

MHD Stability Research on NSTX and 3D Effects Effects

College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester U Washington U Wisconsin

v1.5

S.A. Sabbagh¹, S.P. Gerhardt², R.E. Bell², J.W. Berkery¹, R. Betti³, J.M. Bialek¹, J. Breslau², R. Buttery⁴, L. Delgado-Aparicio⁵, D.A. Gates², B. Hu³, R. LaHaye⁴, J-K. Park², J.E. Menard², H. Reimerdes¹, K.C. Shaing⁵, K. Tritz⁶, and the NSTX Research Team

1Department of Applied Physics, Columbia University, New York, NY 2Plasma Physics Laboratory, Princeton University, Princeton, NJ 3University of Rochester, Rochester, NY 4General Atomics, San Diego, CA 5University of Wisconsin, Madison, WI 6Johns Hopkins University, Baltimore, MD

Joint US-Japan MHD Workshop / ITPA MHD Meeting March 8 - 12, 2010 National Institute for Fusion Science, Toki, Japan

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec

NSTX MHD Research is Addressing Needs for Maintaining Long-Pulse, High Performance Spherical Torus Plasmas

- **D** Motivation
	- Maintenance of high β*^N* with sufficient physics understanding allows confident extrapolation to ST applications (e.g. ST-CTF, ST-DEMO)
	- Sustain target β*^N* of ST applications with margin to reduce risk
	- □ Leverage unique ST operating regime to test physics models, apply to ITER
- 3-D field / mode physics knowledge needed to ensure steady-state ST
	- \Box n = 1 locked mode behavior at low to moderate $\beta_N < \beta_N^{no-wall}$
	- Ability of plasma rotational stabilization to maintain high β*^N*
	- □ Physics of 3D fields to control plasma rotation profile (for greater stability, confinement)
	- **□** NTM onset and marginal island width for stabilization
	- **□ Multiple scalable control systems to maintain <** β **_N>**_{pulse}
	- Possibility of multiple RWMs that can affect active mode control

NSTX is a spherical torus equipped for passive and active global MHD control, general application of 3D fields

- □ High beta, low aspect ratio
	- $R = 0.86$ m, A > 1.27
	- I_p < 1.5 MA, B_t = 5.5 kG
	- \Box β_t < 40%, B_N < 7.4
- □ Copper stabilizer plates for kink mode stabilization

Midplane control coils

- \Box n = 1 3 field correction, magnetic braking of V_{ϕ}
- \Box n = 1 resistive wall mode (RWM) control
- **ELM** modification
- Varied sensor combinations used for RWM feedback
	- **48 upper/lower B_p**, B_r

3D fields and mode locking

- \Box Resistive wall mode stability physics
- Non-resonant magnetic braking by 3D fields
- **O** NTM threshold physics
- **Improving <** β_N **>**_{pulse} with active n = 1 control, β_N feedback control

Ideal plasma amplification of applied resonant field restores linear correlation of mode locking threshold with density

 $n = 1$ error field threshold for mode locking decreased as β_N increased \Box n = 1 rotating modes sometimes observed, study limited to static modes IPEC resonant field joins linear ne correlation from low-β to increased-β XP903: J.-K. Park (see talk, Monday afternoon)

IPEC computed total resonant field unifies linear dependence of mode locking threshold on density among devices AB MDC-2,14 \overline{B}

T

0

T

B

- Inter-machine mode onset, locking study
	- \Box n = 1 applied field threshold for mode locking decreases as $β_N$ increases (Park)
	- \Box n = 1 and 3 field effect on rotating/locked mode onset is through impact on V_{ϕ} shear, torque (not direct mode interaction) (Buttery)

 \leq $1.0\times$ 10^{-4} $\left(n[10^{19}m^{-3}] \right)^{1.0}$ $\left(B_{\rm m}[T]\right)^{-1.3}$ $\left(R_{\rm s}[m]\right)^{0.78}$. XP903: J.-K. Park . XP915: R. Buttery (GA) (see talks by Park, Buttery on Monday afternoon)

Optimal n = 3 Error Field Correction Determined vs. I_P, B_T

- \Box "optimal" n = 3 error field correction attained by maximizing angular momentum, scanning I_p , B_t , elongation
- n = 3 error field consistent with known equilibrium field coil distortion
	- **□** scales with equilibrium field coil current
	- field phase and amplitude of correction is consistent with that expected from coil distortion
- \Box n = 3 error field correction routinely used to maximize plasma performance in conjunction with n = 1 RWM feedback control

XP902: S. Gerhardt

- **D** 3D fields and mode locking
- Resistive wall mode stability physics
- Non-resonant magnetic braking by 3D fields
- **O** NTM threshold physics
- **Improving <** β_N **>**_{pulse} with active n = 1 control, β_N feedback control

Resistive wall modes can terminate NSTX plasmas at intermediate plasma rotation levels without active control

- Change in plasma rotation frequency, ω_{φ}
- Growing signal on low frequency poloidal magnetic sensors
- Global collapse in USXR signals
- Leads to β collapse and plasma disruption \Rightarrow high ω_{ω} alone is not enough!

Modification of Ideal Stability by Kinetic theory (MISK code) investigated to explain experimental RWM stabilization

- **G** Simple critical ω_{ϕ} threshold stability models or loss of torque balance do not describe experimental marginal stability Sontag, et al., Nucl. Fusion **47** (2007) 1005.
- Kinetic modification to ideal MHD growth rate
	- \Box Trapped and circulating ions, trapped electrons
	- **□** Alfven dissipation at rational surfaces
- Stability depends on

$$
\gamma \tau_{w} = -\frac{\delta W_{\infty} + \delta W_{K}}{\delta W_{b} + \delta W_{K}}
$$

Hu and Betti, Phys. Rev. Lett **93** (2004) 105002.

Integrated ω_{ϕ} profile: resonances in δW_{K} (e.g. ion precession drift)

 ω_{ϕ} profile (enters through ExB frequency)

Q Particle collisionality

Trapped ion component of δW_K (plasma integral)

$$
\delta W_K \propto \int \left[\frac{\omega_{*N} + (\hat{\varepsilon} - 3/2)\omega_{*T} + \omega_E - \omega - i\gamma}{\langle \omega_D \rangle + l\omega_b - i\nu_{\text{eff}} + \omega_E - \omega - i\gamma} \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon} \quad \leftarrow \text{Energy integral}
$$
\nprecession drift bounce collisionality

MISK calculations consistent with RWM destabilization at intermediate plasma rotation; stability altered by collisionality

Destabilization appears between precession drift resonance at low V_{ϕ} **,** bounce resonance at high V_{ϕ} (J.W. Berkery, et al., PRL (2010) 035003; APS 2009 inv. talk)

MISK computed RWM stability of ITER advanced scenario 4 including energetic particles near marginal at $\beta_{N} = 3$

ITER advanced scenario 4

- \Box With $\beta_N = 3$ (20% above n = 1 no-wall limit)
- **D** Polevoi plasma rotation profile (IAEA FEC 2002)

□ Energetic particle (EP) effect

- Isotropic slowing down distribution of alphas
- **D** Present model yields significant stabilization
- \Box At expected β_α/β_{total} = 0.19, near RWM marginal stability

Plasma rotation effect

□ Stabilizing precession drift resonance $\omega_{\phi} = 0.8 \omega_{\phi}^{\text{Polevoi}}$

Experimental RWM stability is changed by EP population, present MISK mode overestimates stability somewhat

- □ Fast particle fraction altered by scaling I_p, ${\mathsf B}_{\mathsf t}$ at fixed q
	- \Box Fast-ion D_{α} measurements (FIDA) confirm successful scan of energetic particle fraction
	- **D** TRANSP confirms change in β_{fast}
- At RWM marginal stability, ω profiles are altered at different EP fraction
	- Plasmas always reach instability
- MISK calculations indicate stability
	- **But change in** $\gamma \tau_{wall}$ **due to EP** effects (0.35) is same magnitude as change due to ω_ϕ variation
- □ Presently implementing new terms in MISK computed δW
	- Adding destabilizing electrostatic term important at high ω_E
	- □ Adding non-isotropic distribution of NBI fast particles

- **D** 3D fields and mode locking
- \Box Resistive wall mode stability physics
- Non-resonant magnetic braking by 3D fields
- **O** NTM threshold physics
- **Improving <** β_N **>**_{pulse} with active n = 1 control, β_N feedback control

NSTX experiments examining 3-D field-induced neoclassical viscosity theory (NTV) in collisionless plasma regime

D Present goal

- **□** Investigate NTV-induced magnetic braking over range of collisionality, ω_F (i.e. $v_i/|\epsilon n q \omega_F|$)
	- Key for ITER, ST Component Test Facility
	- If $v_i/|\epsilon n q \omega_E|$ << 1: NTV saturated (indep. of v)
	- If $v_i/|\epsilon n q \omega_E| > 1$: NTV ~ 1/ v
	- If low ω_{E} (< ω_{VB}): NTV maximized (indep. of v) (superbanana plateau: K.C. Shaing, et al, PPCF **⁵¹** (2009) 035009)

Past NSTX work

- e.g. Zhu, et al., PRL **96** (2006) 225002; S.A. Sabbagh, et al, NF **50** (2010) 025020 \Box ω_φ damping consistent with "1/v regime" magnitude
& scaling $(T_i^{5/2})$ e.g. Zhu, et al., PRL **96** (2006) 225002;
- Recent experimental results
	- \Box NTV braking observed over all $v_i/|\text{enq}\omega_F|$ variations made in experiment
		- •Strong NTV braking observed at increased T_i even if $v_i/|\varepsilon n q \omega_F| < 1$
	- **G** Stronger braking at constant 3-D applied field as ω_{F} , ω_{ϕ} reduced
		- Not due to resonant drag at rational q (no locking, no $1/\omega_{\phi}$ scaling of torque)
		- Perhaps due to "island NTV" $\sim \omega_{\phi}$ (K.C. Shaing et al., PRL 87 (2001) 245003)
		- Perhaps due to superbanana plateau physics

K.C. Shaing, et al, PPCF **51** (2009) 035004

 $\pi^-\nu$

 $B_{\iota}R\left\langle \frac{\partial}{\partial B_{\iota}}\right\rangle \left\langle \frac{\partial}{\partial B_{\iota}}\right\rangle \frac{\partial}{\partial B_{\iota}^{3/2}V_{\iota}}\mathcal{E}^{2}(\omega_{\phi}-\omega_{NC})$ *i*

 $\hat{e}_t \cdot \vec{\nabla} \cdot \vec{\Pi}$ = $B_t R \left\langle \frac{1}{R} \right\rangle \left\langle \frac{1}{R^2} \right\rangle \frac{\lambda_{1i} p_i}{r^3} \varepsilon^{\frac{3}{2}} (\omega_{\phi} - \omega_{NC})$

t

 $\left\langle \begin{array}{cc} \cos \theta & \sin \theta \\ \cos \theta & \cos \theta \end{array} \right\rangle = BR \left\langle \frac{1}{2} \right\rangle \left\langle \frac{1}{2} \right\rangle \frac{\lambda_{\rm ii} p_i}{2} \varepsilon^{\frac{3}{2}} (\omega_{\rm c} - \omega_{\rm c})$

ν

 $(1/\nu)$

 $\mathcal{E}^{\prime}{}^2(\omega_{\phi}-\omega_{NC})I_{\lambda}$

 $\frac{\lambda_{1i} p_i}{\sigma^2} \varepsilon^{\frac{3}{2}}(\omega - \omega_{\text{vac}}) I$

Stronger braking with constant n = 3 applied field and β_N **as** ^ω**^E reduced – accessing superbanana plateau NTV regime**

Stronger braking expected at low ω_E (superbanana plateau regime) (K.C. Shaing et al., PPFC **⁵¹** (2009) 035009) – analysis continues

XP933: S.A. Sabbagh

- **D** 3D fields and mode locking
- \Box Resistive wall mode stability physics
- Non-resonant magnetic braking by 3D fields
- □ NTM threshold physics

Improving < β_N **>**_{pulse} with active n = 1 control, β_N feedback control

m/n = 2/1 NTM marginal island width for stability compared in analogous NSTX and DIII-D experiments

 \Box Used gas puff to stay in H-mode

NSTX

□ Achieved a reproducible onset condition using modest Li evaporation

NSTX XP914: R. LaHaye

- \Box W_{marg}/ε^{0.5}ρ_{θi} ratio ~ 2 in tokamaks
	- **Q** AUG, DIII-D, JET data for 3/2 mode
- **Initial analysis:** W_{marg}/ $\epsilon^{0.5} \rho_{\theta i}$ ratio ~ 3
	- **D** For NSTX at $q_{95} = 8$, DIII-D at $q_{95} = 4$
	- Ratio ~ 1.6 for DIII-D $q_{95} \sim 7$

NSTX studies show how 3-D fields change tearing stability

□ Braking plasma changes bootstrap drive needed to trigger NTM

- \Box Variation of ω_{ϕ} by applied n = 1, 3 fields
- **D** Action correlates better with rotation shear, rather than rotation
- **□** Consistent with previous NTM onset scans
- **□** 3D fields act on NTM through rotation profile change, rather than direct interaction

 Continuity between rotating & locked mode onset

- Field and $β$ ramped with varying rates
- More field early \rightarrow mode sooner + locked
- **Significant braking → leads to mode**
- *Criteria for instability is about what is required to perturb torque balance*

XP915: R. Buttery (see talk, Monday afternoon)

- **D** 3D fields and mode locking
- \Box Resistive wall mode stability physics
- Non-resonant magnetic braking by 3D fields
- NTM threshold physics

Improving < $β_N$ >_{pulse} with active n = 1 control, $β_N$ feedback control

RWM control physics examined, disruptivity initially assessed

- □ Important physics affecting future research
	- **Plasma rotation important for control**
		- \bullet RWM conversion to rotating, damped kink needs V_{^{ϕ}}
		- Larger β_{N} fluctuation at low V_{ϕ}
	- **Q** RWM control effective at low I_i (key for future STs)
	- \Box n = 1 feedback response speed significant
		- unstable RWM more likely with slow error field correction
	- **□** Optimal n=3 error field correction found vs. I_P, B_T (XP902: S. Gerhardt)

Activity in RWM frequency range coincident in magnetic and kinetic diagnostics investigated as multi-mode RWM

- \Box Activity appears separate from unstable RWM
- XP931: Delgado-Aparicio; XP935: Sabbagh (Columbia)

Multi-mode RWM VALEN computation shows 2nd mode has dominant amplitude at high β **^N in NSTX stabilizing structure** ITPA MDC-2

Initial VALEN tests of multi-mode time evolution show n = 1 eigenmodes tracking phase of an applied n = 1 field

- \Box Simulated n = 1 toroidally rotating field from RWM control coils
- **Eigenmodes**
	- \Box track n = 1 applied field phase
	- \Box Vary in relatively amplitude by a small amount

J. Bialek (Columbia U.)

$β_N$ feedback combined with n = 1 RWM control to reduce $β_N$ **fluctuations at varied plasma rotation levels**

Addresses PAC25-17-(1)

D Prelude to ω_{ϕ} control

- **Reduced** ω_{ϕ} by $n = 3$ braking does not defeat FB control
- \Box Increased P_{NBL} needed at lower ω_{ϕ}
- \Box Steady β_N established over long pulse
	- independent of $ω_φ$ over a large range

2010+ plans

- \Box XP to investigate lower plasma rotation, I_i , collisionality
- XP934: Sabbagh (Columbia U.) *S.A. Sabbagh, S. Gerhardt, D. Mastrovito, D. Gates*

NSTX MHD Research is Addressing Topics Furthering Steady Operation of High Performance Plasmas

□ Ideal plasma amplification of applied $n = 1$ resonant field (IPEC) joins linear density scaling of mode locking threshold from low to moderate-β

 \Box Optimal n=3 error field correction determined vs. I_P, B_T

- RWM instability, observed at intermediate plasma rotation, correlates with kinetic stability theory; role of energetic particles under study
- Strong non-resonant braking observed NTV braking observed from all ν_i/εnqω_E(R) variations made; apparent transitions in NTV at low $ω_φ$
- Expanded NTM onset experiments continue to find best correlation between NTM onset drive and flow shear
- \Box Low frequency ~ O(1/τ_{wall}) mode activity at high β_N being investigated as potential driven RWM
- **Theory shows multi-mode RWM response may be important at high** β_{N} **;** multi-mode VALEN code now passing initial tests
- \Box Successful NBI power limitation via new β_N feedback control system; initial success in regulation of β_N at varied plasma rotation levels

Backup Slides

Kinetic modifications show decrease in RWM stability at relatively high V^φ **– consistent with experiment**

Inclusion of energetic particles in MISK: isotropic slowing down distribution (ex. alphas in ITER)

- Energetic particles add to δW_{K} , lead to greater stability
- Example: α particles in ITER
- Higher β_{α} leads to greater stability
- –Isotropic *f* is ^a good approx.
- •Model ω_{ϕ} profile linear in ψ

E.P.s: Slowing-down

$$
f(\varepsilon, \Psi) = \frac{C(\Psi)}{\varepsilon^{\frac{3}{2}} + \varepsilon^{\frac{3}{2}}}
$$

Required (missing) bootstrap drive for NTM onset better correlated with rotation shear than rotation magnitude

Rotation variation via n = 1 or 3 applied field

- Operational space fully spanned up to locked mode limits
- □ No measureable trend vs. rotation
- Weak positive correlation with normalized rotation shear
	- □ Lowest/highest thresholds at low/high rotation shear
	- □ 2d fit vs rotation & rotation shear offers little improvement
	- \Box Consistent with prior results (S.P. Gerhardt, et al., 2008)

XP915: R. Buttery

Initial VALEN tests of multi-mode time evolution - toroidally rotating n = 1 applied field

□ Used to determine if eigenmodes will track phase of $n = 1$ applied field, lock to the plates/vessel, change in relative amplitude

Stronger non-resonant braking at increased T.

Observed NTV braking using $n = 2$ field configuration

- \Box At braking onset, T_i ratio $5/2$ = $(0.45/0.34)^{5/2}$ ~ 2
- **Q** Consistent with measured *d*_ω/dt

S.A. Sabbagh, et al, NF **50** (2010) 025020

[□] Expect stronger NTV torque at higher T_i $(-d\omega/\mathrm{dt} \sim T_i^{5/2} \omega_\phi)$

Multi-energy soft X-ray measurements consistent with mode being a driven RWM

TF7

Tisible

light

Multi-mode VALEN code (RWM control) testing successfully on ITER Scenario 4 cases (reversed shear)

Illustration of Bn(θ,φ**) on plasma surface from mmVALEN for ITER Scenario 4,** $\beta_N = 3.92$

