

Supported by

Office of Science

Recent results from the National Spherical Torus Experiment

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Eric Fredrickson

For the NSTX Team

ICPP-LAWPP Santiago, Chile, Aug. 8-13, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI KBSI KAIST POSTECH Seoul Nat. U ASIPP ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

NSTX is a midsize Magnetic Confinement Fusion Device, a Spherical Tokamak (ST)

- Tokamaks confine plasma with toroidal magnetic field and poloidal field generated by the toroidal current in the plasma.
 - Higher ratio of plasma pressure to magnetic pressure comes with low A.
 - Low aspect ratio ($A=a/R_0$) reduces toroidal field required for a given plasma current, but also leaves little room for the solonoid, shielding of TF conductors.

Talk Outline

- NSTX place in fusion research
- New capability & goals of 2010 campaign
- Research Program on NSTX supports wide range of Fusion research needs.
 - Energy/particle confinement
 - Energetic Particle physics
 - Macro-stability
 - Boundary physics
 - RF heating
 - Solonoid-free start-up
 - Advanced Scenario & Control

Summary

STs offer cost-effective, attractive approach to address fusion program needs

STs extend physics regimes of laboratory plasmas

- Low A, high $\beta,$ high v_{fast} / v_{A} challenge theory models
- High power density challenges power handling
- -Longer term NSTX \rightarrow NSTX Upgrade goals:
 - Study high beta plasmas at reduced collisionality
 - Develop non-inductive start-up, sustainment
 - Study reactor-level heat & particle flux solutions
- Physics parameters support ITER-relevant research
 - High v_{fast} / v_A , high β_{fast} reach reactor relevant levels
- NSTX research will form basis for designing next step Spherical Tokamak devices
 - Understand and utilize ST for addressing key gaps between ITER and FNSF / DEMO
 - -Advance ST as fusion power source

ST-based Plasma ST-based Fusion Material Interface (PMI) Nuclear Science Science Facility (FNS) Facility

Novel Liquid Lithium pump added for 2010, HHFW antenna upgraded for higher power

- Porous molybdenum holds film of liquid lithium on heated plates
 - Liquid lithium pumps deuterium, controlling recycling & plasma density
 - Recycling control is proven method to improve plasma energy confinement
 - Liquid lithium might provide rugged, heat tolerant plasma facing material

Antenna upgraded to double-ended feed to improve power handling
-Multi-strap antenna launches Alfvén waves to heat, drive current
-Waves well above ion cyclotron frequency, damp on electrons
-Multi-strap antenna allows directional wave launching

NSTX research goals support ITER and fusion program needs

- Improve understanding of the heat transport in the SOL plasma in support of projecting divertor conditions in ITER
 - Measure divertor heat flux profiles, plasma characteristics in the SOL
- Assess H-mode pedestal, ELM stability vs. n*, Li conditioning
 - Determine how Li from LiTER and LLD affects ELM stability, pedestal
 - Assess L-to-H threshold, pedestal height/width/stability
- Characterize HHFW heating, current drive, and current ramp
 - Sustain 100% non-inductive plasma
 - Develop bootstrap current over-drive ramp-up
 - Enhance NBI-CD with higher electron temperatures
- Assess sustainable β and disruptivity near/above ideal no-wall limit
 - Assess impact of improved mode detection and control algorithms
 - Characterize degree to which other instabilities (2/1 NTM) impact disruptivity

Talk Outline

- NSTX place in fusion research
- New capability & goals of 2010 campaign
- Research Program on NSTX supports wide range of Fusion research needs.
 - Energy/particle confinement
 - Energetic Particle physics
 - Macro-stability
 - Boundary physics
 - RF heating
 - Solonoid-free start-up
 - Advanced Scenario & Control

Summary

Predictive model of thermal transport is a top priority for both ST and tokamak programs

- STs operating regime allows unique measurements of turbulence
 - high-k scattering diagnostic to measure electron gyro-scale fluctuations
 - Beam Emission Spectroscopy (BES) measures ion gyro-scale fluctuations
- NSTX can achieve neoclassical ion transport due to strong rotational flow shear, but electron transport is anomalous and high
 - high β , strong E×B flow shear, large ρ_e

R150

R160

8

R140

ETG suspected of driving electron transport

- ETG mode has been identified by comparing linear growth rate and rest frequency of measured fluctuations to linear GS2/GYRO calculations
- ETG in e-ITB found to be suppressed by reversed magnetic shear, allows access to supercritical electron temperature gradients

mode growth rates are consistent with highk measurements

NSTX operates with high β_{fast} and V_{fast}/V_{Alfvén} ≤ 4; broad spectrum of Alfvénic modes present

- Large amplitude modes overlap in fast-ion phase-space.
- Interaction results in new modes, stronger drive.
- More free energy accessed, more transport
- TAE have multiple resonances, more complex physics.

• Overlap of EPM/TAE/GAE/CAE can also lead to avalanching.

Interaction of multiple Toroidal Alfvén Eignmodes seen to greatly enhance fast ion transport

- Fast ion losses of 10% to 20% inferred from neutron drops, Da spikes, FIDA, NPA
 - Correlated with spike in TAE amplitude and presence of multiple modes
 - Mode numbers measured with Mirnov array
 - Experimental studies carried out in L-mode plasmas (peaked density profile)
 - Reflectometer array used to measure density fluctuation profiles of TAE
- Unperturbed fast ion distribution calculated with TRANSP
 - Calculation not self consistent; neglects redistribution from previous avalanches
- Mode frequencies, amplitudes and spatial structure used to simulate losses.
 - Linear; not self-consistent; mode amplitude/ frequency in ORBIT adjusted to mimic data

Modeling TAE avalanches with linear codes (ORBIT, NOVA-K) reproduced measured fast ion losses

- Procedure:
 - Calculate linear eigenmodes with NOVA-K
 - Match and select "observed" modes based on measured mode structure (reflectometer)
 - Rescale amplitude according to measured displacement
 - Use experimental frequency evolution NOVA doesn't model frequency chirp
- Simulated losses agree with experiment
 - Threshold for onset of losses consistent with avalanche model
 - Presence of multiple modes lowers stochastic threshold
 - Single TAE have multiple resonances; single mode could show avalanche behavior
- Main limitations:
 - Linear; not self-consistent; mode amplitude/ frequency in ORBIT adjusted to mimic data

NSTX contributes to critical research areas in the plasma boundary for ITER/tokamaks and STs

- NSTX experiments have seen reductions in peak heat flux with "snowflake" divertors
 - Improved control techniques being developed for more stable "snowflake" configurations
 - NSTX has q_{II} up to 300 MW/m², q_{peak} up to 15 MW/m², low I_{II} ~5-12 m, in/out power split ~1:3
- 3D fields trigger ELMs for impurity control
 - Lithium films suppress ELMs on NSTX
- Characterize ST H-mode pedestal structure and transport
 - Improve understanding of physics of pedestal
 - SOL stability/transport vs. 3D field
- Dust is issue for ITER and future tokamaks
 - Dust diagnostics and cleaning techniques are being developed on NSTX.

NSTX is investigating Active Feedback Control of External Kinks to Extend Operating Space

- Hardware, feedback algorithms to actively correct error fields and feedback stabilize external kink instabilities being developed
 - External kinks stabilized by plasma rotation, closefitting conducting wall
 - active feedback extends operating space
 - Error fields slow plasma rotation, can be amplified by plasma
 - error fields originate from mis-aligned coils, eddy currents in vacuum vessel, currents in scrape-off layer, ...
- Many aspects of disruptions need explication
 - NSTX studies contribute to understanding of disruption halo currents

NSTX is a leader in developing start-up and ramp-up techniques for STs

- Transient CHI now a proven method to generate closed flux
 - Startup & inductive coupling at 200kA demonstrated on NSTX
 - CHI initiated and inductively ramped current reached 700kA in Hmode plasmas reaching 800eV
 - Used absorber coils to reduce absorber arcs
 - Used Li to reduce impurities during CHI
 - Will investigate use of HHFW in CHI phase
 - Will test CHI performance implications of metal electrodes (from LLD)
- HHFW Heating and Current Drive for Ramp-up
- Outer PF start-up was demonstrated on DIII-D and NSTX
 - DIII-D experiment with high power ECH and NB current drive
- Plasma Gun start-up being investigated on Pegasus
 - Design/install on NSTX as progress on PEGASUS warrants, FY2012 or later

Ip increases with CHI energy until absorber arc occurs

Goals for the Advanced Scenarios and Control TSG

- High non-inductive current fraction plasmas with high-β.
- Long-pulse density control for increased NBCD using improved fueling and lithium conditioning.
- Core electron heating, impurity reduction, and current drive with High-Harmonic Fast Waves.
- Improved plasma control for advanced operating scenarios.
- Extend range of achievable plasma shapes.

Extend the Range of Achievable Plasma Shapes

Large Non-Inductive Fraction and Good Confinement Achieved Over a Range of q at High-κ

- $\beta_N \ge 4.5$ for all scenarios.
- Matches ST-CTF design point.
- *f_{BS} approaching 50%*.
- Matches ST-CTF design point.
- Early f_{NB} > 25%, decreases as density rises.
- Loss in f_{NBCD} partially made up for with f_{BS} .
- H₉₈~1 in all cases.
- Further confinement improvements are desirable.

NSTX Upgrade will contribute strongly to toroidal plasma science and preparation for a fusion nuclear science (FNS) program

•NSTX:

- Providing foundation for understanding ST physics, performance

•NSTX Upgrade:

- Study high beta plasmas at reduced collisionality
 - Vital for understanding confinement, stability, start-up, sustainment
- -Assess full non-inductive current drive operation
 - Needed for steady-state operating scenarios in ITER and FNS facility
- Prototype solutions for mitigating high heat, particle exhaust
 - Can access world-leading combination of P/R and P/S
 - Needed for testing integration of high-performance fusion core and edge

•NSTX Upgrade contributes strongly to possible next-step STs:

- -ST Fusion Nuclear Science Facility
 - Develop fusion nuclear science, test nuclear components for Demo
 - Sustain W_{neutron} ~ 0.2-0.4 \rightarrow 1-2MW/m², τ_{pulse} = 10³ \rightarrow 10⁶s
- -ST Plasma Material Interface Facility
 - Develop long-pulse PMI solutions for FNSF / Demo (low-A and high-A)
 - Further advance start-up, confinement, sustainment for ST
 - High P_heat/S ~1MW/m², high T_wall, τ_{pulse} ~ 10³s

Diagnostic Systems Operational with Strong Collaboration Contributions

MHD/Magnetics/Reconstruction

Magnetics for equilibrium reconstruction **Diamagnetic flux measurement** Halo current detectors High-n and high-frequency Mirnov arrays Locked-mode detectors RWM sensors (n = 1, 2, and 3)

Profile Diagnostics

Multi-pulse Thomson scattering (30 ch, 60 Hz) T-CHERS: $T_i(R)$ and $V_f(r)$ (51 ch) P-CHERS: $V_{\theta}(r)$ (71 ch) MSE-CIF (15 ch) FIReTIP interferometer (119mm, 6 ch) Midplane tangential bolometer array (16 ch)

Turbulence/Modes Diagnostics

Tangential microwave high-k scattering Microwave reflectometers Ultra-soft x-ray arrays – tomography (4 arrays) Fast X-ray tangential camera (2ms) **Beam Emission Spectroscopy**

Energetic Particle Diagnostics

Neutal particle analyzer (2D scanning) **SSNPA**

Fast lost-ion probe (energy/pitch angle resolving) **Neutron measurements**

Fast Ion D₂ profile measurement

NSTX

Collaboration contributions

Edge Divertor Physics Reciprocating Edge Probe Gas-puff Imaging (2ms) **Fixed Langmuir probes** Edge Rotation Diagnostics (T_i, V_f, V_{pol}) 1-D CCD H_a cameras (divertor, midplane) 2-D divertor fast visible camera **Divertor bolometer (20ch)** IR cameras (30Hz) (3) Fast IR camera Tile temperature thermocouple array **Dust detector Edge Deposition Monitors** Scrape-off layer reflectometer Edge neutral pressure gauges **Edge Sample Probe**

Plasma Monitoring

Fast visible cameras Visible bremsstrahlung radiometer **Visible survey spectrometer UV** survey spectrometer **VUV** transmission grating spectrometer Visible filterscopes Wall coupon analysis X-ray crystal spectrometer (astrophysics)