

Physics and Engineering Design Considerations for NHTX

National **H**igh-power advanced **T**orus ^e**X**periment

Presented by: J. Menard, PPPL

With contributions from: C. Neumeyer, S. Kaye, R. Goldston, and the NSTX Research Team

> February 8, 2007 General Atomics

The development of advanced fusion reactors will require the integration of key areas of fusion science

- •Four key requirements are well known:
	- 1. High thermal confinement, well confined α 's
	- 2. High plasma beta
	- 3. Steady state operation
	- **4. Solution for** *reactor-level* **high-heat-flux plasma-boundary interface**
- •The integration of advanced-reactor-level high-heat-flux handling with high confinement, high β, and steady-state operation has not been demonstrated
	- and apparently will not be demonst rated by planned long-pulse devices

•**NHTX mission:**

"To study the integration of high-confinement, high-beta, long-pulse non-inductive plasma operation with a fusionrelevant high-power plasma-boundary interface."

NHTX can lead the field in the integration necessary for successful CTF/FDF & Demo

*** Flux compression, low R x/R, SND, additional po w er allo w higher heat flux.**

NHTX Heating and Current Drive

- Neutral beams: 32 MW, 120 kV D₀ NBI, steerable off axis
- \bullet 18 MW RF – type to be determined
- Results from NSTX, C-MOD, DIII-D will be critical to selection of RF system(s)
	- EBWC D: High efficiency, remote coupling.
	- Inside-launch 120 GHz 2nd harmonic ECC D: lower efficiency, more complex access.
	- LHCD: High efficiency, intimate coupling.
- 2MA bootstrap current at operating point
- For confidence in 3.5 MA steady-state operation, desirable to be able to drive ~ 1.5 MA with beams + RF $\,$ (R $_{\rm o}$ = 1m) $\,$

Beyond high P/R, NHTX provides high P/P_{L→H} required for testing radiative power dispersal techniques

- •Can fusion plasmas operate at high τ_E and β with 90% core radiated power, to reduce divertor heat flux?
- •Physics test requires input power exceeding H-mode threshold power by a very large factor \sim 10.
- NHTX has unique capability to test the Demo-relevant physics in this area:

The solution to the power-dispersal problem has order-unity impact on CTF/FDF and Demo design

Systems code identifies optimal aspect ratio A=1.8-2 based on NHTX mission and design

- •A=1.8-2 maximizes P/R and I_P (or I_P×A) at fixed magnet power
	- Fixed HH_{98y2}=1.3, use κ(A) and no-wall $\beta_{\sf N}$ (A) scalings
	- I_P from BS and NBI additional LHCD, ECCD/EBW to be assessed

Overview of NHTX design progress

- •Systems code has identified favorable design point:
	- A=1.8-2, R₀=1m, I_P=3-4MA, B_T=2T, κ=2.7-3, fully non-inductive
	- Maximizes I_P, I_P×A, and P/R for given magnet power
	- $\,$ HH $_{98\text{Y}}$ = 1.3, β_N=4.5, β_T=15%, f $_{\rm BS}$ = 65%, f $_{\rm GW}$ =0.4-0.5
	- Higher β possible with Ω_ϕ & feedback stabilization of RWM
- •Favorable PF coil configuration identified
	- Divertor flexibility without PF coil modification
	- Strong shaping flexibility (^κ, δ, squareness, flux expansion)
	- Large midplane vertical gap for beam steering via ∆Z, and diagnostics
- •NBI current drive efficiency & profiles studied with TRANSP
	- $\mathsf{R}_{\text{\sf TAN}}$ and $\mathsf{Z}_{\text{\sf TAN}}$ variations allow for $\mathsf{J}_{\text{\sf NBI}}$ profile control
	- NBICD scalings used in systems code are reasonable

Single coil set supports range of divertor configurations

NHTX coil set supports ITER-like LSN divertor

ITER

NHTX

NHTX Physics Design – J.E. Menard Pumping channel from dome

Coil set supports wide range of boundary shapes

Divertor coil set supports wide range of flux expansion

Poloidal flux expansion factor *f_{exp}* ≡ |∇ψ|_{mid-plane} / |∇ψ| _{strike-point}
Poloidal B-field angle of incidence into target plate ≡ α Total B-field angle of incidence into target plate $\equiv \alpha_t$

NHTX requires advanced control of high κ/δ boundary, strike point placement, and flux expansion

- NSTX: Sustained $\kappa \geq 2.8$ (reached κ = 3) for many $\tau_{\sf walk}$ using rtEFIT isoflux control
- •• High κ n=0 stability research important for NHTX and CTF/FDF design studies

Many engineering issues remain to be addressed

Systems code incorporates NBI geometry, TF ripple < 0.5%, and J_{TF} limits into TF outer leg layout and sizing

d4 = extent of beam duct w.r.t. beam centerline

d8 = gap TF outer leg to beam nozzle

d9 = radius of TF inner leg

d10 = radius of TF outer leg taper

TF coil layout (10 coils) and sizing allows for $\mathsf{R}_{\text{\sf TAN}}$ variation of NBI for J-profile control

- •Assessing trade-offs between vertical shift and tangency radius variation
- •Both provide broadened and/or off-axis current drive allowing J-profile control
- $\,$ R $_{\sf TAN}$ variation from just $\,$ inside R_{0} to 30cm $^{\mathsf{1}}$ outside looks most favorable for CD

Large vertical gap between outer PF coils allows for vertical shifting of NBI for J-profile c ontrol

- •Hig h κ capability requires outer-most PFs to be outside TF
- •If $R_{\text{\scriptsize\textsf{TAN}}}$ variation is chosen, these PFs could have smaller R
	- Reduces PF power consumption, but…
	- $-$ Lose accessibility of large vertical midplane gap

NBICD assessment w/ TRANSP uses thermal profile shapes based on high f $_{\sf{NI}}$ = 60-70% NSTX discharges

• Scale $\mathsf{n}_{\rm e}$, T $_{\rm e}$ profiles from 116313 - fixed T $_{\rm i}$ / T $_{\rm e}$ = 1.5, $\beta_{\rm T}$ =14%

Scan ${\sf R}_{\sf TAN}$ within range ${\sf R}_{\sf 0}$ \pm 30cm to assess NBICD efficiency and profiles

- Fix source cross-over radius at R $_{\rm CO}$ = 1.85m to be near vessel entrance
- Simulates horizontal beam-line swing with bellows near vessel

Driven current increases \times 3 for R_{TAN}=0.7 \rightarrow 1.3m and increases more quickly w/ radius for $\mathsf{R}_{\mathsf{TAN}}$ > R_{0}

$$
\mathbf{NBICD} \text{ for } \overline{\mathbf{n}}_{\mathbf{e}} = 1.4 \times 10^{20} \mathbf{m}^{-3}, \overline{\mathbf{T}}_{\mathbf{e}} = 4.2 \mathbf{keV}, \mathbf{f}_{\mathbf{GW}} = 0.43
$$

Beam tangency radius variation would enable control of core current and *q* profile

For outboard beam tangency radius, driven current profile broadens significantly at high density

Driven current increases \times 1.8 for $\rm Z_{TAN}$ = $\rm 0.0 \rightarrow 0.5$ m for $\rm R_{TAN}$ = 1.0m

$$
\mathbf{NBICD} \text{ for } \overline{\mathbf{n}}_{\mathrm{e}} = 1.4 \times 10^{20} \mathrm{m}^{-3}, \overline{\mathbf{T}}_{\mathrm{e}} = 4.2 \mathrm{keV}, \mathbf{f}_{\mathrm{GW}} = 0.43
$$

Beam vertical position (Z_{TAN}) variation would also enable control of core current and *q* profile

For vertically shifted beams, driven current profile shape remains hollow for all densities tested

A=1.8, κ =2.85, I_P=3MA target plasma with self- $\,$ consistent J $\,rho)$ from NBI and BS with $\,q_{\mathsf{MIN}}$ > 2.4 $\,$

NHTX Physics Design – J.E. Menard

Summary

- Systems code has identified favorable design point:
	- A=1.8-2, R₀=1m, I_P=3-4MA, B_T=2T, κ=2.7-3, full NICD
	- $\mathsf{HH}_{98\mathsf{Y}}$ = 1.3, β_N=4.5, β_T=15%, f_{BS} \geq 65%, f_{GW}=0.4-0.5
	- Higher β possible with Ω_ϕ & feedback stabilization of RWM
- Favorable coil geometry found for maximum flexibility Divertor flexibility critical element of NHTX mission
- $\bullet\,$ NBI Z $_{\sf TAN}$ and ${\sf R}_{\sf TAN}$ variations allow control of $\sf J_{\sf NBICD}$ –Analyzing engineering tradeoffs of ∆R vs. ∆Z beam shift
- Beginning studies of additional heating & CD sources – Up to 18MW of additional RF power

Backup slides

- XL-based uses non-linear optimizer ("Solver")
- Jardin/Kessel algorithms used for NSST were starting point for Systems Code
- Continued evolution with Peng, Rutherford, Kessel for CTF studies
	- See PPPL Report 4165 "Spherical Torus Design Point Studies"
- Engineering & physics algorithms tailored to suit NHTX

Physics Assumptions in Systems Code

Engineering Assumptions in Systems Code

