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Research Thrusts of the Advanced Scenarios and
Control Topical Science Group (TSG)

* Demonstrate non-inductive sustainment for multiple tx

— NSTX-U designed to be world-leading in investigating 100%
NI scenarios in a low-aspect ratio configuration

* Develop partially inductive scenarios and advanced
control to support the broad scientific program

« Advance real-time control and scenario modeling for
fusion energy research and next-step devices
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Non-inductive operation on an ST provides crucial
information needed to optimize the A of next-step devices

* Non-inductive (NI) current " .
sustainment is required for a 10 P |
continuous tokamak reactor ' o

' TRANSP

— NI operation at low-A will have 0.8 [ ojections
unique challenges and opportunities

0.6}

« NSTX-U will have world-leading 0.4
capabilities for investigating 0.2
stationary NI scenarios at low-A 0'0

— Largest |, By Nl operation in an ST

— Real-time control of J, P, v, profiles 0.0 05 1.0 1.5 2.0

Gerhardt et al., NF 52 IP [MA]

(2012) 083020
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STs can access a non-inductive (NI) regime with
broad pressure and current profiles at high By

« Performance of non-inductive scenarios in
tokamaks improves with lower q,,,
— NSTX accesses large By/l; > offset lower q,, in fgg

— Broad J (low ) aligns with large edge Jgzg from B>
broad P

By/li=12 1/0 8 6

o =~ N W H» 00 O N @
T ——— T —y

R
ot Bt 2 oy a7 (B R 20

QCyl ¢ M
. 0.0 0.2 04 0.6 0.8 1.0 1.2 14 1.6
« STs achieve naturally large k, 6 !
S.A. Sabbagh, NF 46 (2006) 635
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« STs can operate with stability margin at large
values of global B
— NSTX-U Nl target: By ~5-6,[~0.5

Do the potential benefits exceed the challenges of large B; at low-A?
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B = 1T operation will enable unique
high-performance NI scenarios at high 8

* |, and <nT> of 100% NI increase with B

— By limited by Q> 1 at B;=0.75T

— By limited by confinement at B; = 1T

1

nt, T 10%° m3 s keV
o

0.01

100% NI NSTX-U TRANSP

fow=0.72 :

_tpulse =958 i

Hggyp =1
_____________________________ B.=10T
I | PNB|§= 10.2 MW
- B;=0.75T Bn=4-43

L PNBl - 6.8 MW Brolad

L BN =4.3 - '4 9 Peaked

[Broad
: Peaked |
0 0.5 1
|p (MA)

Adapted from Gerhardt et al., NF 52 (2012) 083020
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B = 1T operation will enable unique
high-performance NI scenarios at high 8

* |, and <nT> of 100% NI increase with B

» Performance scales with confinement
— ST scaling projects to larger sustained NI |,

— Differences in performance between scaling

By limited by q,,,,, > 1 at B;=0.75T
By limited by confinement at B; = 1T

~ | 134 R 015Ff .41
" Hggyo ~ | B:7 " fow
~ | 101 R_1.08¢ .44
" Hgr~ 1B fow

relations becomes larger as B increases
= See T&T TSG presentation (Guttenfelder)

1

0.1

nt, T 10%° m3 s keV

0.01

100% NI NSTX-U TRANSP

fy = 0.72
1:pulse =98

BT=1.05T
Her =1

Py = 10.2 MW
By =4.9:- 5.3

0 0.5 1
1, (MA)
Adapted from Gerhardt et al., NF 52 (2012) 083020
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B = 1T operation will enable unique
high-performance NI scenarios at high 8

* |, and <nT> of 100% NI increase with B 100% NI NSTX-U TRANSP

1
— By limited by q,;, > 1 at B;=0.75T f..=0.72 ;
— By limited by confinement at B; = 1T oW Br=1.0T
Hgr = 1
- Performance scales with confinement > By = 5.7
— ST scaling projects to larger sustained NI |, ” Pygi = 15.6 MW
H98y,2 ~ |p1.34 BT0.15fGW.41 i i - @)
= Hgr~ 1,101 B 08 fg 4 R S R
— Differences in performance between scaling = @
relations becomes larger as B increases o /’
= See T&T TSG presentation (Guttenfelder) — ) B;=10T
= , =
« By transport limited at B; = 1T = / EI%L’24 81
N =4
~ Achieve q,,, > 1 with global stability margin at A Pre: = 15.6 MV
highest Pyg, (tuse = 1.58 ~ 1r) 0.01 i Bl |
0 0.5 1 1.5
1, (MA)

Adapted from Gerhardt et al., NF 52 (2012) 083020
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B = 1T operation will enable unique
high-performance NI scenarios at high 8

|, and <nT> of 100% NI increase with By , 100% NI NSTX-U TRANSP
— Py limited by g, > 1 at By=0.75T oy =072 i
— By limited by confinement at B; =1T I ; |

Performance scales with confinement
— ST scaling projects to larger sustained NI |,
H98y,2 - |p1.34 BT0.15fGW.41
[ HST ~ |p1.01 BT1.08 fGW.44
— Differences in performance between scaling
relations becomes larger as B increases
= See T&T TSG presentation (Guttenfelder)

nt, T 10%° m3 s keV
o
o

By transport limited at By = 1T
— Achieve q,,,, > 1 with global stability margin at ,
highest PNBI (tpulse =15s~ ‘ER) 0.01 i i
0 0.5 1 1.5
I, (MA)
Adapted from Gerhardt et al., NF 52 (2012) 083020

NSTX-U has potential for demonstrating
NI performance similar to A=3 devices
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NSTX-U has a suite of real-time control
capabilities for optimizing NI scenarlos

» Six NBl lines 65 - 100 keV at different R,

Z (m)

10
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NSTX-U has a suite of real-time control
capabilities for optimizing NI scenarios

« Six NBI lines 65 - 100 keV at different Rtang Comparison of real-time CHERS
system to standard CHERs

« Real-time profile measurements

— nCHERS (RTV): v, control
— rtMSE: J and q control (in progress)
— rtMPTS: P constraint, n, feedback (in progress)

Vior [kM/S]

NSTX-U #204202 R=125. 34OCm

150 RTV
100 CHERS
50;

50 -

-100 -

2.5]

2.0-

1
1

T, [keV]

5E
0-

0.5

0.0°

0.0

0.2 0.4 0.6 0.8
t[s]

M. Podesta and R.E. Bell,
PPCF 58 (2016) 125016
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NSTX-U has a suite of real-time control
capabilities for optimizing NI scenarios

100% NI TRANSP Simulation |

» Six NBl lines 65 - 100 keV at different R, 5.6

4.8 ; (a)-
= ] —— Reference ||
- Real-time profile measurements = — fea
— nCHERS (RTV): v, control 24—
— rtMSE: J and q control (in progress) 0.9 . . .
— rtMPTS: P constraint, n, feedback (in progress) < 0-8-'\\ “l
. Ce = 0.7
- Flexible plasma control system (PCS) with = ;|| <= Controlon —
parallelized real-time EFIT ot 234
— Profile control algorithms developed and tested 201 9
via integration with TRANSP < 1618 &= +10% density
— Parallelized PCS architecture accelerates 1.2 -
rntEFIT solution with profile constraints S T
= FY16 run: tEFIT convergence interval maintained Time [s]
while doubling fitting constraints and resolution M.D. Boyer et al., NF 57 (2017) 066017
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NSTX-U will have unique capabilities for developing
N| scenarios compared to MAST-U

"+ NSTX-U can access higher B+, P,.,: in NI scenarios

— Access high density (f;y = 0.5 - 1), large fzg (> 70%) in
stationary conditions for multiple tz at [, 21 MA

« Real-time NBI deposition control via outer gap and
beam selection

 Wall-stabilization for operation at 3 above no-wall limit
concurrently with broad J (low ;)

MAST-U NSTX-U MAST-U NSTX-U
(2018) (2016) (stage 1) (full field)
Planned Achieved Planned Planned
Max Ip (MA) 1.0 1.0 2.0 2.0
Max B at 0.936 m (T) 0.513 0.635 0.684 1.0
NBI (MW) (Beam voltage) | 3.5 (75 keV) | 12 (90 keV) | 7.5 (75 keV) | 12 (90 keV)
touse at full field (s) 1 1 5 5
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Realization and optimization of fully NI scenarios

Jintegrates research and development from multiple TSGs

Particle and impurity control in long pulse via wall conditioning, ELM control
and RF heating
— Div-SOL TSG + Pedestal TSG + T&T TSG, Wave H&CD (Particle control task force)

NI scenario intimately linked to confinement and shape of the profiles
— Transport and Turbulence TSG + Pedestal TSG

Access to high-3 requires stabilization of MHD modes
— Macroscopic Stability TSG

Core performance depends on deposition and transport of fast ions
— T&T TSG + Energetic Particles TSG

Compatibility of NI scenarios with heat flux control
— PFC WG + Materials TSG + Div-SOL TSG
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Research Thrusts of the Advanced Scenarios and
Control Topical Science Group (TSG)

* Develop partially inductive scenarios and advanced
control to support the broad scientific program
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Progress in FY16 toward developing inductive

N-K H-mode scenario
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Demonstrated stable operation
at x similar to NSTX despite
higher aspect ratio for |, > 0.8
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J.E. Menard Nucl. Fusion 2017
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MHD-quiescent H-mode discharges sustained with
y

Hgs, > 2 1 and By/Bo.wan = 1

100 .
= o
- < F N 204112
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g a0 | 'a ‘ k he ' ' : BT =063T
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Present ASC focus is modeling and analysis to
accelerate scenario development at restart

. FY17-19 ASC research milestones: develop

Overshooting the 2cm

reliable ramp-up to low-l;, high-k, high-I, inner gap target is bad
— FY17 milestone identified constraints on for vertical stability
elongation, stability and the L-H transition A I
— FY18-19 develop a framework for predictive g 1% ’ 1f1o2
modeling for the breakdown and rampup £ 0o I'sa
= Primary tools: TOKSYS and TRANSP 5 zz 1l e
S ole e | zes
- Initiated collaboration with MAST-U for 0 I Lt
developing shared tools and analysis T g tml
— Example: start-up modeling of MAST-U Solution: active control
= See Stan Kaye’s Collaboration talk of the inner gap

— Focus is development of similar startup and ramp-
up modeling tools and experiments

@DNSTX-U NSTX-U PAC 39, ASC TSG, D.J. Battaglia, January 9, 2018 18



Research Thrusts of the Advanced Scenarios and
Control Topical Science Group (TSG)

« Advance real-time control and scenario modeling for
fusion energy research and next-step devices
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PPPL leads development of TRANSP as a tool for
modeling and testing of scenarios and control

* Predictive modeling with assumed transport Coupled q,, By, feedback
properties controller in TRANSP
— ldentify scenarios with relaxed J profile : : ey 025 : :
L : Outer Ga
— Minimize flux consumption of ramp-up (backup) - OZW
* Integrate control algorithm into TRANSP for ol o :
testing and development (slide 8 and =) o
11 - .| NBI Power |
« Use TRANSP database to develop linearized °{ -G (MW)
or neural network control model (backup) .
— Planned expansion of PCS computation power to 27— . — 45t - -
enable “faster than real-time prediction” Time (s) Time )
— Disruption avoidance and real-time scenario
optimization M.D. Boyer, Nucl. Fusion (2015)

@DNSTX-U NSTX-U PAC 39, ASC TSG, D.J. Battaglia, January 9, 2018 20



Real-time control development enables science and
contributes to broader effort of tokamak control

"« State machine logic in PCS enables future expansion of
disruption avoidance and protection

— FY16 demonstrated controlled ramp-down triggered by disruption
warnings (backup)

« NSTX-U researchers contribute to the development of
advanced shape control algorithms and actuator sharing

— Involved in collaborations on MIMO shape control including snowflake
divertor (Pat Vail, Princeton PhD)

« Heat flux management with fish-scaled surfaces

— Integrate flaring or sweeping with angle-of-incidence control into target
scenarios

— Possible future investment in heat flux measurements and control
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Summary: Recent results and new plans

Steady progress in FY16 toward developing low-I,, high-k H-mode scenario
— Matched NSTX k for |, > 0.8 despite larger A
— H-mode with MHD-free periods, Hgg, > ~ 1, Bn/Bnno-wan ~ 1

Real-time control capabilities commissioned that enable scientific mission
— Real-time velocity diagnostic, parallelized rtEFIT ...

Applying TRANSP to develop scenarios and real-time control
— Detailed investigations of access and control of 100% NI scenarios
— Developing and testing reduced models for control and real-time forecasting

Increased emphasis on angle-of-incidence control with new PFC design

— See Matt Reinke’s talk
— Integrate control into target scenarios and other heat flux mitigation methods
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Summary: Addressing critical issues

« NSTX-U will be world-leading in the demonstration of fully non-
inductive scenarios in an ST

— High field (B; = 1T), high power ( =10 - 15 MW) enables |, 2 1 MA at high
density (fgy ~0.5-1) and fag > 70 ffor multiple T

— Real-time measurement and control of J, P, v, profiles via 6 NBI injectors +
outer gap with parallelized rtEFIT

* Development of NI scenarios is a priority of the FY20 campaign
— Modeling, analysis and collaborations aim to accelerate the progress at restart

« NSTX-U will continue to contribute to the development of critical
control capabilities for tokamaks

— Profile control, disruption avoidance, actuator sharing, RWM control, real-time
forecasting, machine protection ...
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Back up
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Partially inductive scenarios expand the accessible

regimes for scientific discovery

. B B B B 8

Non-inductive current fraction |
1.0 - J
0.8¢ &£ 4
0.6 2

0 . . .
04 [ 1.2 14 16 1.8 2.0
A

0.2¢
00 HighB . B+ =0.55T,

10 MW most off-axis,

0.0 05 1.0 15 2.0 | — |y~

I, [MA]
Gerhardt et al., NF 52
(2012) 083020

1.00

0.01

Low v*: By = 2.0T,
15 MW, |, ~ 2MA

(Trapezoids scan Hgg, » 2 Hgr
and broad - peaked profiles)

0.0 0.5 1.0 1.5 2.0
I [MA]
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First demonstration of stationary long-pulse sawtoothing

L-mode on an ST used for first experiments on NSTX-U_
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State machine logic in PCS enables future expansion of
disruption avoidance and protection

700 -
* FY16 run demonstrated controlled 600 Ip[KA
- . : 500 | !
ramp-down triggered by disruption 200 | |
: | Request -
warnings 300 p R& .
v = “Shutdonn State” 200 | (including asynchronous!
§5=0: = Shutdown State 100 | transition to rampdown) !
Ramp-Up & Flat- 0 . . . L
| 103 - - —
Top Disruption lndicators: Zo(dZp/dt) threshold |
n 0.5
b“’o, Venlicjrl'rnﬂoélion
55=1: . 0.0 Il =t Mesetmnnnge
Slow I, _05
Rampdown ' Zo(dZo/dt) [m?/s] i
55=2: —1_% ' " " '
Fast I, Rampdown = 5 o . —
PR 4 | “State Insufficient lp =———
3 :
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§5=3: 1{ Normal N
loy LOSS of 55=4: " 0 - .
Control Insufficient I, -1 : : : :
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Time [s]
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Non-inductive scenarios will access |. > 1 MA within

the stability envelop of NSTX
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Modeling and future experiments focus on reducing
iInductive current in ramp-up scenarios

Figure 3. Simulation of a discharge with line-averaged density of 0.75n¢ that uses up to 4 MW of HHFW and up to 10 MW of NBI to
ramp-up and sustain a non-inductive current of 0.7 MA. Left panel: (@) injected HHFW and NBI power, (b) line averaged electron density,
(c) central electron and ion temperature, (d) total plasma current and individual contributions, (e) safety factor on-axis, elongation at the
separatrix and internal inductance. Central panel: equilibrium calculated at 3.5 s, (f)—(g) expanded view of the RF phase. Right panel:
profiles of (k) density, (i) electron and ion temperature at 0.25 s (RF phase) and at 3.5 s (NBI phase), () current density profiles at 3.5 s,
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* Investigate potential
of HHFW + NBI for
reducing OH flux
consumption

— Couple reduced OH
ramp-up to NI scenarios

— Work aims to determine
current drive needs for
next-step devices

— See Roger Raman’s
talk

F.M. Poli et al., NF 55 (2015) 123011
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Recent work: Developing neural net models from
TRANSP database of NSTX-U

- “Faster than real-time” forecasting
requires reduced models .
— NUBEAM calculations can not be

completed in real-time

— Solution is to develop a neural net model
for the beam heating and current drive

204992 N31: CURB

Current drive

NN prediction
Testing shot

X
204992 N31: CURB

* Neural net model derived from NSTX-
U BEAST database will be integrated
into EFIT and forecasting algorithms

— BEAST: Between and Among Shots | [Boam driven curron
TRANSP ° |

Dan Boyer, NSTX-U Monday Science Meeting 12/5/17
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