation: \$34M base + \$4M contingency
- Recovery following DOE 413.3b guidelines

Major program impacts due to Recovery (1)

- Research operations delayed until sometime in FY20
 - Several FY17 and FY18-19 research Milestones redirected toward Recovery / future operations
 - In April, FES redirected NSTX-U funded "science" collaborators to new FES "ST" solicitation (international) and DIII-D solicitation
 - NSTX-U University and Industry diagnostic collaborations remain funded in FY18, but smaller diagnostics can be relocated to other facilities
 - Modest Recovery scope/funding for collaborating national labs PFCs, diagnostics
 - Within PPPL, NSTX-U researchers redirected to find collaboration opportunities – preferably aligned with NSTX-U research goals
 - S. Kaye helped coordinate DIII-D National Campaign (FY17 only)
 - S. Kaye also coordinating PPPL MAST-U collaborations, M. Ono for QUEST

Major program impacts due to Recovery (2)

- Improved / more in-depth understanding of divertor heat and halo loads requires re-design of some plasma facing components (Gerhardt presentation)
- Changes to "polar regions" to minimize vacuum and magnet risk eliminate lower insulator, reduce inboard-outboard gap → no Coaxial Helicity Injection (Gerhardt presentation)
 - Non-inductive start-up research carried out through collaborations → NSTX-U implementation deferred (Raman presentation)
- No high-harmonic fast-wave (HHFW) enhancement scope in Recovery + budget uncertainty
 - HHFW program on hiatus, retaining staff for re-start (budget-dependent)
 - Recovery: modeling / projections of antenna limiter heat loading
 - Possible future activities: Design of dedicated non-HHFW outboard limiter, RF test-stand activities to improve voltage stand-off / RF power coupling

NSTX-U researchers actively engaged in Recovery

- Aided Extent of Condition reviews:
 - Aided in System Design Description (SDD) formulation, edits
 - Design Validation and Verification Reviews (DVVRs)
 - Aided in preparation of presentations, chit submission, chit response
- New PFC requirements working group (click here for more info)
 - Extent of Condition review process identified PFC power handling issues
 - Narrower SOL width not incorporated in General Requirements Document (2009-2012)
 - Increased halo peaking on IBDH \rightarrow T-bar design insufficient
 - Extensive equilibrium & heat-flux scans performed, more to come
- Topical Science Group contributions:
 - Re-assessed scenario needs: first 2yrs of ops + 5/7 year plan
 - Magnetic balance and δ variations influence PFC design considerations
 - Assessed impact of polar region mods on research plans

Overall NSTX-U goals balanced and coordinated across Recovery and Research departments

NSTX-U PAC-39 Program Overview

FY18 Recovery Notable Outcomes (Notable Outcome = annual DOE management contract goal)

- Complete final design reviews for the 6 PF1 coils 3/31/2018
- Prepare Recovery project to be ready for baselining (4/30/2018)
- Build at least one prototype PF1A coil (7/15/2018)
 - Qualify coil by operating at both max required current, max heating
 - Verify the quality of the coil's insulation system through electrical testing followed by destructive sectioning and inspection
- Build and test at least one of each type (PF1A, B, C) of production inner poloidal field coil (9/30/2018)
 - Qualify a PF1A coil by operating at both max required current, max heating

FY18 Research Milestones

• Notable Outcome: Provide leadership, coordination, support to FES joint research target (JRT) with goal of testing predictive models of fast-ion transport by multiple Alfven eigenmodes.

• Research:

- 1. Develop/benchmark reduced heat flux & thermo-mech. models for PFC monitoring
- 2. Develop simulation framework for ST breakdown and current ramp-up
- 3. Validate & further develop reduced transport models for electron thermal transport
- 4. Optimize energetic particle distribution function for improved plasma performance
- Facility: Evaluate PFC operational limits and develop integrated diagnostic plans for operations

Outline

- PAC Members and charge questions
- ST and NSTX-U research goals
- Program impacts from extended outage
- Key questions addressed by NSTX-U
- World-leading ST capabilities during initial ops
- Summary

Science Group presentations address key questions

Science Group and presenter

Scenarios D. Battaglia

Core

W. Guttenfelder M. Podesta S. Sabbagh

Boundary

A. Diallo M. Reinke M. Jaworski

Scenarios R. Perkins

R. Perkins R. Raman

Key research questions: First 1-3 years, 3-5 years, 5-10 years

- Can a high-performance ST have 100% non-inductive current, equilibrated?
 - Does "ST" confinement scaling persist to (3× to 6×) lower collisionality v^* ?
- Can Alfvénic instabilities be modelled/understood, manipulated to control core?
- Can passive & active RWM stabilization be achieved at low v^* and sustained?
- How will pedestal transport & turbulence vary vs lower v^* , higher I_P, Li coatings
- How does heat-flux width scale? Can n_e control be sustained? (see backup)
- Can heat fluxes be mitigated consistent with high core performance?
- Can liquid metals provide a solution for higher confinement, power exhaust?
- Can high-harmonic fast-waves provide reliable heating and CD in H-mode?
- Can NSTX-U demonstrate solenoidal-free initiation, ramp-up, and flat-top?

NSTX-U will be world-leading ST in several research areas when operations resume

- Access up to 3× higher ST pressure, temperature
- Study transport physics in unique regime: high β , low v^* – Advanced diagnostics for electron and ion-scale turbulence – Li-coatings (on C) for confinement vs. recycling in large ST
- Only ST to access to wall-stabilized regime, highest β
 - values through kinetic stabilization, advanced control
- High-power NBI heating and current drive tools ready to:
 - Pursue 100% non-inductive scenarios at high-performance
 - Study high divertor heat flux mitigation (sweep, flare, detach, ...)
 - Explore fast-ion instabilities and control for burning plasmas
- Complement DIII-D higher-A, MAST-U boundary emphasis

Summary: NSTX-U will address key scientific issues to accelerate fusion science understanding, performance

High-temperature superconductors for compact and efficient ST fusion core ST Pilot Plant for net electricity

ST-based fusion neutron source

Provide steady-state fusion neutron environment for nuclear material and component R&D

Liquid metal blankets for high thermal efficiency

Fundamental Plasma and Materials Science

NSTX-U PAC-39 Program Overview

NSTX-U Backup

NSTX-U PAC-39 Program Overview

NSTX-U Mission Elements

- Explore unique ST parameter regimes to advance predictive capability for burning plasmas and beyond
- Develop solutions for plasmamaterial interface challenge

 Advance ST as Fusion Nuclear Science Facility and Pilot Plant

NSTX-U

ST-FNSF /

Pilot-Plant

NSTX-U and DIII-D are powerful and complementary tools enabling U.S. leadership in core fusion science

- Variation of aspect ratio A provides robust physics validation
 - Understand tokamak MHD stability, thermal and fast ion transport, pedestal structure
- Together, NSTX-U and DIII-D provide the U.S. world-leading and complementary capabilities to address core physics issues
 - Both have excellent diagnostics, strong and flexible beam and wave heating systems
 - Complementary boundary approaches: cryo-pumping vs. lithium, solid vs. liquid
 - Together, can identify optimal aspect ratio for possible fusion next-steps

NSTX-U and MAST-U are the most capable ST devices in a world-wide ST research program

• NSTX-U – emphasis on core

- Designed to access highest ST plasma pressure, temperature by 3×, β_T & β_N by 1.5×
- Diagnose, understand core transport and turbulence, stability, sustainment

• MAST-U – emphasis on boundary

 Designed with world's most flexible, welldiagnosed power exhaust system (super-X divertor) for heat-flux mitigation studies

Together, NSTX-U and MAST-U will provide majority of ST physics basis

NSTX-U excellent testbed for α -particle physics

- NSTX-U: larger fast-ion dynamic range spanning
 ST and conventional A
 - Toroidal field 2× NSTX \rightarrow
 - can stabilize modes ($V_f < V_A$)
 - Tangential 2nd NBI → highly flexible fast-ion distribution
 - Vary pitch angle, pressure profile
- Are fast-ions well confined in high-performance ST regimes?
 Can we predict fast-ion confinement for burning plasmas / ITER?

NSTX-U experiments at higher plasma current will play important role in understanding power exhaust width

NSTX-U will study confinement improvement from Li wall coatings, and power exhaust on liquid metal divertors

D.P. Boyle, et al., J. Nucl. Mater. 438 (2013) S979

NSTX-U: Will double Li deposition, increase confinement Test liquid metals for power handling

Example: Capillary Porous System M. Jaworski, PPCF (2013)

STs leading advanced divertor development NSTX-U / MAST-U collaborating on 1st plasma, scenarios, divertors

NSTX-U: Flared divertor using "snowflake / X" + radiation

MAST-U: world-leading tests of long-leg/super-X w/ variable flaring

E. Havlickova, et al., Plasma Phys. Control. Fusion 56 (2014) 075008

Motivations for future facility enhancements

Divertor cryo-pump (graphite → high-Z PFCs)

- Control density and v^* without Li, compare to Li wall-coatings
- Use bakeable baffle + high-Z PFCs for initial liquid metal tests

Transition from all graphite to W/TZM PFCs

- Assess integration of high-performance ST with reactor-relevant wall
- Implement wall compatible with bulk / flowing liquid metals
- Extend LTX- β liquid-Li confinement experiments to higher performance

28GHz / 1-2MW gyrotron (Tsukuba)

- EC/EBW-only current-drive for start-up
- Heat helicity injection target with ECH for HHFW/NBI
- Longer-term: EBW CD for sustainment

Non-axisymmetric control coils (NCC)

- Resonant/non-resonant NTV rotation control, enhanced RWM/EF control
- Assess RMP ELM suppression (not yet achieved in ST)

Full toroidal

array (2×12)

Existing RWM/EFC

NSTX-U

coils

NCC.

40

FNSF / Pilot Plant Backup

Design studies show ST potentially attractive as Fusion Nuclear Science Facility (FNSF) or Pilot Plant

FNSF: Provide neutron fluence for material/component R&D (+ T self-sufficiency?) **Pilot Plant:** Electrical self-sufficiency: $Q_{eng} = P_{elec} / P_{consumed} \ge 1$ (+ FNSF mission?)

FNSF with copper TF coils A=1.7, $R_0 = 1.7m$, $\kappa_x = 2.7$ Fluence = 6MWy/m², TBR ~ 1

FNSF / Pilot Plant with HTS TF coils A=2, $R_0 = 3m$, $\kappa_x = 2.5$ 6MWy/m², TBR ~ 1, $Q_{eng} \sim 1$

At lower A, high TF winding-pack current density enables access to maximum allowed B_T at coil

- Coil structure sized to maintain $\leq 0.3\%$ strain on winding pack
- Effective inboard tungsten carbide (WC) neutron shield thickness = 60cm

A = 1.8-2.3 maximizes TF magnet utilization, and TF will be significant fraction of core cost

A ≥ 3 maximizes blanket volume utilization

