

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Materials and Plasma-Facing Components TSG Discussion of Recovery Project impacts

MA Jaworski on behalf of the M&P TSG

NSTX-U Materials and PFCs Topical Science Group B318 – PPPL – May 24, 2017

*Work supported by DOE contract DE-AC02-09CH11466

Topical overview

- Brief summary of TSG shape/scenario requirements based on FY16/17 and 5/7 year plan
 - Review of 5/7 year research thrusts for M&P
 - Review of experimental capabilities for FY16/17 plans
- TSG summary of impact of polar regions modifications
 - Impact on PFC-testing shape requests
 - Impact of Recovery and polar regions on research thrusts

M&P research will develop understanding of material migration and heat-flux handling of high-Z and liquid Li PFCs

5-Year Plan Research Thrusts

- MP-1: Understand lithium surface-science for long-pulse
 - Assess impact of more complete Li coverage
 - Use the Material Analysis and Particle Probe (MAPP) and laboratory studies to link tokamak performance to PFC surface composition
- MP-2: Unravel the physics of tokamak-induced material migration and evolution
 - Confirm erosion scalings and evaluate extrapolations
 - Determine migration patterns to optimize technical solutions
- MP-3: Establish the science of continuous vapor-shielding
 - Determine the existence and viability of stable, vapor-shielded divertor configurations
 - Determine core compatibility and extrapolations for extended durations and next-step device parameters

Staged conversion mitigates risk and enables comparative assessment of both high-Z and liquid Li

- Open divertor and flexible magnetic configuration enables multiple studies and material selection
- Single-variable experiment in single campaign enabled by conversion (i.e. high-Z vs. lithium PFCs)

Reference shape requests enable exposure of novel PFC materials and utilizes MAPP diagnostic

- Shape developed to perform dedicated tests on outboard PFCs
 - Heat-flux figure of merit indicates 2/3 of highperformance heat flux on row 2
 - Does not reverse helicity on IBDH
- FY16 plans limited to 1s discharge at 10 MW/m²
 - Can make MAPP measurements with discharges similar to 2016
 - Science aided by long pulse capability
- Reference shape request:
 - 0.73<R_{SP,out}<0.84 (i.e row 2)
 - $Q_{inc} = 10 MW/m^2$ for 1s, & <max qualified for 5s>
- MAPP exposure shape request:
 - OSP close to/on MAPP R~1.04m
 - $Q_{inc} = <max$ qualified for 5s>

PFC test reference discharge

Reference shape requests enable exposure of novel PFC materials and utilizes MAPP diagnostic

- Shape developed to perform dedicated tests on outboard PFCs
 - Heat-flux figure of merit indicates 2/3 of highperformance heat flux on row 2
 - Does not reverse helicity on IBDH
- FY16 plans limited to 1s discharge at 10 MW/m²
 - Can make MAPP measurements with discharges similar to 2016
 - Science aided by long pulse capability
- Reference shape request:
 - 0.73<R_{SP,out}<0.84 (i.e row 2)
 - $Q_{inc} = 10 \text{ MW/m}^2 \text{ for 1s, } \& < \text{max qualified for 5s} >$
- MAPP exposure shape request:
 - OSP close to/on MAPP R~1.04m
 - Q_{inc} = <max qualified for 5s>

High-Z reference discharge

Topical overview

- Brief summary of TSG shape/scenario requirements based on FY16/17 and 5/7 year plan
 - Review of 5/7 year research thrusts for M&P
 - Review of experimental capabilities for FY16/17 plans
- TSG summary of impact of polar regions modifications
 Impact on PFC-testing shape requests
 - Impact of Recovery and polar regions on research thrusts

Research thrusts MP-1 and MP-2 not significantly impacted*

- M&P TSG meeting held May 11 to gather input
 - *Assuming diagnostic interpretation and implementation can be addressed
 - *Assumes B and Li conditioning will continue
- Diagnostic impacts
 - MAPP not affected (Kaita)
 - IR thermography and spectroscopic: needs analysis of spatial resolution (Vlad, Gray)
 - Witness plates & QCMs not affected (Skinner)
 - Langmuir probes; need redesign (Jaworski – included in PFC requirements draft document)

Research thrust MP-3 can continue on general ablative materials

- Research plan modified by delay in high-Z and liquid Li
 - Expect restart with graphite PFCs Potential
 - Accessible PFC temperatures far exceed NSTX
- Redeposited material can create reservoir for decomposition into plasma
 - Li₂CO₃ decomposition releases
 CO₂ and should cool plasma
 - Represents general case of self-limiting material by ablative shielding
 - Motivates evaluation in revised milestone 18-2 (text tomorrow)

Summary

- Materials and PFCs TSG group has identified impacts of the recovery activity
 - Diagnostic impacts brought forth by group
 - Research plans only require some specific shapes
 - Shapes for PFC testing already expected to be determined by material performance limits
- M&P TSG research thrusts partially impacted by polar-region changes
 - MP-1 and MP-2 can be conducted with attention to diagnostic impacts
 - Consideration of *general* material ablation can make MP-3 more applicable to a wider range of materials