

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Impact of potential polar region modifications on research and scenarios for ASC TSG

D.J. Battaglia On behalf of the NSTX-U ASC TSG

Impact of the proposed changes to the polar region May 24, 2017

Place your institutional logo(s) here:

Response organized by research thrusts identified in 5 year plan

• Scenario development

Туре	B _T (T)	I _p (MA)	P _{inj} (MW)	T _{pulse} (s)
Full performance	1	2	10	5
High power	1	2	> 10	< 5
Non-inductive	1	< 2	≥ 10	≤ 5
Long pulse	< 1	< 2	< 10	> 5

- Axisymmetric Control
 - Snowflake and X-divertor control
 - Integration of tile protection into active control
- Disruption avoidance via controlled shutdown
- Scenario optimization for next step devices

Scenario targets guided by TRANSP modeling of NSTX-U scenarios

- Most comprehensive study of scenarios completed by S. Gerhardt
 - Nuclear Fusion 52 (2012) 083020
- All calculations use high- κ , high- δ shape with matched inner boundary
 - Attractive for increased stability, non-inductive current drive
 - Outer gap is scanned to alter NBI deposition and $\boldsymbol{\kappa}$
- Two shapes of n,T profiles: flat and peaked
 - Scale n for target $\rm f_{GW}$
 - Flat Z_{eff} profile
 - T_e scaled for confinement assumption
 - T_i neoclassical

Modifications to the polar region aim to enable full performance scenario

- Achieve $I_p = 2MA$ at $t_{pulse} = 5s$ with $q_{min} > 1$
 - Max I_p increases with confinement and broad profiles
 - Optimizes to high $\rm f_{GW}$
- ASC TSG should address these questions to inform on-going calculations of the heat flux (next slides):
 - Is 10 MW of NBI heating achievable and sufficient for this scenario?
 - What is the minimum elongation that is feasible for these scenarios?

Voltag	e			P _{inj}				*			W _{tot}	
(kV)	Profiles Scaling	В _т (Т)	I _p (kA)	(MW)	f _{GW}	f _{BS}	q ₉₅	$V_{e,\rho=0.5}$	τ _{CR} (s)	β _N	(kJ)	W _{fast} /W _{tot}
80	Broad $H_{98y,2}=1$	1	1850	10.2	1.05	0.41	7.3	0.16	0.46	4.5	1079	0.03
80	Broad H _{ST} =1	1	2000	10.2	1.03	0.49	7.1	0.12	0.61	5.4	1417	0.03
80	Narrow $H_{98v,2}=1$	1	1450	10.2	1.03	0.42	7.6	0.10	0.39	4.2	757	0.07
80	Narrow $H_{\rm ST}=1$	1	1850	10.2	1.04	0.50	6.9	0.06	0.63	5.5	1307	0.04

Impact of the polar region modifications – ASC TSG, Battaglia, May 24, 2017

Is 10 MW NBI heating achievable and sufficient for the full performance scenario?

- How much power is needed for this scenario?
 - Can we achieve this goal at lower NBI power?
 - How much NBI power needs to be reserved for ramp-up and rampdown?

 Can we develop a scenario with beam modulations in order to get CHERs data?

However, we know that 10MW for 5s is a reasonable limiting case

What is the minimum feasible elongation for full performance scenario?

- As the X-points move closer to midplane, κ is reduced for fixed inner and outer gaps
 - This motion of the X-points makes the field lines steeper at the divertor surfaces, can result in higher heat fluxes
- What I_p is achievable in these lower κ scenarios?

Case Name	Geqdsk file	Peak Heat Flux	E-folding q _{peak} Strike width Radius Point Radiu		Strike Point Radius	Inclination Angle at Strike Point	Priority			
		MW/m ²	cm	m	m	degrees				
1.1	NfHz0+_0	6.41	14.5	0.566	0.549	0.90	1			
1.3	NfHz0+_2	10.6	4.38	0.568	0.559	1.6	2			
1.8	NfHz0+_7	8.51	5.70	0.526	0.514	1.2	1			

High power scenarios aim to expand the accessible regimes in shorter pulses

- Lower n_e (f_{GW} < 1) will probably require higher P_{ini} to keep q_{min} > 1
 - Increase off-axis current drive, increase T_{cur}
- Examine confinement, stability, etc. at larger β_{N} and lower $v_{e}^{\,*}$

NBI (kV)	Pioi (MW)	Max flattop (s)	faw.	lp (MA)
80	10.2	5	0.74	1.25 – 1.8
90	12.6	3	0.74	1.35 – 1.9
100	15.6	1.5	0.74	1.45 – 1.98
80	10.2	5	1.04	1.45 – 2.0

All: $B_T=1.0$ T, Six NB sources, $f_{GW}=0.72$ 80 kV, Broad Profiles, $I_p=1600$ kA for $H_{96}=1$, $I_p=1800$ kA for $H_{ST}=1$ 80 kV, Narrow Profiles, $I_p=1250$ kA for $H_{96}=1$, $I_p=1700$ kA for $H_{ST}=1$ 100 kV, Broad Profiles, $I_p=1750$ kA for $H_{96}=1$, $I_p=1975$ kA for $H_{ST}=1$ 100 kV, Narrow Profiles, $I_p=1450$ kA for $H_{96}=1$, $I_p=1800$ kA for $H_{ST}=1$

100% non-inductive current discharges will probably run at I_p < 2 MA

- Target shapes comparable to high-current scenarios
 - Lower I_p should result in larger λ_q

B _T [T]	P _{inj} [MW]	Heating Pulse	I _P Range [kA]	$\tau_{CR}[s]$
		Duration [s]		
0.75	6.8	5.0	600 <i<sub>P<800</i<sub>	$0.3 < \tau_{CR} < 0.4$
0.75	8.4	3.0	675 <i<sub>P<850</i<sub>	$0.3 < \tau_{CR} < 0.45$
1.0	10.2	5.0	750 <i<sub>P<1200</i<sub>	$0.35 < \tau_{CR} < 0.75$
1.0	12.6	3.0	875 <i<sub>P<1300</i<sub>	$0.4 < \tau_{CR} < 0.8$
1.0	15.6	1.5	$1000 < I_P < 1450$	$0.4 < \tau_{CR} < 0.85$

Table 9.1: Selected parameters for 100% non-inductive scenarios at $f_{GW}=0.7$ in NSTX-U. See Table 2 and Appendix 1 of Ref. [19] for additional information.

 We see no reason that 100% non-inductive scenarios will be incompatible with flux expansion, strike-point sweeps and/or snowflake divertor configurations

Long-pulse discharges run at lower fields

- Long pulse ($t_{pulse} > 5s$) discharges would either:
 - Run with lower voltage beams (< 80 keV)
 - Or modulate the beams
- I_p limited by I²t heating of OH coil
- Examples of 10s discharges at $B_T = 0.75$ T:
 - 6 x 65 keV beams for 8 seconds
 - 6 x 80 keV beams modulated 50/50 for 10 seconds

4	NBI (kV)	P _{inj} (MW)	Max flattop (s)	f _{GW}	lp (MA)	
	65	6.6	8	0.73	1.0 – 1.25	
	80	5.1	10	0.73	0.85 – 1.1	

Experiments within Control Thrust may require proper staging of tile modification/ protection

- Experiments do not place strict requirements on the heating or pulse length
 - Most control work is performed in fiducial-like discharges
 - Exception may be current profile control development, which favors low density, low temperature conditions
- Divertor control and protection development requires some margin for error while commissioning
 - Snowflake, X-divertor, flux-expansion, sweeps...
 - Either perform commissioning with tiles that can tolerate control errors or have adequate protection

Commissioning of the snowflake controller will be challenging if reverse helicity is not allowed

- ASC focuses on experiments that commission the control algorithms
- Number / location of magnetic sensors in polar regions should be maintained (or increased!)
- Experiments would benefit from trying full range of snowflake shapes – Improves confidence in control and the optimization of algorithm
- Reverse helicity may occur while testing
 - Either calculate that this is not an issue, perform experiments without fish-scaled tiles or implement active heat-flux protection
- Similar arguments can be made for X-divertor & flux expansion control

Other considerations raised in the ASC memo

- Development of control aimed at active avoidance of heat flux limits must be considered
 - These algorithms would attempt to mitigate heat flux to avoid reaching a threshold that ends the discharge
- Soft-shutdown development should consider where the power is going to land (research thrust 3)
 - Fast loss of stored energy, particularly after an H-L transition
 - Elongation reduction will put strike points on new locations
 - Timing of transition to inboard limiter
- Research thrust 4 encompasses experiments that aim to optimize highperformance scenarios for next step devices
 - Tile heating limits will constrain the experiments rather than the other way around

