

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Advanced Scenarios and Control

Devon Battaglia for the NSTX-U team

NSTX-U PAC 39 January 9-10, 2018

Research Thrusts of the Advanced Scenarios and Control Topical Science Group (TSG)

- Demonstrate non-inductive sustainment for multiple τ_R
 - NSTX-U designed to be world-leading in investigating 100%
 NI scenarios in a low-aspect ratio configuration
- Develop partially inductive scenarios and advanced control to support the broad scientific program
- Advance real-time control and scenario modeling for fusion energy research and next-step devices

Research Thrusts of the Advanced Scenarios and Control Topical Science Group (TSG)

- Demonstrate non-inductive sustainment for multiple τ_R
 - NSTX-U designed to be world-leading in investigating 100%
 NI scenarios in a low-aspect ratio configuration
- Develop partially inductive scenarios and advanced control to support the broad scientific program
- Advance real-time control and scenario modeling for fusion energy research and next-step devices

Non-inductive operation on an ST provides crucial information needed to optimize the A of next-step devices

- Non-inductive (NI) current sustainment is required for a continuous tokamak reactor
 - NI operation at low-A will have unique challenges and opportunities
- NSTX-U will have world-leading capabilities for investigating stationary NI scenarios at low-A
 - Largest $I_{\text{p}},\,B_{\text{T}}$ NI operation in an ST
 - Real-time control of J, P, v_{ϕ} profiles

STs can access a non-inductive (NI) regime with broad pressure and current profiles at high β_N

- Performance of non-inductive scenarios in tokamaks improves with lower q_{cvl}
 - NSTX accesses large $\beta_N/I_i \rightarrow$ offset lower q_{cvl} in f_{BS}
 - Broad J (low $l_{\rm i})$ aligns with large edge $J_{\rm BS}$ from broad P

$$n\tau T \sim \frac{\beta_N H_{89}}{q_{cyl}^2} B_T^3 a^3 \kappa^{2.6} f(P, n, ...) \qquad f_{BS} \sim A^{1/2} \left(\frac{\beta_N}{\ell_i}\right) \left(\frac{R_0}{R_M}\right) q_{cyl} \ge 70\%$$

• STs achieve naturally large $\kappa,\,\delta$

 $\beta_N/l_i = 12 \ 10$ 8 β_N з 0.0 0.2 0.4 0.6 0.8 1.0 S.A. Sabbagh, NF 46 (2006) 635

• STs can operate with stability margin at large values of global β_N - NSTX-U NI target: $\beta_N \sim 5 - 6$, $I_i \sim 0.5$

Do the potential benefits exceed the challenges of large B_T at low-A?

- I_p and <nT> of 100% NI increase with B_T
 - $-\beta_N$ limited by $q_{min} > 1$ at **B_T=0.75T**
 - $-\beta_N$ limited by confinement at **B_T = 1T**

- I_p and <nT> of 100% NI increase with B_T
 - $-\beta_N$ limited by $q_{min} > 1$ at **B_T=0.75T**
 - $-\beta_N$ limited by confinement at **B_T = 1T**
- Performance scales with confinement
 - ST scaling projects to larger sustained NI I_p
 - $H_{98y,2} \sim I_p^{1.34} B_T^{0.15} f_{GW}^{.41}$
 - $H_{ST} \sim I_p^{1.01} B_T^{1.08} f_{GW}^{.44}$
 - Differences in performance between scaling relations becomes larger as B_{T} increases
 - See T&T TSG presentation (Guttenfelder)

- I_p and <nT> of 100% NI increase with B_T
 - $-\beta_N$ limited by $q_{min} > 1$ at **B_T=0.75T**
 - $-\beta_N$ limited by confinement at **B_T = 1T**
- Performance scales with confinement
 - ST scaling projects to larger sustained NI I_p
 - $H_{98y,2} \sim I_p^{1.34} B_T^{0.15} f_{GW}^{.41}$
 - $H_{ST} \sim I_p^{1.01} B_T^{1.08} f_{GW}^{.44}$
 - Differences in performance between scaling relations becomes larger as B_{T} increases
 - See T&T TSG presentation (Guttenfelder)
- β_N transport limited at $B_T = 1T$
 - Achieve $q_{min} > 1$ with global stability margin at highest P_{NBI} ($t_{pulse} = 1.5 \text{ s} \sim \tau_R$)

- I_p and <nT> of 100% NI increase with B_T
 - $-\beta_N$ limited by $q_{min} > 1$ at **B_T=0.75T**
 - $-\beta_N$ limited by confinement at **B_T = 1T**
- Performance scales with confinement
 - ST scaling projects to larger sustained NI I_p
 - $H_{98y,2} \sim I_p^{1.34} B_T^{0.15} f_{GW}^{.41}$
 - $H_{ST} \sim I_p^{1.01} B_T^{1.08} f_{GW}^{.44}$
 - Differences in performance between scaling relations becomes larger as B_{T} increases
 - See T&T TSG presentation (Guttenfelder)
- β_N transport limited at $B_T = 1T$
 - Achieve $q_{min} > 1$ with global stability margin at highest P_{NBI} ($t_{pulse} = 1.5 \text{ s} \sim \tau_R$)
- NSTX-U has potential for demonstrating NI performance similar to A=3 devices

NSTX-U has a suite of real-time control capabilities for optimizing NI scenarios

- Six NBI lines 65 100 keV at different R_{tang}
- Real-time profile measurements
 - rtCHERS (RTV): v_{ϕ} control
 - rtMSE: J and q control (in progress)
 - rtMPTS: P constraint, n_e feedback (in progress)
- Flexible plasma control system (PCS) with parallelized real-time EFIT
 - Profile control algorithms developed and tested via integration with TRANSP
 - Parallelized PCS architecture accelerates rtEFIT solution with profile constraints
 - FY16 run: rtEFIT convergence interval maintained while doubling fitting constraints and resolution

NSTX-U has a suite of real-time control capabilities for optimizing NI scenarios

- Six NBI lines 65 100 keV at different R_{tang}
- Real-time profile measurements
 - rtCHERS (RTV): v_{ϕ} control
 - rtMSE: J and q control (in progress)
 - rtMPTS: P constraint, n_e feedback (in progress)
- Flexible plasma control system (PCS) with parallelized real-time EFIT
 - Profile control algorithms developed and tested via integration with TRANSP
 - Parallelized PCS architecture accelerates rtEFIT solution with profile constraints
 - FY16 run: rtEFIT convergence interval maintained while doubling fitting constraints and resolution

Comparison of real-time CHERS system to standard CHERs

PPCF 58 (2016) 125016

NSTX-U has a suite of real-time control capabilities for optimizing NI scenarios

- Six NBI lines 65 100 keV at different R_{tang}
- Real-time profile measurements
 - rtCHERS (RTV): v_{ϕ} control
 - rtMSE: J and q control (in progress)
 - rtMPTS: P constraint, n_e feedback (in progress)
- Flexible plasma control system (PCS) with parallelized real-time EFIT
 - Profile control algorithms developed and tested via integration with TRANSP
 - Parallelized PCS architecture accelerates rtEFIT solution with profile constraints
 - FY16 run: rtEFIT convergence interval maintained while doubling fitting constraints and resolution

NSTX-U will have unique capabilities for developing NI scenarios compared to MAST-U

- NSTX-U can access higher B_T, P_{heat} in NI scenarios – Access high density ($f_{GW} = 0.5 - 1$), large f_{BS} (> 70%) in stationary conditions for multiple τ_R at $I_p \ge 1$ MA
- Real-time NBI deposition control via outer gap and beam selection
- Wall-stabilization for operation at β_N above no-wall limit concurrently with broad J (low $I_i)$

	MAST-U (2018) Planned	NSTX-U (2016) Achieved	MAST-U (stage 1) Planned	NSTX-U (full field) Planned
Max I _p (MA)	1.0	1.0	2.0	2.0
Max B _T at 0.936 m (T)	0.513	0.635	0.684	1.0
NBI (MW) (Beam voltage)	3.5 (75 keV)	12 (90 keV)	7.5 (75 keV)	12 (90 keV)
t _{pulse} at full field (s)	1	1	5	5

NSTX-U PAC 39, ASC TSG, D.J. Battaglia, January 9, 2018

Realization and optimization of fully NI scenarios integrates research and development from multiple TSGs

- Particle and impurity control in long pulse via wall conditioning, ELM control and RF heating
 – Div-SOL TSG + Pedestal TSG + T&T TSG, Wave H&CD (Particle control task force)
- NI scenario intimately linked to confinement and shape of the profiles
 - Transport and Turbulence TSG + Pedestal TSG
- Access to high-β requires stabilization of MHD modes

 Macroscopic Stability TSG
- Core performance depends on deposition and transport of fast ions
 T&T TSG + Energetic Particles TSG
- · Compatibility of NI scenarios with heat flux control
 - PFC WG + Materials TSG + Div-SOL TSG

Research Thrusts of the Advanced Scenarios and Control Topical Science Group (TSG)

- Demonstrate non-inductive sustainment for multiple τ_R
 - NSTX-U designed to be world-leading in investigating 100%
 NI scenarios in a low-aspect ratio configuration
- Develop partially inductive scenarios and advanced control to support the broad scientific program
- Advance real-time control and scenario modeling for fusion energy research and next-step devices

Progress in FY16 toward developing inductive low-l_i, high-κ H-mode scenario

NSTX-U PAC 39, ASC TSG, D.J. Battaglia, January 9, 2018

MHD-quiescent H-mode discharges sustained with $H_{98y,2} \ge 1$ and $\beta_N/\beta_{no-wall} \ge 1$

NSTX-U PAC 39, ASC TSG, D.J. Battaglia, January 9, 2018

Present ASC focus is modeling and analysis to accelerate scenario development at restart

- FY17-19 ASC research milestones: develop reliable ramp-up to low-l_i, high-κ, high-l_p
 - FY17 milestone identified constraints on elongation, stability and the L-H transition
 - FY18-19 develop a framework for predictive modeling for the breakdown and rampup
 - Primary tools: TOKSYS and TRANSP
- Initiated collaboration with MAST-U for developing shared tools and analysis
 - Example: start-up modeling of MAST-U
 - See Stan Kaye's Collaboration talk
 - Focus is development of similar startup and rampup modeling tools and experiments

Overshooting the 2cm inner gap target is bad for vertical stability

Solution: active control of the inner gap

Research Thrusts of the Advanced Scenarios and Control Topical Science Group (TSG)

- Demonstrate non-inductive sustainment for multiple τ_R NSTX-U designed to be world-leading in investigating 100%
 - NI scenarios in a low-aspect ratio configuration
- Develop partially inductive scenarios and advanced control to support the broad scientific program
- Advance real-time control and scenario modeling for fusion energy research and next-step devices

PPPL leads development of TRANSP as a tool for modeling and testing of scenarios and control

- Predictive modeling with assumed transport properties
 - Identify scenarios with relaxed J profile
 - Minimize flux consumption of ramp-up (backup)
- Integrate control algorithm into TRANSP for testing and development (slide 8 and →)
- Use TRANSP database to develop linearized or neural network control model (backup)
 - Planned expansion of PCS computation power to enable "faster than real-time prediction"
 - Disruption avoidance and real-time scenario optimization

Coupled q_0 , β_N feedback controller in TRANSP

M.D. Boyer, Nucl. Fusion (2015)

Real-time control development enables science and contributes to broader effort of tokamak control

- State machine logic in PCS enables future expansion of disruption avoidance and protection
 - FY16 demonstrated controlled ramp-down triggered by disruption warnings (backup)
- NSTX-U researchers contribute to the development of advanced shape control algorithms and actuator sharing
 - Involved in collaborations on MIMO shape control including snowflake divertor (Pat Vail, Princeton PhD)
- Heat flux management with fish-scaled surfaces
 - Integrate flaring or sweeping with angle-of-incidence control into target scenarios
 - Possible future investment in heat flux measurements and control

Summary: Recent results and new plans

- Steady progress in FY16 toward developing low- I_i , high- κ H-mode scenario
 - Matched NSTX κ for I_i > 0.8 despite larger A
 - H-mode with MHD-free periods, $H_{98y,2}$ ~ 1, $\beta_N/\beta_{N\text{-no-wall}}$ ~ 1
- Real-time control capabilities commissioned that enable scientific mission
 Real-time velocity diagnostic, parallelized rtEFIT ...
- Applying TRANSP to develop scenarios and real-time control
 - Detailed investigations of access and control of 100% NI scenarios
 - Developing and testing reduced models for control and real-time forecasting
- Increased emphasis on angle-of-incidence control with new PFC design
 - See Matt Reinke's talk
 - Integrate control into target scenarios and other heat flux mitigation methods

Summary: Addressing critical issues

- NSTX-U will be world-leading in the demonstration of fully noninductive scenarios in an ST
 - High field (B_T = 1T), high power (P_{NBI} = 10 15 MW) enables I_p ≥ 1 MA at high density (f_{GW} ~ 0.5 1) and f_{BS} > 70% for multiple τ_R
 - Real-time measurement and control of J, P, v_{ϕ} profiles via 6 NBI injectors + outer gap with parallelized rtEFIT
- Development of NI scenarios is a priority of the FY20 campaign
 - Modeling, analysis and collaborations aim to accelerate the progress at restart
- NSTX-U will continue to contribute to the development of critical control capabilities for tokamaks
 - Profile control, disruption avoidance, actuator sharing, RWM control, real-time forecasting, machine protection ...

Back up

Partially inductive scenarios expand the accessible regimes for scientific discovery

NSTX-U PAC 39, ASC TSG, D.J. Battaglia, January 9, 2018

First demonstration of stationary long-pulse sawtoothing L-mode on an ST used for first experiments on NSTX-U

NSTX-U

NSTX-U PAC 39, ASC TSG, D.J. Battaglia, January 9, 2018

State machine logic in PCS enables future expansion of disruption avoidance and protection

• FY16 run demonstrated controlled ramp-down triggered by disruption warnings

700

600 500 I_□ [kA]

Non-inductive scenarios will access I_p > 1 MA within the stability envelop of NSTX

Modeling and future experiments focus on reducing inductive current in ramp-up scenarios

Figure 3. Simulation of a discharge with line-averaged density of $0.75n_G$ that uses up to 4 MW of HHFW and up to 10 MW of NBI to ramp-up and sustain a non-inductive current of 0.7 MA. Left panel: (*a*) injected HHFW and NBI power, (*b*) line averaged electron density, (*c*) central electron and ion temperature, (*d*) total plasma current and individual contributions, (*e*) safety factor on-axis, elongation at the separatrix and internal inductance. Central panel: equilibrium calculated at 3.5 s, (*f*)–(*g*) expanded view of the RF phase. Right panel: profiles of (*h*) density, (*i*) electron and ion temperature at 0.25 s (RF phase) and at 3.5 s (NBI phase), (*j*) current density profiles at 3.5 s, (*k*) current density profiles at 0.25 s.

- Investigate potential of HHFW + NBI for reducing OH flux consumption
 - Couple reduced OH ramp-up to NI scenarios
 - Work aims to determine current drive needs for next-step devices
 - See Roger Raman's talk

F.M. Poli et al., NF 55 (2015) 123011

Recent work: Developing neural net models from TRANSP database of NSTX-U

- "Faster than real-time" forecasting requires reduced models
 - NUBEAM calculations can not be completed in real-time
 - Solution is to develop a neural net model for the beam heating and current drive
- Neural net model derived from NSTX-U BEAST database will be integrated into rtEFIT and forecasting algorithms
 - BEAST: Between and Among Shots TRANSP

Dan Boyer, NSTX-U Monday Science Meeting 12/5/17

