

Macroscopic Stability Research on NSTX and a ReNeWed Future

College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester U Washington U Wisconsin

v1.1

S.A. Sabbagh¹, R.E. Bell², J.W. Berkery¹, J.M. Bialek¹, S.P. Gerhardt², R. Betti³, D.A. Gates², B. Hu³, O.N. Katsuro-Hopkins¹, B. LeBlanc², J. Levesque¹, J.E. Menard², J. Manickam², K. Tritz⁴, and the NSTX Research Team

1Department of Applied Physics, Columbia University, New York, NY, USA 2Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA 3University of Rochester, Rochester, NY, USA 4Johns Hopkins University, Baltimore, MD, USA

Columbia APAM Plasma Physics Colloquium February 6, 2009

Columbia University, New York, NY

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec

Key Research Challenge: Develop Stability and Control Understanding to Produce Continuous High Beta Plasmas

Motivation

- **□** Future spherical torus (ST) magnetic fusion devices plan to run at high ratios of plasma pressure to magnetic field (beta) and with effectively continuous operation
- Mega-Ampere level high beta ST plasmas have been reached
- Attention now turns to stability physics understanding and mode control to maximize steady-state high beta conditions, minimize beta excursions, and largely eliminate disruptions

Outline

- Present macroscopic stability research on NSTX
- Related research / device upgrades planned for next five years
- **□** Developing longer-term "ITER-era" research plan through DOE's ReNeW process
	- \bullet community input strongly encouraged
	- \bullet conduits for your input and collaborative discussion

Understanding what profiles and control systems are needed

for burning plasmas best occurs before such devices are built

FESAC US ST mission:

Develop compact, high β*, burning plasma capability for fusion energy*

 $CTF: $\beta_N = 3.8 - 5.9 \, (W_1 = 1 - 2 \, MW/m^2)$ ST-DEMO: $\beta_N \sim 7.5$$ </u>

- Both at, or above ideal no-wall β-limit; deleterious effects occur below $\beta_{\mathsf{N}}^{\phantom{\mathsf{new}}\mathsf{no-wall}}$
- high $\beta_{\sf N}$ accelerates neutron fluence goal takes 20 years at W_L = 1 MW/m²)
- Stability Goal (in one sentence)
	- **□ Demonstrate reliable maintenance of high** $β_N$ **with sufficient physics understanding to extrapolate to next-step devices**

Knowledge base needed to bridge to these devices; + physics for ITER

- Demonstration $=$ Control (of modes and plasma profiles):
	- \bullet Need to determine what control is needed *before* CTF
- Understanding = Vary parameters (+operate closer to burning plasma levels):
	- \bullet **Collisionality: influences V_φ damping**
	- \bullet Shaping:
	- \bullet Plasma rotation level, profile:
	- \bullet *q* level, profile:

All influence β*-limiting modes:* } *Kink/ballooning, RWM, NTM*

Development of device hardware empowers fundamental stability understanding for robust extrapolation to next-step STs

- **□** Operate at parameters closer to burning plasma (e.g. order of magnitude lower v_i (PTRANSP))
	- High plasma shaping (κ ~ 3), low *l_i* operation •
		- Vertical stability, kink/ballooning stability, coupling to passive stabilizers
	- **□** Resistive wall mode (RWM) stabilization
		- • \blacktriangledown Understand physics of passive mode stabilization vs. V_ϕ at reduced v_i
	- Non-axisymmetric field-induced viscosity
		- • \blacksquare Non-resonant and resonant, due to 3-D fields and modes at reduced v_i

Control modes and profiles, understand key physics

- Dynamic error field correction (DEFC)
	- •■ Demonstrate sustained *V_φ* with reduced resonant field amplification, under *V_φ* profile control
- Resistive wall mode control
	- •Increase reliability of active control, investigate multi-mode RWM physics under V_{ϕ} *q* control
- Tearing mode / NTM
	- •■ Stabilization physics at low A, mode locking physics under V_¢, *q* control
- Plasma rotation control
	- •Sources (2nd NBI, magnetic spin-up) and sink (non-resonant magnetic braking)
- Mode-induced disruption physics and prediction/avoidance

- 2nd NBI (incr.)
- Singly-powered
- RWM control coils
- RWM coil upgrade (incr.)

Plasma equilibrium goal to access and maintain stable high β*^N* at high shaping

Progress

- **□** Central coil PF1A modified (2005) to allow high shaping
- **□** Sustained κ < 2.7, δ < 0.8; transient κ = 3 with record shaping factor, *S_I* ≡ *q₉₅(I_p/aB_t)* = 41
	- \bullet \blacksquare Note: Present CTF design has $\kappa = 3.07$, lower S_I
- **a** Highest κ and S_I plasmas reached β_N ~ 6 in 2008

Plan summary 2009-2011

- **a** Assess/utilize β feedback control using real-time EFIT and NBI power to avoid fast kink/ballooning disruptions
- **□** Conduct experiments/analysis to maintain high *S*_{*i*} plasmas into wall-stabilized, high *β*_{*N*} > 6 operating space

Plan summary 2012-2013

- Real-time MSE for evaluation of q in real-time EFIT
- Utilize/analyze ^β feedback using stability models; *q* profile control with 2nd NBI (incremental)
- **□** Study ST-CTF target shapes (increased A) at low *ν_i* with favorable profiles, determine sensitivity to variations in *l*_{*i*} δ variations in I_i , δ

D.A. Gates, et al., *Nucl. Fusion* **47**, 1376 (2007).

NSTX equipped for passive and active RWM control

- □ Stabilizer plates for kink plates mode stabilization
- □ External midplane control coils closely coupled to vacuum vessel
- Varied sensor combinations used for feedback
	- \Box 24 upper/lower B_p : (B_{pu}, B_{pl})
	- **a** 24 upper/lower B_r : (B_{ru}, B_{rl})

Active RWM control and error field correction maintain high β_N plasma

- $n = 1$ active, $n = 3$ DC control
	- \Box n = 1 response \sim 1 ms \lt $1/\gamma_{\rm RWM}$
	- ❏ $\beta_{\mathsf{N}}/\beta_{\mathsf{N}}^{\mathsf{no\text{-}wall}} = 1.5$ reached
	- **a** best maintains ω_{ϕ}
- NSTX record pulse lengths
	- limited by magnet systems
	- n > 0 control first used as standard tool in 2008
- Without control, plasma more susceptible to RWM growth, even at high $\omega_{_\phi}$
	- **Disruption at** $\omega/\sqrt{2\pi} \sim 8$ **kHz** near $q = 2$
	- \Box More than a factor of 2 higher than marginal ω_{ϕ} with n = 3
magnetic braking

(Sabbagh, et al., PRL **97** (2006) 045004.)

Probability of long pulse and <β_N≥_{pulse} increases significantly with active RWM control and error field correction

❏

 \Box I_p flat-top duration > 0.2s (> 60 RWM growth times)

 $\beta_{\sf N}$ averaged over I_p flat-top

During n=1 feedback control, unstable RWM evolves into rotating global kink

 RWM grows and begins to rotate 1

- With control off, plasma disrupts at this point
- With control on, mode converts to global kink, RWM amplitude dies away
- Resonant field amplification (RFA) reduced
- Conversion from RWM to rotating kink occurs on τ_w
timescale
- Kink either damps away, or saturates
	- Tearing mode can appear during saturated kink

Soft X-ray emission shows transition from RWM to global kink

Tearing mode appears during kink

RWM onset time + 35 ms

- Initial transition from RWM to saturated kink
- □ Tearing mode appears after 10 RWM growth times and stabilizes

Low ω_ϕ , high β_N plasma not accessed when two feedback control coils are disabled

- **□** Low ω_{ϕ} access for
ITER study
	- use $n = 3$ braking
- $n = 1$ feedback doesn't stabilize plasma with 2 of 6 control coils disabled
	- scenario to simulate failed coil set in ITER
	- Feedback phase varied, but no settings worked
	- RWM onset at identical time, plasma rotation

Experimental RWM control performance consistent with theory

Significant β_N increase expected by internal coil proposed for ITER

3 toroidal arrays, 9 coils each

Design work for upgraded non-axisymmetric control capabilities has begun

VALEN computed RWM stability for proposed RWM control coils upgrade - behind passive plates (PP)

growth rate γ [1/s]

growth rate γ [1/s]

coils behind copper passive plates perform worse than

existing external RWM coil set

 $10⁴$ **Coils behind SS secondary PP** 10^3 **Coils behind SS primary PP** 10^{2} **Ideal wall limit** imit 10^{1} **External coils Colls Mall** External $10⁰$ ea **passive** $\overline{\bullet}$ 4.5 5 5.5 6 6.5 7 7.5 $\beta_{\sf N}$

Stainless Steel Plates

□ change copper passive plates to SS RWM performs better than existing external coil set

(note: idealized sensors used)

Proposed control coils on plasma side of copper passive plates computed to stabilize to 99% of β_N wall

(note: idealized sensors used)

Modification of Ideal Stability by Kinetic theory (MISK code) investigated to explain experimental RWM stabilization

- Simple critical ωφ threshold stability models or loss of torque balance do not describe experimental marginal stability Sontag, et al., Nucl. Fusion **47** (2007) 1005.
- Kinetic modification to ideal MHD growth rate
	- Trapped and circulating ions, trapped electrons
	- Alfven dissipation at rational surfaces
- Stability depends on
	- **n** Integrated ω_{ϕ} profile: resonances in $\delta W_{\mathcal{K}}$ (e.g. ion precession drift)
	- Particle collisionality

 ω_{ϕ} profile (enters through ExB frequency)

<u>Trapped ion component of *δW_κ* (plasma integral)</u>

$$
\delta W_K \propto \int \left[\frac{\omega_{*N} + (\hat{\varepsilon} - 3/2)\omega_{*T} + \omega_E - \omega - i\gamma}{\langle \omega_D \rangle + l\omega_b - i\nu_{\text{eff}} + \omega_E - \omega - i\gamma} \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon} \leftarrow \text{Energy integral}
$$
\n
$$
\text{precession drift} \qquad \text{bounce} \qquad \text{collisionality}
$$
\n
$$
\text{MSTM} \qquad \text{CUIsinality}
$$
\n
$$
\text{CUIAPAM Plasma Physics Colloguium 2/6/09 - S.A. Sabbagh} \qquad \text{18.}
$$

b K K w $\delta W_t + \delta W$ $\delta W_{\perp}+\delta W_{\parallel}$ $\delta W_{\iota} + \delta V$ $\delta W_+ + \delta V$ γτ $\, + \,$ + −= ∞

Hu and Betti, Phys. Rev. Lett **93** (2004) 105002.

Kinetic modifications show decrease in RWM stability at relatively high V_φ – consistent with experiment

- Variation of ω ^φ away from marginal profile increases stability
- ם Unstable region at low $\omega_{_\phi}$

 $\mathsf{Re}(\delta\mathsf{W}_{\mathsf{K}})$

0.00 0.01 0.02 0.03

Kinetic model shows overall increase in stability as collisionality decreases

- Vary ^ν by varying T, n at constant β
- **□** Simpler stability dependence on $ω_φ$ at increased $ν$

- \Box Increased stability at $\omega_\phi/\omega_\phi^{\,\,exp} \thicksim 1$
- ם Unstable band in $\omega_{_\Phi}$ at increased $\omega_{_\Phi}$

Hot ions have a strongly stabilizing effect on DIII-D

 MISK show band of instability at moderate rotation without hot ions, but complete stability with hot ions: Δ(γτ_w) ~ 1.0

DIII-D shot 125701 @ 2500ms and rotation from 1875-2600ms

This may explain why DIII-D is inherently more stable to the RWM than NSTX

energetic particle modes might "trigger" RWM by fast particle loss (JT-60U IAEA 08)

(J.W. Berkery, Mode Control Mtg. 2008)

NSTX RWM stability with hot ions under evaluation

□ Direct effect on calculated growth rate using test profiles (based on TRANSP analysis) for hot ion pressure: $\Delta(\gamma\tau_{_{\rm W}})\thicksim 0.2$

Stability using TRANSP runs of RWM marginally stable plasmas now underway

 TRANSP hot ion population smaller at edge in NSTX vs. DIII-D – may explain why RWM apparently less stable in NSTX

Lithium wall conditioning, n=1 RWM control, n=3 error correction also shown to control (eliminate) tearing modes

- • *MHD spectrogram w/o n=1 feedback and n=3 correction*
- *MHD spectrogram with lithium, n=1 feedback and n=3 correction*

- □ Physics of tearing mode elimination still under investigation
	- Full suppression of modes not seen on all shots
- \Box If lithium wall conditioning a key element, liquid lithium divertor might be used for NTM control

Required drive for NTM onset better correlated with rotation shear than rotation magnitude

For fixed V ^φ, order of increasing onset drive: EPM triggers, ELM triggers, and "Triggerless"

All trigger types have similar dependence on flow shear

Dependence likely to related to intrinsic tearing stability, not triggering

$2nd$ NBI and B_T = 1T with center stack upgrade to be used for study and control MHD modes (and much more…)

 \Box q_{min} > key rationals 1.5, 2 to be used for NTM control

Above: β_N=5, β_T=10%, I_P=0.95MA β_N=6.1, β_T=16%, q_{min} > 1.3, I_P=1MA at B_T=0.75T possible

Present NBI RTAN=50,60,70cm New 2n^d NBI RTAN=110,120,130cm

- □ Fully non-inductive scenarios require 2nd NBI (7-10MW of NBI heating) for ${\sf H}_{98}$ ≤ 1.2
	- \Box τ_{CR} will increase from 0.35 \rightarrow 1s if T_e doubles at lower n_e, higher B $_{\rm \top}$
	- \Box Need 3-4 τ_{CR} times for J(r) relaxation \rightarrow 5s pulses \rightarrow need 2nd NBI

Establish predictive physics understanding of NTM S

- □ 2009-2011: Compete Characterization of NTM Onset, Small Island Physics, Restabilization
	- **Q** Characterize the role of V_{ϕ} and the ideal kink limit on NTM onset thresholds
	- □ Characterize triggering events, including sawtooth triggered 3/2 modes and "triggerless" NTMs with $q_{min} > 1$
	- \Box Finish characterization of the marginal island width for 2/1 and 3/2 modes, including comparisons to conventional aspect ratio devices
	- \Box Understand details of how Li conditioning and DEFC assist in stabilizing 2/1 modes
- 2009-2011: Establish a program of relevant NTM modeling
	- **D** Implement PEST-III calculations of Δ' for realistic NSTX equilibria, including the effects of nearby rational surfaces
	- □ Utilize initial value codes like NIMROD for more sophisticated treatment of transport near the island or rotation shear effects on mode coupling and island eigenfunction.

2012-2013: Develop scenarios that mitigate/eliminate deleterious NTM activity

- Quantify the benefits of $q_{min} > 2$ operation, and the role of higher order (3/1, 5/2) modes in this case
- \Box Utilize increased toroidal field (new center stack) to scale $\rho_{\theta i}$ in single device
- **D** Utilize 2nd beamline for current profile control, possibly allowing Δ ' stabilization of NTMs even with $q_{min} < 2$

Collaborations are an essential element of research plan (GA, AUG, JET, U. of Tulsa,…)

Non-axisymmetric field-induced neoclassical toroidal viscosity (NTV) important for low collisionality ST-CTF, low rotation ITER plasmas

- Significant interest in plasma viscosity by non-axisymmetric fields
	- Physics understanding needed to minimize rotation damping from ELM mitigation fields, modes (ITER, etc.)
	- **D** NTV investigations on DIII-D, JET, C-MOD, MAST, etc.

e.g. A.M. Garofalo, APS 2008 invited (DIII-D)

Expand studies on NSTX

- Examine larger field spectrum
- Improve inclusion of plasma response using IPEC

J.K. Park, APS 2008 invited talk

Consider developments in NTV theory

- •Reduction, or saturation due to E_r at reduced ion collisionality, multiple trapping states, bounce/precession resonances, superbanana regime, etc.
- • Some effects suggest continued increase in viscosity at reduced $\rm v_i$

Examine NTV from magnetic islands

W. Zhu, et al., *Phys. Rev. Lett.* **96,** 225002 (2006).

Dominant NTV Force for NSTX collisionality…

$$
\left\langle \overset{\wedge}{\mathbf{e}}_{t} \overset{\rightarrow}{\nabla} \bullet \overset{\leftrightarrow}{\Pi} \right\rangle_{(1/v)} = B_{t} R \left\langle \frac{1}{B_{t}} \right\rangle \left\langle \frac{1}{R^{2}} \right\rangle \frac{\lambda_{1i} p_{i}}{\pi^{3/2} v_{i}} \mathcal{E}^{\frac{3}{2}}(\Omega_{\phi} - \Omega_{NC}) I_{\lambda}
$$

<u>...will it saturate, decrease at lower ν_i?</u>

$$
\frac{1}{v_i} \Longrightarrow \frac{v_i}{\left(v_i^2 + \omega_E^2\right)}
$$

 \Rightarrow $\frac{V_i}{\left(\nu^2 + \omega_r^2\right)}$ Can examine at order of magnitude lower v_i with center stack upgrade

Stronger non-resonant braking at increased T_i

- Observed nonresonant braking using n = 2 field
- \Box Examine T_i
dependence of
neoclassical toroidal viscosity (NTV)
- \Box Li wall conditioning
produces higher T_i in
region of high
rotation damping
- □ Expect stronger NTV
torque at higher T_i *d*ω/dt ~ Τ; ^{5/2} ω_φ)
	- \Box At braking onset, *T_i* ratio^{5/2} =
(0.45/0.34)^{5/2} ~ 2
	- Consistent with measured *dω_√dt* in
region of strongest
damping

$n = 2$ non-resonant braking evolution distinct from resonant

NSTX **CU APAM Plasma Physics Colloquium 2/6/09 – S.A. Sabbagh** ²⁹

High β ST research plan focuses on bridging the knowledge gaps to next-step STs; contributes to ITER

Macroscopic stability research direction

- \Box Transition from establishing high beta operation to reliably and predictably sustaining and controlling it – required for next step device
- Research provides critical understanding for tokamaks
	- \Box Stability physics understanding applicable to tokamaks including ITER, leveraged by unique low-*A*, and high β operational regime
	- **□** Specific ITER support tasks

NSTX provides access to well diagnosed high beta ST plasmas

- 2009-2011: allows significant advances in scientific understanding of ST physics toward next-steps, supports ITER, and advances fundamental science
- □ 2012-2013+: allows demonstration/understanding of reliable stabilization/profile control at lower collisionality – performance basis for next-step STs

DOE ReNeW process to define "ITER-era" (20 yr) research program

ReNeW: Research Needs Workshop

- **□** To inform the Office of Fusion Energy Sciences (OFES) in preparing a strategic plan for research in each major area of the Fusion Energy Sciences Program
- To allow U.S. fusion community to explain research goals, methods to achieve them

• Including communication to new administration

MAIN WEB PAGE: http://burningplasma.org/renew.html

□ Document

- □ Vol 1: Define scientific research needed to fill "gaps" in present understanding
	- \bullet "gaps" defined in / modified from Greenwald report, FESAC TAP reports
	- \bullet Divided into 5 "themes" comprising magnetic fusion research
- \Box Vol 2: Define (\sim 15) "research thrusts" that will carry out this research
- Basis for detailed program plan to be constructed by OFES

ReNeW organized into 5 fusion research themes

ReNeW ST Panel is on Schedule to Complete Tasks

- Tasks through March 16-19 Workshop
	- □ Solicit community input: (First call for input DONE continue to engage community)
	- □ Review issues as described in TAP panel report: (DONE: embodied in community distributed draft of ST section V1.7)

```
*********** WE ARE HERE ***********
```
- Identify scientific research needed to address the issues
	- Review and expand on research outlined in the TAP panel report
	- \bullet Draft write-up of research requirements, make available to community
	- \bullet Fold in community input on research requirements
- □ Develop draft "research thrusts" for discussion at March workshop
- FESAC TAP Report Mission statement: *Establish the ST knowledge base to be ready to construct a low aspect ratio component testing facility that provides high heat flux, neutron flux, and duty factor needed to inform the design of a demonstration fusion power plant.*

(STRAWMAN) U.S. ST Research Vision consistent with Present ST Mission Statement

Several Conduits for Participation in ReNeW Process

- ReNeW Forum (web bulletin board)
	- Contribute to open discussions; start your own discussions
	- Registration instructions: http://burningplasma.org/forum/
		- \bullet Request authorization to ReNeW Forum: e.g. email: sabbagh@pppl.gov
	- ST topic: https://burningplasma.org/forum/index.php?showforum=114
- ST Group: Direct input to/discussion of evolving draft ST section of document
	- Posted: https://burningplasma.org/forum/index.php?showtopic=653
- Submit short white papers describing your ideas on how to resolve key issues, support/define research thrusts
	- Download directions at: http://burningplasma.org/renew.html
- Participate in March 2009 Workshops
	- Links to websites with info/registration at: http://burningplasma.org/renew.html
- Directly contact panel members
	- ST Group: 10 Panel members (see next page); more than 30 advisors

ReNeW Spherical Torus Panel Members

 Contact any panel member for authorization to access the ReNeW Forum (website bulletin board)

 Full advisor list posted at: https://burningplasma.org/forum/index.php?showtopic=636

Backup Slides

NSTX Disruption Studies Contribute to ITER, Aim to Predict Disruption Characteristics & Onset For Future Large STs

- • Fastest NSTX disruption quench times of 0.4 ms/m2, compared to ITER recommended minimum of 1.7 msec/m2.
- •Reduced inductance at high-^κ, low-A explains difference

$$
\frac{\tau_{L/R}}{S} = \frac{\mu_0}{2\pi\eta} \left[\ln \left(\frac{8}{\sqrt{\kappa \varepsilon}} \right) - \frac{7}{4} \right]
$$

- • New instrumentation in 2008 yields significant upward revision of halo current fractions
	- •reveals scaling with I_P and B_T .
	- •Mitigating effect: Largest currents for deliberate VDEs
- •Toroidal peaking reduced at large halo current fraction.

Expand these Results For a Complete Characterization of Disruption Dynamics, Including Prediction Methods

Understand the Causes and Consequencs of Disruptions for

Next-step STs and ITER

2009-2012: Halo current characterization

- Install arrays of instrumented tiles in outboard divertor, measure currents into LLD trays (2009-10)
- **□** Utilize CS upgrade to instrument inboard divertor tiles (2011)
- Understand the halo current paths, toroidal peaking physics, and driving mechanisms, in order to make predicitons for future ST plasmas

2009-2011: Thermal quench characterization

- Determine the fraction of stored energy lost in the thermal quench, compared to that in the pre-disruption phase, over a variet y or plasmas and disruptions
- \Box Utilize fast IR thermography to understand time-scale and spatial distribution of the thermal quench heat flux
- Predict the impulsive heat loading constraints on future ST PFCs

2010-2013: Learn to predict and prevent disruptions

- Develop real-time diagnostics useful for predicting impending disruptions for relevant ST equilibria and instabilities
- Test predictive algorithms, to determine the simplest, most robust prediction methods

•Use in conjunction with stability models and mode control systems developed

