

<u>Kinetic Effects on RWM Stabilization</u> <u>in NSTX: Initial Results</u>

Jack Berkery

Department of Applied Physics and Applied Mathematics,

Columbia University, New York, NY, USA

May 30, 2008 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL PSI SNL UC Davis UC** Irvine **UCLA** UCSD **U Maryland U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo **JAERI loffe Inst** TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching U** Quebec

epartment of En

$$\gamma_F \tau_w = -\frac{\delta W_\infty}{\delta W_b}$$

(Haney and Freidberg, PoF-B, 1989)

$$\gamma_F \tau_w = -\frac{\delta W_\infty}{\delta W_b}$$

(Haney and Freidberg, PoF-B, 1989)

$$\gamma_K \tau_w = -\frac{\delta W_\infty + \delta W_K}{\delta W_b + \delta W_K}$$

(Hu, Betti, and Manickam, PoP, 2005)

$$\gamma_F \tau_w = -\frac{\delta W_\infty}{\delta W_b}$$

(Haney and Freidberg, PoF-B, 1989)

$$\gamma_K au_w = -rac{\delta W_\infty + \delta W_K}{\delta W_b + \delta W_K}$$
 (Hu, Betti, and Manickam, PoP, 2005)
PEST $- \int \int Hu/Betti code$

$$\gamma_F \tau_w = -\frac{\delta W_\infty}{\delta W_b}$$

(Haney and Freidberg, PoF-B, 1989)

$$\gamma_K au_w = -rac{\delta W_\infty + \delta W_K}{\delta W_b + \delta W_K}$$
 (Hu, Betti, and Manickam, PoP, 2005)
$$PEST \longrightarrow \int Hu/Betti code$$

 $Re(\gamma_K \tau_w) = -\frac{\delta W_\infty \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_\infty + \delta W_b)}{\delta W_b \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_b + \delta W_b)}$

<u>Outline</u>

Introduction

- The Hu/Betti code
- Results: stability diagrams
- Kinetic theory predicts near-marginal stability for experimental equilibria just before RWM instability.

Collisionality

□ Kinetic theory predicts decrease in stability with increased collisionality.

Rotation

- Experimental rotation profiles are near marginal. Larger or smaller rotation is farther from marginal.
- Unlike simpler "critical" rotation theories, kinetic theory allows for a more complex relationship between plasma rotation and RWM stability – one that may be able to explain experimental results.

<u>The Hu/Betti code calculates δW_{K} </u>

• Effects included:

- Trapped Ions
- Trapped Electrons
- Trapped Hot Particles
- Circulating lons
- Alfven Layers

<u>The Hu/Betti code calculates δW_{K} </u>

• Effects included:

- Trapped Ions
- Trapped Electrons
- Trapped Hot Particles
- Circulating lons
- Alfven Layers

$$\begin{split} \delta W_K^{ti} &= \int_0^{\Psi_a} d\Psi \left(\frac{p_s}{1 + \frac{T_e}{T_i}} \right) \left(2\sqrt{\pi} \frac{r}{\upsilon} \right) \sum_{l=-\infty}^{\infty} \int_{B_0/B_{max}}^{B_0/B_{min}} d\Lambda \left(\frac{\hat{\tau}_b}{2} \right) \\ & \times \int_0^{\infty} \left[\frac{\omega_{*N} + \left(\hat{\varepsilon} - \frac{3}{2} \right) \omega_{*T} + \omega_E - \omega}{\langle \omega_D \rangle + l\omega_b - i\nu_{\text{eff}} + \omega_E - \omega} \right] \hat{\varepsilon}^{5/2} e^{-\hat{\varepsilon}} d\hat{\varepsilon} \\ & \times \left| \left\langle \left(2 - 3\frac{\Lambda}{B_0/B} \right) \left(\kappa \cdot \xi_{\perp} \right) - \left(\frac{\Lambda}{B_0/B} \right) \left(\nabla \cdot \xi_{\perp} \right) \right\rangle \right|^2 \end{split}$$

Berkery – Kinetic Stabilization

Berkery – Kinetic Stabilization

Our implementation gives similar answers to Hu's

(DIII-D shot 125701)

Berkery - Kinetic Stabilization

Stability diagrams: contours of constant $\text{Re}(\gamma_{\underline{K}} \tau_{\underline{w}})$

$$Re(\gamma_K \tau_w) = -\frac{\delta W_\infty \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_\infty + \delta W_b)}{\delta W_b \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_b + \delta W_b)}$$

Stability diagrams: contours of constant $\text{Re}(\gamma_{K}\tau_{w})$

$$Re(\gamma_K \tau_w) = -\frac{\delta W_\infty \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_\infty + \delta W_b)}{\delta W_b \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_b + \delta W_b)}$$

Stability diagrams: contours of constant $\text{Re}(\gamma_{K}\tau_{w})$

$$Re(\gamma_K \tau_w) = -\frac{\delta W_\infty \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_\infty + \delta W_b)}{\delta W_b \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_b + \delta W_b)}$$

<u>Stability diagrams: contours of constant $\text{Re}(\gamma_{\kappa}\tau_{w})$ </u>

$$Re(\gamma_K \tau_w) = -\frac{\delta W_\infty \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_\infty + \delta W_b)}{\delta W_b \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_b + \delta W_b)}$$

Stability diagrams: contours of constant $\text{Re}(\gamma_{\kappa}\tau_{w})$

$$Re(\gamma_K \tau_w) = -\frac{\delta W_\infty \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_\infty + \delta W_b)}{\delta W_b \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_b + \delta W_b)}$$

Stability diagrams: contours of constant $\text{Re}(\gamma_{K}\tau_{w})$

$$Re(\gamma_K \tau_w) = -\frac{\delta W_\infty \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_\infty + \delta W_b)}{\delta W_b \delta W_b + |\delta W_K|^2 + Re(\delta W_K)(\delta W_b + \delta W_b)}$$

NSTX 121083 @ 0.475 s
$\delta W_{\infty} = -2.09 \times 10^{-2}$
$\delta W_b = 7.42 \times 10^{-3}$
$Re(\delta W_K) = 1.58 \times 10^{-2}$
$Im(\delta W_K) = 1.57 \times 10^{-2}$

Stability results are all near marginal

121083

VST

Stability results are all near marginal

128855

VST

Stability results are all near marginal

128859

VST

Collisionality

Berkery – Kinetic Stabilization

Simple model: collisions increase stability

$$[(\hat{\gamma} - i\hat{\Omega}_{\phi})^{2} + \nu_{*}(\hat{\gamma} - i\hat{\Omega}_{\phi}) + (1 - \kappa)(1 - md)] \\ \times (\hat{\gamma}S_{*} + 1 + md) = 1 - (md)^{2}.$$
 (Fitzpatrick, PoP, 2002)

"dissipation parameter"

Fitzpatrick simple model

 Collisions <u>increase</u> stability because they increase dissipation of mode energy.

Kinetic model: collisions decrease stability

$$\delta W_K \propto \left[\frac{\omega_{*N} + (\hat{\varepsilon} - \frac{3}{2})\omega_{*T} + \omega_E - \omega}{\langle \omega_D \rangle + l\omega_b - i\nu_{\text{eff}} + \omega_E - \omega} \right]$$

(Hu, Betti, and Manickam, PoP, 2006)

collision frequency (note: inclusion here is "ad hoc")

- Fitzpatrick simple model
 - Collisions <u>increase</u> stability because they increase dissipation of mode energy.
- Kinetic model
 - Collisions <u>decrease</u> stability because they reduce kinetic stabilization effects.

Collisionality should decrease δW_{κ} : test with Z_{eff}

$$W_K \propto \left[\frac{\omega_{*N} + (\hat{\varepsilon} - \frac{3}{2})\omega_{*T} + \omega_E - \omega}{\langle \omega_D \rangle + l\omega_b - i\nu_{\text{eff}} + \omega_E - \omega} \right]$$

(Hu, Betti, and Manickam, PoP, 2006)

collision frequency (note: inclusion here is "ad hoc")

- Fitzpatrick simple model
 - Collisions <u>increase</u> stability because they increase dissipation of mode energy.
- Kinetic model
 - Collisions <u>decrease</u> stability because they reduce kinetic stabilization effects.

121083

121083

128717

128717

128855

128855

128856

128856

Berkery - Kinetic Stabilization

128863

128863

Rotation

Simple model: rotation increases stability

$$\begin{bmatrix} (\hat{\gamma} - i\hat{\Omega}_{\phi})^{2} + \nu_{*}(\hat{\gamma} - i\hat{\Omega}_{\phi}) + (1 - \kappa)(1 - md) \end{bmatrix} \\ \times (\hat{\gamma}S_{*} + 1 + md) = 1 - (md)^{2}.$$
 (Fitzpatrick, PoP, 2002)

toroidal plasma rotation

Fitzpatrick simple model

Plasma rotation <u>increases</u> stability and for a given β there is a "critical" rotation above which the plasma is stable.

Kinetic model: rotation/stability relationship is complex

$$\delta W_K \propto \left[\frac{\omega_{*N} + (\hat{\varepsilon} - \frac{3}{2})\omega_{*T} + \omega_E - \omega}{\langle \omega_D \rangle + l\omega_b - i\nu_{\text{eff}} + \omega_E - \omega} \right]$$

(Hu, Betti, and Manickam, PoP, 2006)

E x B frequency

Fitzpatrick simple model

Plasma rotation <u>increases</u> stability and for a given β there is a "critical" rotation above which the plasma is stable.

Kinetic model

Plasma rotation <u>increases or</u> <u>decreases</u> stability and a "critical" rotation is not defined?

Kinetic model: rotation/stability relationship is complex

$$\delta W_K \propto \left[\frac{\omega_{*N} + (\hat{\varepsilon} - \frac{3}{2})\omega_{*T} + \omega_E - \omega}{\langle \omega_D \rangle + l\omega_b - i\nu_{\text{eff}} + \omega_E - \omega} \right]$$

(Hu, Betti, and Manickam, PoP, 2006)

E x B frequency

Fitzpatrick simple model

Plasma rotation <u>increases</u> stability and for a given β there is a "critical" rotation above which the plasma is stable.

Kinetic model

Plasma rotation <u>increases or</u> <u>decreases</u> stability and a "critical" rotation is not defined?

$$\omega_E = \Omega_\phi^D - \omega_{*i}^D - \frac{v_\theta^D}{2\pi R} \frac{B_\phi}{B_\theta}$$

$$\Omega_{\phi}^{D} = \Omega_{\phi}^{C} + \omega_{*i}^{D} - \omega_{*i}^{C} + \frac{(v_{\theta}^{D} - v_{\theta}^{C})}{2\pi R} \frac{B_{\phi}}{B_{\theta}}$$

Rotation profiles just before instability

128717

128717

121083

121083

128855

128855

128856

128856

128859

128859

128863

128863

Conclusions

• Kinetic Stabilization

Analysis of multiple NSTX discharges from just before RWM instability is observed predicts near-marginal mode growth rates.

Collisionality

- □ The predicted effect of collisionality is as expected from the kinetic equation.
- Rotation
 - Increasing or decreasing the rotation in the calculation drives the prediction farther from the marginal point in either the stable or unstable direction.
 - Unlike simpler "critical" rotation theories, kinetic theory allows for a more complex relationship between plasma rotation and RWM stability.

Which components lead to stability/instability?

121083

Which components lead to stability/instability?

<u>Which components lead to stability/instability?</u>

Which components lead to stability/instability?

PEST symmetry setting makes a difference

Symmetric

Asymmetric

Berkery – Kinetic Stabilization

PEST symmetry setting makes a difference

121083, Symmetric

121083, Asymmetric

Berkery – Kinetic Stabilization

Berkery – Kinetic Stabilization

Berkery –

Experimental profile errors can make a big difference

128717, With error

128717, Fixed

Berkery – Kinetic Stabilization

Previous ITER results also showed complex stabilization

β_N	Δ^*/a	δW^∞_{mhd}	δW^b_{mhd}	δW_K for different $\Omega_{rot}(r=0)/\omega_{*i}^{max}$ values				
				0.0	0.25	0.50	0.75	1.0
3.16	0.500	-0.92	2.27	0.52+0.20 <i>i</i>	0.34+0.22 <i>i</i>	0.26+0.39 <i>i</i>	2.19+0.38 <i>i</i>	0.51-0.25 <i>i</i>
3.66	0.360	-1.60	1.26	0.61+0.36i	0.47+0.28 <i>i</i>	0.35+0.38i	2.32+0.73 <i>i</i>	0.54-0.16 <i>i</i>
4.16	0.297	-1.98	0.61	0.51+0.74 <i>i</i>	0.55+0.57i	0.60+0.47 <i>i</i>	2.15+1.19i	0.62-0.09i
4.65	0.272	-2.19	0.30	-0.21+0.71 <i>i</i>	0.04+1.01 <i>i</i>	0.62+1.05 <i>i</i>	1.77+1.73 <i>i</i>	0.77-0.03 <i>i</i>
5.12	0.258	-2.31	0.11	-0.20+0.35 <i>i</i>	-0.34+0.49 <i>i</i>	-0.23+0.98 <i>i</i>	0.55+2.25 <i>i</i>	1.01+0.46i

Caveat:

calculated with only trapped ion effect included.

(Hu, Betti, and Manickam, PoP, 2005)

Ranges of stability – more complex than simple model

Ranges of stability – more complex than simple model

Berkery - Kinetic Stabilization

Changes to the code

- Changes to coding
 - Changed from IMSL library integration to NAG library integration so it can run on PPPL computers.
 - Removed all hard-wired numbers put in input files.
 - Automatic removal of rational surfaces and calculation of Alfven layer contributions.
 - Surface magnetic field doesn't have to be monotonic from Bmin to Bmax.
 - etc...
- Changes to physics
 - □ $ln(\Lambda) \neq constant$
 - Z_{eff} ≠ 1
 - **D** No small-aspect ratio assumption for $\kappa \cdot \xi$.
 - \Box Automatically finds smallest mode frequency ω that doesn't give integration error.

Berkery - Kinetic Stabilization
What about a shot that doesn't go unstable?

128857, Actual

128857, Collisionality

What about a shot that doesn't go unstable?

This actually comes closer to instability than the case of 128863, which was observed to go unstable, so certainly the code is not perfect.

128857, Rotation

Sontag's results

Figure 7. Ω_{crit} variation with ion collisionality for similar Alfven frequency profiles. Increased collisionality correlates with lower Ω_{crit} .

• High collisionality correlated with lower rotation at collapse.

- Simple model interpretation: collisionality <u>increases</u> stability, leading to a lower "critical" rotation.
- Possible kinetic model interpretation: collisionality <u>decreases</u> stability, meaning the lower rotation plasma, which would otherwise be stable, is now unstable.
- More analysis is required.

(Sontag et al, NF, 2007)