

NSTX run plan for 2007

College W&M **Colorado Sch** Mines Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

D. A. Gates

Presented at the **21st NSTX PAC meeting** January , 2007 PPPL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov** Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA. Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Outline

- 2007 Research goals
- Research Program (by ET group)
 - MHD (S. Sabbagh, N. Gorelenkov)
 - Waves (G. Taylor, J. Hosea)
 - Transport and Turbulence (K. Tritz, S. Kaye)
 - Solenoid-free startup (R. Raman, D. Mueller)
 - Boundary Physics (V. Soukhanovskii, H. Kugel)
 - Integrated Scenario Development (R. Maingi, J. Menard)
- Research schedule

NSTX Program Planning

- NSTX Results Review (July 26-27, 2006)
- NSTX Research Forum (Dec. 5-7, 2006)
 - General guidelines (required):
 - 1. Is the experiment well posed? Can all the measurements be made using diagnostics that are available? Can the required plasma conditions be arranged on NSTX?
 - 2. Is the experiment scientifically interesting? Does successful completion of the XP answer an important question? Will the results warrant publication in a major journal?
 - Specific features (helpful):
 - 1. Contribution to the ST development path.
 - 2. Direct contribution to project milestones.
 - 3. Participation in ITPA sponsored joint experiments.
 - 122 proposals requesting 124 run days were presented from institutions located across the US, Europe
 - Each group was asked to prioritize experiments assuming 2 different run planning scenarios

Program Planning guidance

- Each ET was asked to prioritize according to 2 different planning scenarios one with a more run days one with less
- The run-time planning framework was:
 - MHD/Particles 8/14
 TT 5/10
 ISD 5/10
 Edge 5/10
 Startup 5/10
 Waves 3/6

MHD/Particle ET priorities (8 days)

Milestone:

 Characterize effectiveness of closed loop RWM feedback control & dependence on rotation using ITER like control coils

ST Physics:

- High β_t with strong plasma shaping
- RWM physics at low aspect ratio

ITPA/ITER and general toroidal plasma science:

- Error field control and assessment (MDC-3)
- n=3 braking with n=1 error field correction (MDC-3)
- Neoclassical toroidal viscosity (MDC-12)
- NTM physics (MDC-3, MDC-4)
- Cross machine RWM experiments (MDC-2)
- Plasma response to 3D fields (thesis)

<u>Color code:</u>

Blue - Priority 1 Black - Priority 2 Light green - ITPA Dark green - thesis

Milestones shown are from FY07 only

Run day assignments are based on 35 day initial allocation + 15 day contingency

MHD/Particle ET priorities (8 days) (cont.)

Milestone:

• Measure, identify, and characterize modes driven by super-Alfvénic ions (MDC-10)

ITPA/ITER and general toroidal plasma science:

- Fast-ion loss in the multi-mode *AE regime and in the presence of energetic particle modes (MDC-11)
- Document plasmas with Alfvén cascades
- Identification of Alfvén acoustic modes

Transport and turbulence (7 days)

Milestone:

- Study variation of local high-k turbulence with plasma conditions
 ST Physics
- Ascertain the impact of very high β on the nature of turbulence (electromagnetic vs. electrostatic)
- Investigation of ion power balance on NSTX (thesis)
- ITPA/ITER and general toroidal plasma science:
- β scaling of confinement (CDB-2)
- Understand scaling of confinement with aspect ratio (CDB-6)
- Understand effects of plasma rotation on confinement (braking)
- Effect q-profile on electron confinement (TP-8.2)
- Momentum confinement studies (TP-6.3)
- Z scaling of impurity transport (thesis)
- B_t scaling of high-k turbulence (thesis)

Boundary Physics priorities (6 days)

ST Physics:

- SOL width scaling at low aspect ratio ITPA/ITER and general toroidal plasma science:
- Lithium experiments
- Pedestal scaling with aspect ratio (PEP-9)
- Cross-machine comparison of ELM regimes (PEP-16)
- Edge turbulence characterization (DSOL-15)
- ELM physics experiments
- Dust Injection
- Supersonic gas injection fuelling studies
- SOL/divertor power control experiments
- MARFE studies

Solenoid free plasma startup (4.5 days)

ST physics:

- Maximize CHI current
- Couple CHI current to OH
- HHFW heating of low current plasmas

Integrated Scenario Development priorities (4.5 days)

ST Physics

- High non-inductive fraction plasmas at high elongation
- Long pulse with reduced fuelling and higher q_{min} ITPA/ITER and general toroidal plasma science:
- Suppression of ELMs with Resonant Magnetic Perturbations
- Improved breakdown/ramp-up scenarios
- Development of Enhanced Pedestal H-mode
- X-point limiter plasmas
- Early HHFW heating
- Radiative divertor scenarios
- MIMO control development

Waves priorities (3.5 days)

ST Physics:

- HHFW heating at higher TF (5.5kG)
- HHFW current drive at higher TF
- 13m⁻¹ HHFW current drive phasing

ITPA/ITER and general toroidal plasma science:

- Understand EBW emission in both L- and Hmode plasmas (thesis)
- HHFW + NBI rotation physics (TP-6.1)

Cross-cutting and enabling (3 days)

- Allocated to tasks that benefit more than one group
 - First day physics ops (1 day machine proposal)
 - MSE calibration (1 day machine proposal)
 - RF conditioning (1 day machine proposal)

Run plan summary (50 days)

 \longrightarrow

ET Group	Run days
MHD/Particles	8
Transport & Turbulence	7.5
Boundary Physics	6
Solenoid Free Startup	4.5
Integrated Scenarios	4.5
Waves	3.5
Cross-cutting & Enabling	3
Total:	37 (13 contingency to be assigned after mid-run assessment)

Unique capabilities allow NSTX to develop the ST concept and strengthen our understanding of the physics of toroidal confinement devices

- EF/RWM control unique among STs, and closely mimics ITER system
- Lithium research investigates an important option for future divertor concepts
- High-k scattering diagnostic holds promise of pinning down the causes of anomalous electron confinement
- Full complement of profile diagnostics leads to detailed physics understanding
- Solenoid free startup capability unique among all large toroidal devices
- High values of v_{fast}/v_{Alfvén} provides important test of multi-mode physics for ITER
- We look forward to a productive 2007 run period