

Physics and Engineering Design Considerations for NHTX

National High-power advanced Torus eXperiment

Presented by: J. Menard, PPPL

With contributions from: C. Neumeyer, S. Kaye, R. Goldston, and the NSTX Research Team

> February 8, 2007 General Atomics

The development of advanced fusion reactors will require the integration of key areas of fusion science

- Four key requirements are well known:
 - 1. High thermal confinement, well confined α 's
 - 2. High plasma beta
 - 3. Steady state operation
 - 4. Solution for *reactor-level* high-heat-flux plasma-boundary interface
- The integration of advanced-reactor-level high-heat-flux handling with high confinement, high β , and steady-state operation has not been demonstrated
 - and apparently will not be demonstrated by planned long-pulse devices

<u>NHTX mission:</u>

"To study the integration of high-confinement, high-beta, long-pulse non-inductive plasma operation with a fusionrelevant high-power plasma-boundary interface."

NHTX can lead the field in the integration necessary for successful CTF/FDF & Demo

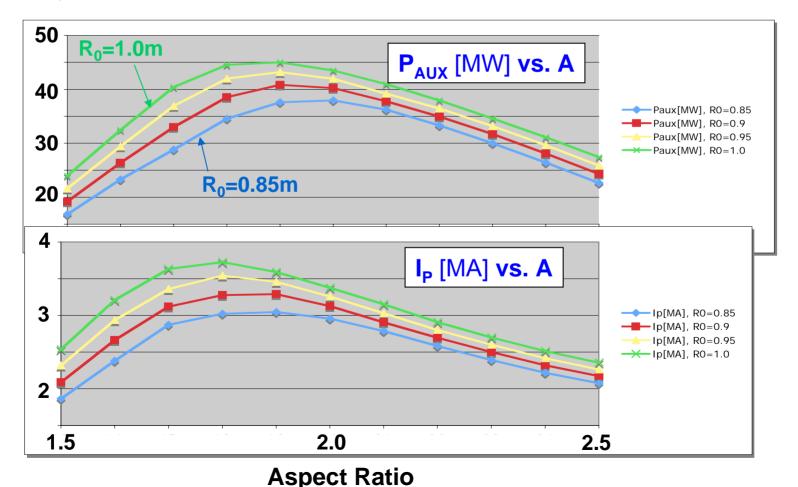
JT-60SA	3.01	1.14	41	14	0.21	100	3.0	D	JA-EU Collaboration
KSTAR	1.80	0.50	29	16	0.52	300	2.0	H (D)	Upgrade Capability
LHD	3.90	0.60	10	3	0.11	10,000	_	Н	Upgrade capability
SST-1	1.10	0.20	3	3	0.23	1000	0.2	H (D)	Initial heating
W7-X	5.50	0.53	10	2	0.09	1800	_	Н	30MW for 10sec
NHTX	1.00	0.55	50	50*	1.13	1000	3.5	D (DT)	Initial heating
ITER	6.20	2.00	150	24	0.21	400-3000	15.0	DT	Not for divertor testing
Component	Test Facil	ity Desig	ns						
CTF (A=1.5)	1.20	0.80	58	48	0.64	weeks	12.3	DT	2 MW/m^2 neutron flux
FDF (A=3.5)	2.49	0.71	108	43	1.61	weeks	7.0	DT	2 MW/m^2 neutron flux
Demonstrati	on Power	Plant De	signs						
ARIES-RS	5.52	1.38	514	93	1.23	months	11.3	DT	US Advanced Tokamak
ARIES-AT	5.20	1.30	387	74	0.85	months	12.8	DT	US Advanced Technology
ARIES-ST	3.20	2.00	624	195	0.99	months	29.0	DT	US Spherical Torus
ARIES-CS	7.75	1.70	471	61	0.91	months	3.2	DT	US Compact Stellarator
ITER-like	6.20	2.00	600	97	0.84	months	15.0	DT	ITER @ higher power, Q
EU A	9.55	3.18	1246	130	0.74	months	30.0	DT	EU "modest extrapolation"
EU B	8.60	2.87	990	115	0.73	months	28.0	DT	EU
EU C	7.50	2.50	794	106	0.71	months	20.1	DT	EU
EU D	6.10	2.03	577	95	0.78	months	14.1	DT	EU Advanced
SlimCS	5.50	2.12	650	118	0.90	months	16.7	DT	JA
CREST	7.30	2.15	692	95	0.73	months	12.0	DT	JA

* Flux compression, low R_x/R , SND, additional power allow higher heat flux.

NHTX Heating and Current Drive

- Neutral beams: 32 MW, 120 kV D₀ NBI, steerable off axis
- 18 MW RF type to be determined
- Results from NSTX, C-MOD, DIII-D will be critical to selection of RF system(s)
 - EBWCD: High efficiency, remote coupling.
 - Inside-launch 120 GHz 2nd harmonic ECCD: lower efficiency, more complex access.
 - LHCD: High efficiency, intimate coupling.
- 2MA bootstrap current at operating point
- For confidence in 3.5 MA steady-state operation, desirable to be able to drive ~ 1.5 MA with beams + RF ($R_0 = 1m$)

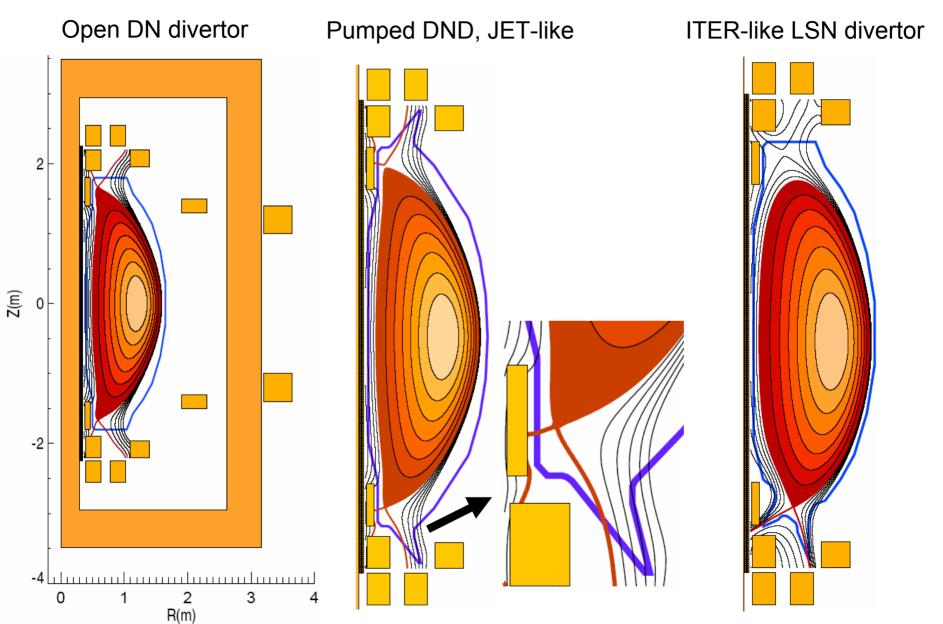
Beyond high P/R, NHTX provides high P/P_{L→H} required for testing radiative power dispersal techniques


- Can fusion plasmas operate at high τ_E and β with 90% core radiated power, to reduce divertor heat flux?
- Physics test requires input power exceeding H-mode threshold power by a very large factor ~ 10.
- NHTX has unique capability to test the Demo-relevant physics in this area:

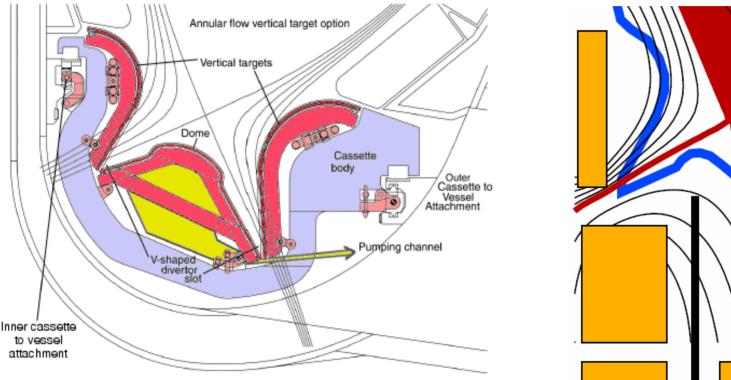
	P _{in} /P _{L→H} @ 0.85×n _{gw}
ITER	3.6
JT-60SA	4.9
ARIES-AT	11
NHTX	12

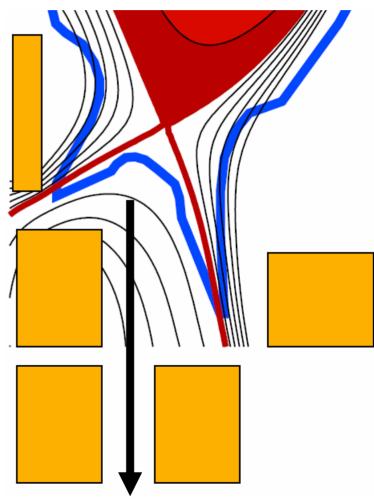
The solution to the power-dispersal problem has order-unity impact on CTF/FDF and Demo design

Systems code identifies optimal aspect ratio A=1.8-2 based on NHTX mission and design


- A=1.8-2 maximizes P/R and I_P (or $I_P \times A$) at fixed magnet power
 - Fixed HH_{98v2}=1.3, use κ (A) and no-wall β_N (A) scalings
 - I_P from BS and NBI additional LHCD, ECCD/EBW to be assessed

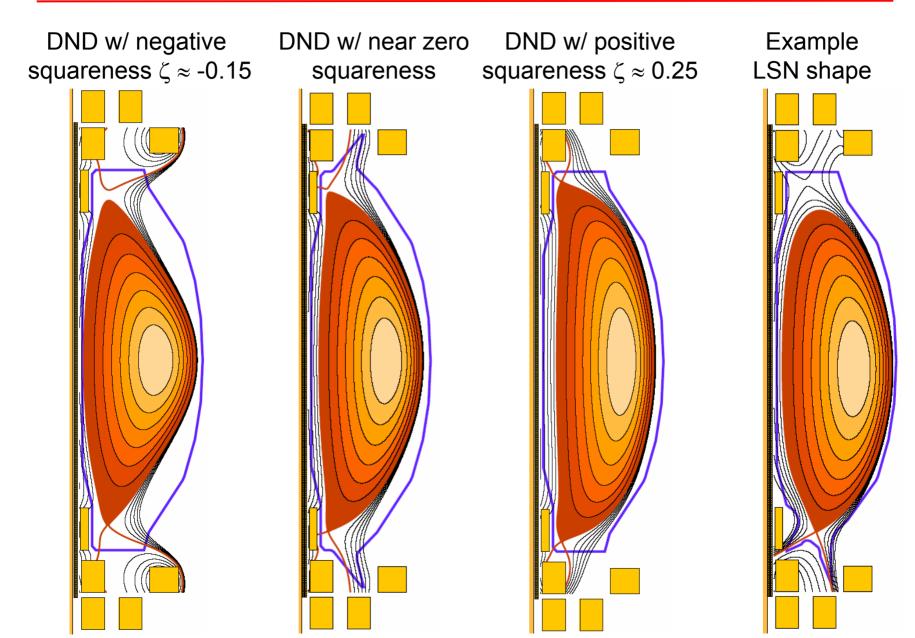
Overview of NHTX design progress


- Systems code has identified favorable design point:
 - A=1.8-2, R₀=1m, I_P=3-4MA, B_T=2T, κ =2.7-3, fully non-inductive
 - Maximizes I_P , $I_P \times A$, and P/R for given magnet power
 - HH_{98Y} = 1.3, β_N =4.5, β_T =15%, f_{BS} = 65%, f_{GW} =0.4-0.5
 - Higher β possible with Ω_{ϕ} & feedback stabilization of RWM
- Favorable PF coil configuration identified
 - Divertor flexibility without PF coil modification
 - Strong shaping flexibility (κ , δ , squareness, flux expansion)
 - Large midplane vertical gap for beam steering via ΔZ , and diagnostics
- NBI current drive efficiency & profiles studied with TRANSP
 - R_{TAN} and Z_{TAN} variations allow for J_{NBI} profile control
 - NBICD scalings used in systems code are reasonable

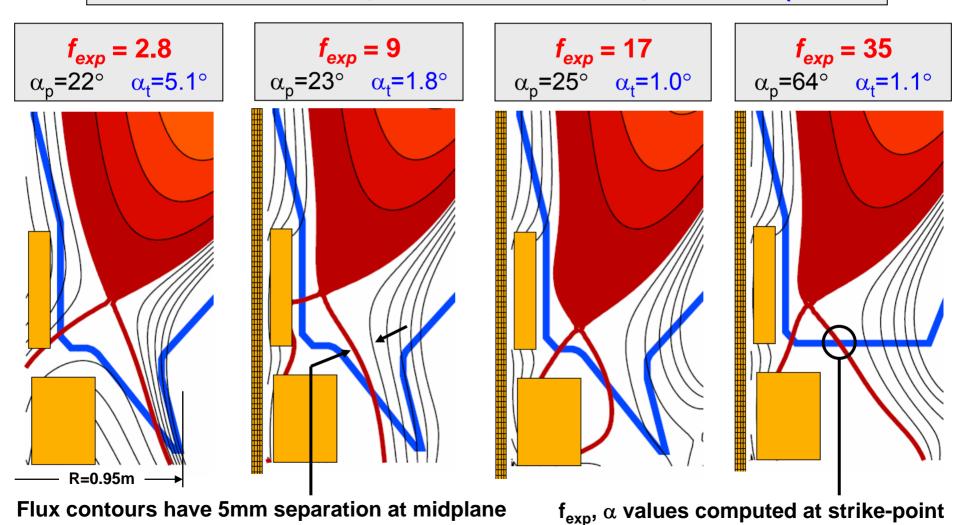

Single coil set supports range of divertor configurations

NHTX coil set supports ITER-like LSN divertor

ITER

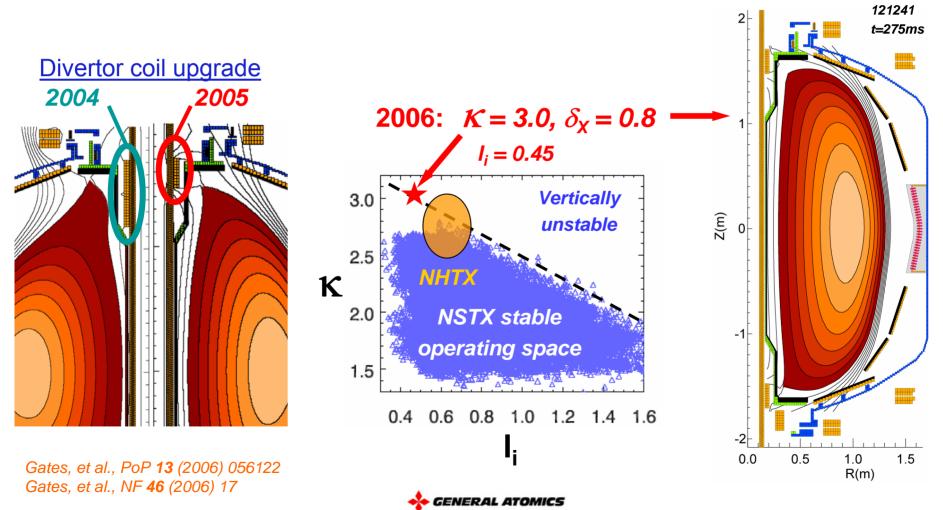


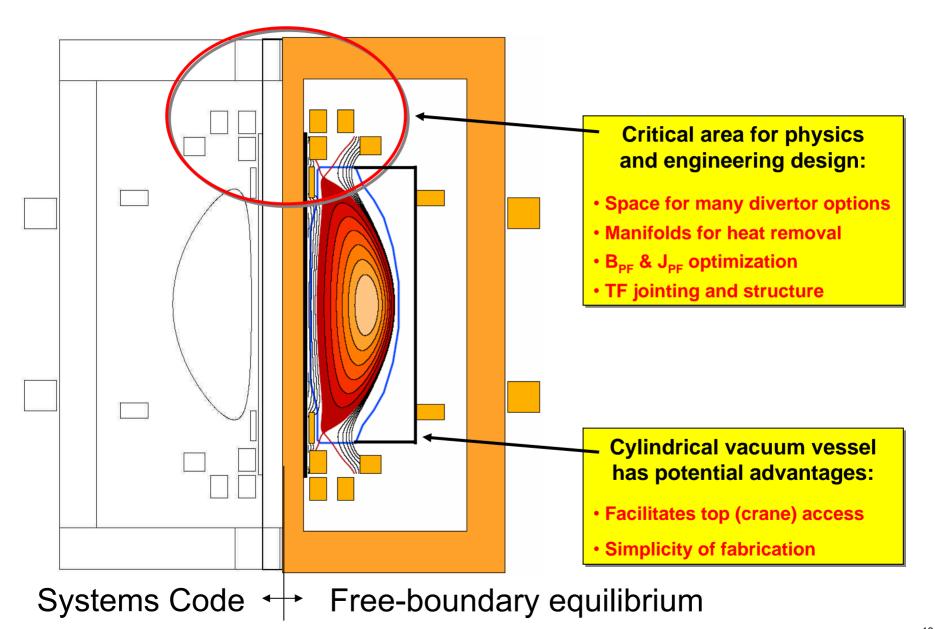
NHTX


Pumping channel from dome

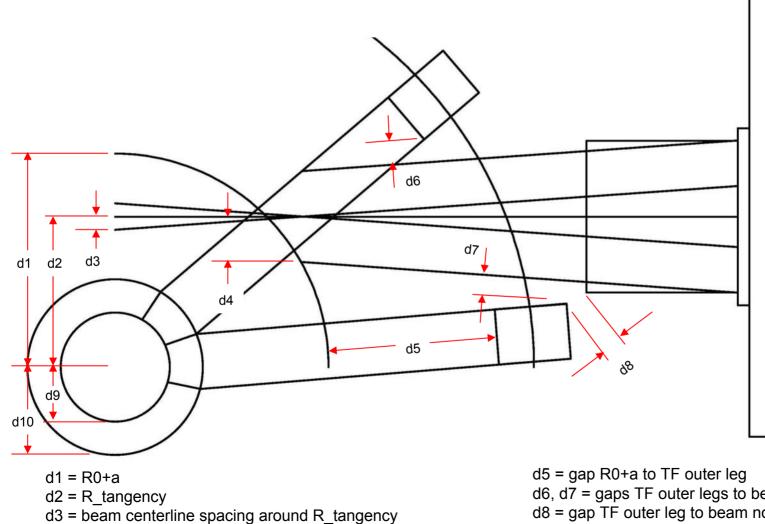
Coil set supports wide range of boundary shapes

Divertor coil set supports wide range of flux expansion


Poloidal flux expansion factor $f_{exp} \equiv |\nabla \psi|_{mid-plane} / |\nabla \psi|_{strike-point}$ Poloidal B-field angle of incidence into target plate $\equiv \alpha_p$ Total B-field angle of incidence into target plate $\equiv \alpha_t$


NHTX Physics Design – J.E. Menard

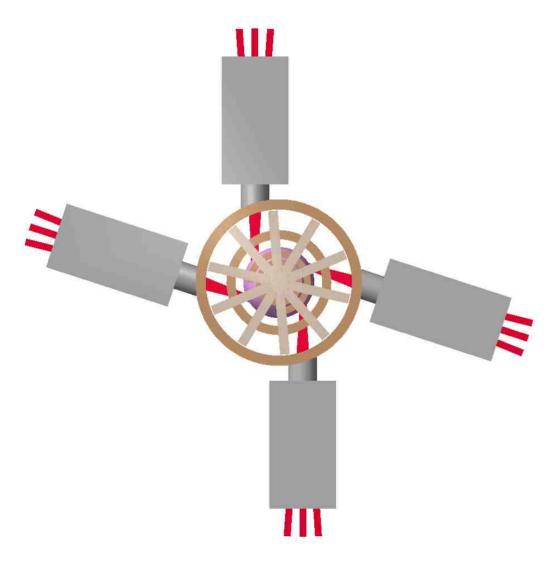
NHTX requires advanced control of high κ/δ boundary, strike point placement, and flux expansion


- NSTX: Sustained $\kappa \ge 2.8$ (reached $\kappa = 3$) for many τ_{WALL} using rtEFIT isoflux control
- High κ n=0 stability research important for NHTX and CTF/FDF design studies

Many engineering issues remain to be addressed

Systems code incorporates NBI geometry, TF ripple < 0.5%, and J_{TF} limits into TF outer leg layout and sizing

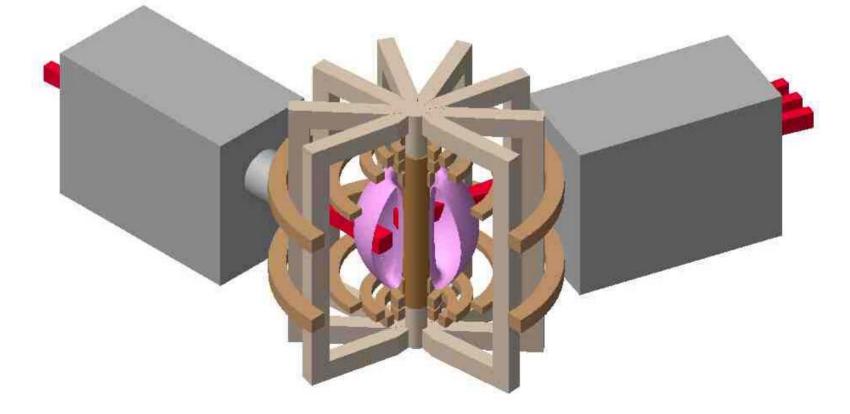
d4 = extent of beam duct w.r.t. beam centerline


d6, d7 = gaps TF outer legs to beam duct

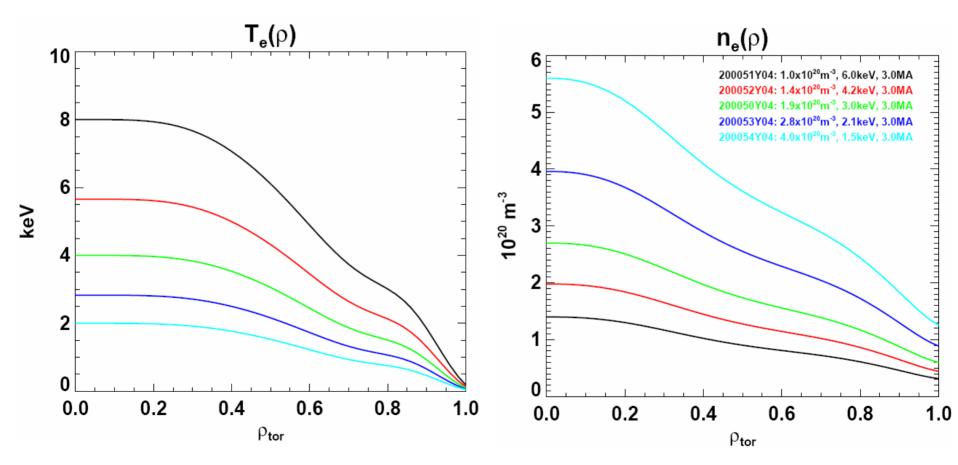
d8 = gap TF outer leg to beam nozzle

d9 = radius of TF inner leg

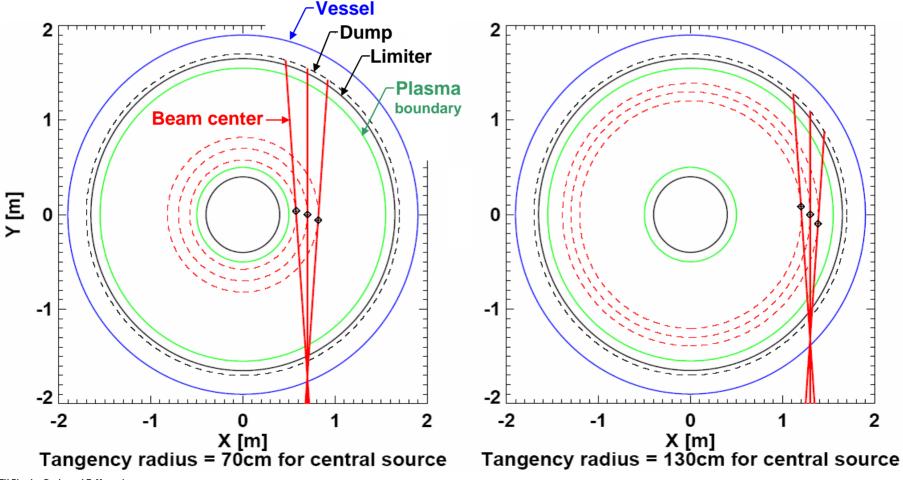
d10 = radius of TF outer leg taper


TF coil layout (10 coils) and sizing allows for R_{TAN} variation of NBI for J-profile control

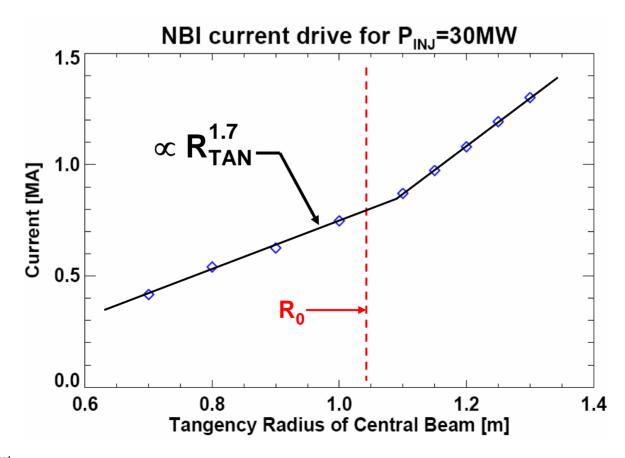
- Assessing trade-offs between vertical shift and tangency radius variation
- Both provide broadened and/or off-axis current drive allowing J-profile control
- R_{TAN} variation from just inside R₀ to 30cm outside looks most favorable for CD


Large vertical gap between outer PF coils allows for vertical shifting of NBI for J-profile control

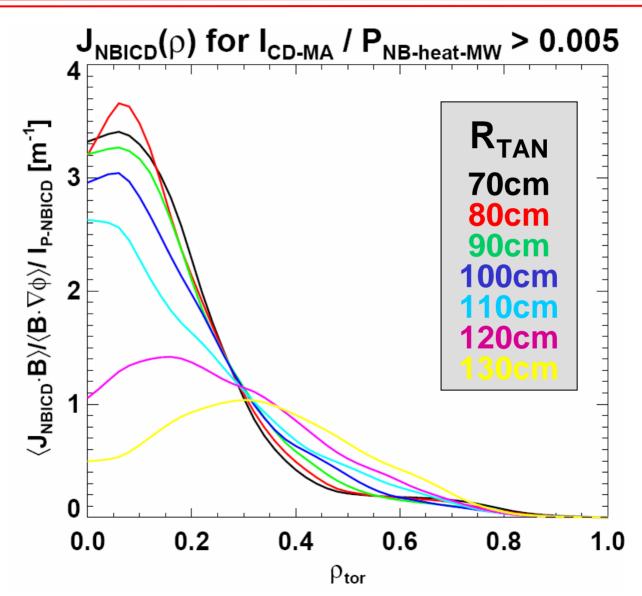
- High κ capability requires outer-most PFs to be outside TF
- If R_{TAN} variation is chosen, these PFs could have smaller R
 - Reduces PF power consumption, but...
 - Lose accessibility of large vertical midplane gap

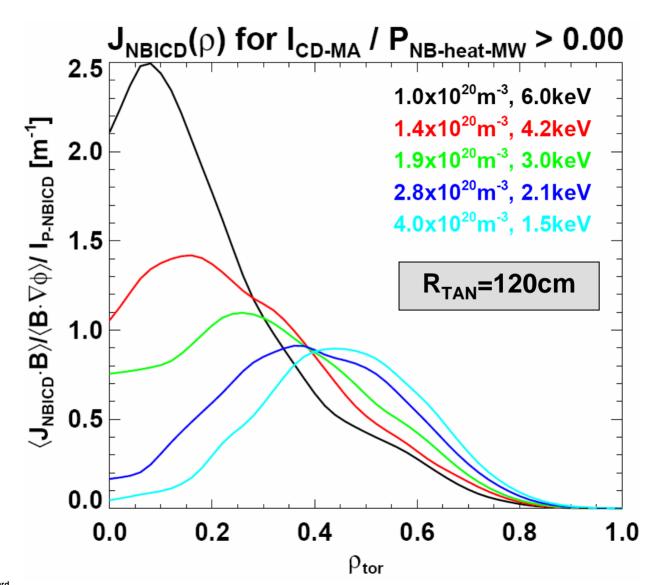

NBICD assessment w/ TRANSP uses thermal profile shapes based on high $f_{NI} = 60-70\%$ NSTX discharges

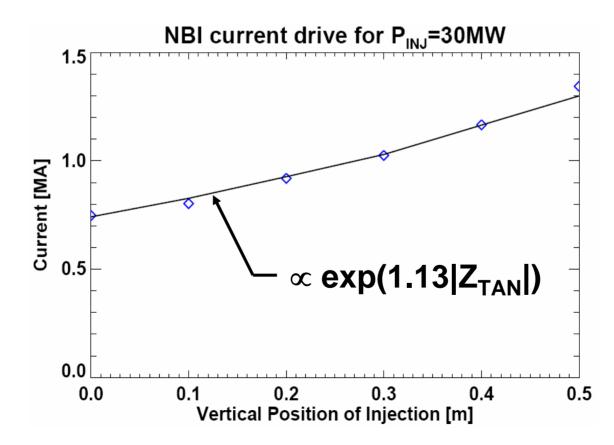
• Scale n_e, T_e profiles from 116313 - fixed T_i / T_e = 1.5, β_T =14%

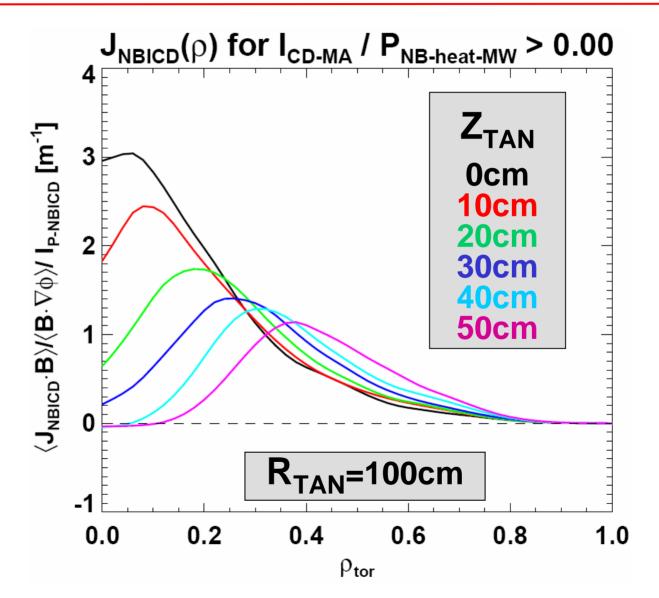


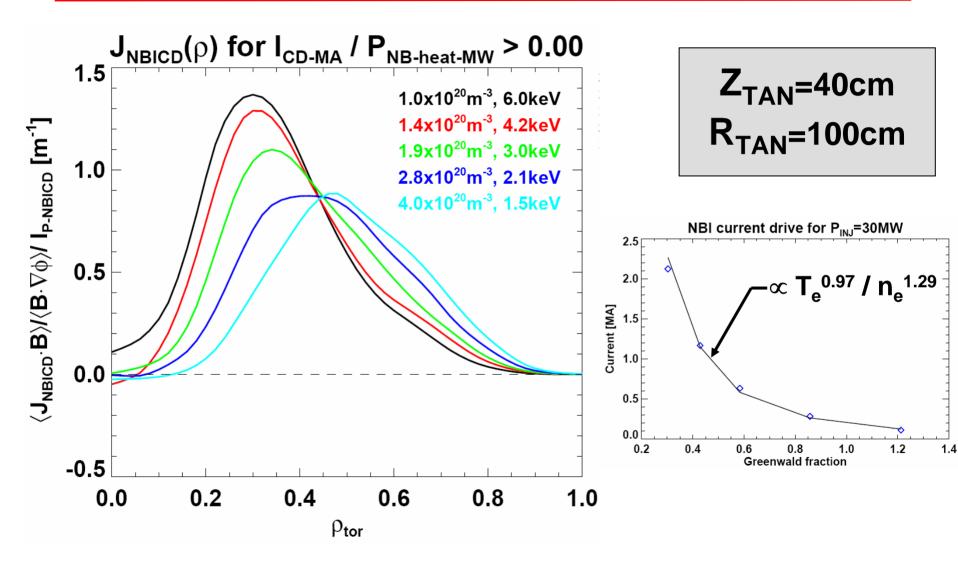
Scan R_{TAN} within range $R_0 \pm 30$ cm to assess NBICD efficiency and profiles

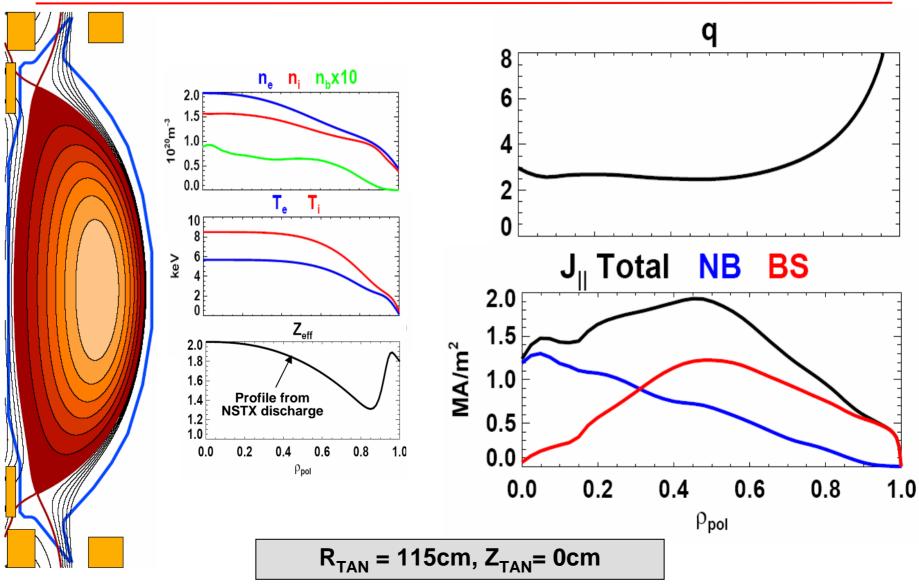

- Fix source cross-over radius at R_{CO} = 1.85m to be near vessel entrance
- · Simulates horizontal beam-line swing with bellows near vessel


Driven current increases \times 3 for R_{TAN}=0.7 \rightarrow 1.3m and increases more quickly w/ radius for R_{TAN} > R₀


Beam tangency radius variation would enable control of core current and *q* profile


For outboard beam tangency radius, driven current profile broadens significantly at high density


Driven current increases \times 1.8 for $Z_{TAN}=0.0 \rightarrow 0.5m$ for $R_{TAN}=1.0m$


Beam vertical position (Z_{TAN}) variation would also enable control of core current and *q* profile

For vertically shifted beams, driven current profile shape remains hollow for all densities tested

A=1.8, κ =2.85, I_P=3MA target plasma with selfconsistent J(ρ) from NBI and BS with q_{MIN} > 2.4

NHTX Physics Design - J.E. Menard

Summary

- Systems code has identified favorable design point:
 - A=1.8-2, R_0 =1m, I_P =3-4MA, B_T =2T, κ =2.7-3, full NICD
 - HH_{98Y} = 1.3, β_N =4.5, β_T =15%, $f_{BS} \ge 65\%$, f_{GW} =0.4-0.5
 - Higher β possible with Ω_{ϕ} & feedback stabilization of RWM
- Favorable coil geometry found for maximum flexibility

 Divertor flexibility critical element of NHTX mission
- NBI Z_{TAN} and R_{TAN} variations allow control of J_{NBICD} – Analyzing engineering tradeoffs of $\Delta R vs. \Delta Z$ beam shift
- Beginning studies of additional heating & CD sources
 Up to 18MW of additional RF power

Backup slides

- XL-based uses non-linear optimizer ("Solver")
- Jardin/Kessel algorithms used for NSST were starting point for Systems Code
- Continued evolution with Peng, Rutherford, Kessel for CTF studies
 - See PPPL Report 4165 "Spherical Torus Design Point Studies"
- Engineering & physics algorithms tailored to suit NHTX

Physics Assumptions in Systems Code

A	1.5-3.0	100% flux surfaces
R0	0.9-1.0m	
kappa	3.674/SQRT(A)	Goldston
delta	0.6	Fixed
	4/3*(12.259-13.58*A+6.4286*A^2-	
qcyl	1.0417*A^3)	Multiple of Menard
beta_N	<= limit 6.43-1.02*A	Fit to Menard no-wall limit
$\alpha_n = \alpha_T$	(0.64-0.3/A)/2	Menard model
peaking factor (pf)	<u></u> ς(1-(r/a)^2)^α_n*(1-(r/a)^2)^α_T	
kBS	0.344+0.195*A	Menard model
fBS	Beta_P*kBS*pf^0.25/SQRT(A)	
		Also examined Ti .ne. Te
Confinement	Ti=Te, HH98=1.3	w/HHe=0.7-1.3
	85% Hirshman-Neilson flux, ramp-up	85% factor matches
Solenoid Flux	only	formula to Menard data
Non-inductive CD	Bootstrap + NBI (4*8=32MW) @ 110keV	
Paux	32MW (NBI) + 6MW (RF) = 38MW	Beta limited
	Normalized to 90,100,110 cm tangency	
NBI alignment		Kaye
	Amp-turns scaled from Menard	
PF Currents	equilibrium @ 3MA (A=1.8)	

Engineering Assumptions in Systems Code

		dz=kappa*a+1.425m, packing fraction
		f(Jcu_avg,dZ) based on KCOOL,
TF Inner Leg Heating	Jcu_avg <= 5.75kA/cm^2	v=10m/s, Tcu_max=100C
TF Inner Leg Stress	Radial stress <=138MPA	Insulation shear stress is tracked
	Minimize J but maximizing	
	CSA of outer legs within	
	available space, considering	
TF Outer Leg Heating	NBI alignment	
TF Outer Leg Stress	Not Modeled	
OH Heating	G-function adiabatic	dz=f(kappa*a)
OH Stress	Hoop stress <=138MPA	
		KCOOL analysis assumes conductor
		area per turn 1.5*CSA of existing PF
		coils, 10 turns per cooling path, 15kA
PF Heating	Jcu_avg <= 2.5kA/cm^2	per turn
PF Stress	Not Modeled	
		Radial build based on heat flux, ferritic
Center Stack Casing (VV)		steel w/15% cooling fraction, 400C,
Heating and Radial Build	over dZ=2*kappa*a	4MPa He cooling at 150m/s
PFC Heating	Not Modeled	
PFC Stress	Not Modeled	
Transrex Capacity	15kA/PSS, 3.25kA rms	Irms is limiting (Trep~20min)
	TF/PF/OH Loads W<=4.5GJ,	
MG	CCV on during pulse	
		Approved by PSE&G for TPX, requires
	NBI/MG/BOP Loads	local D-site substation and p.f.
Grid	P<=200MW	correction
	Total flow requirement based	
	on total energy dissipation,	
	rep rate limited by 20MW	
Cooling Water Systems	heat removal	60-10=50C rise typ. deltaT