

Supported by

MHD Stability Research on NSTX and 3D Effects

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

v1.5

S.A. Sabbagh¹, S.P. Gerhardt², R.E. Bell², J.W. Berkery¹, R. Betti³, J.M. Bialek¹, J. Breslau², R. Buttery⁴, L. Delgado-Aparicio⁵, D.A. Gates², B. Hu³, R. LaHaye⁴, J-K. Park², J.E. Menard², H. Reimerdes¹, K.C. Shaing⁵, K. Tritz⁶, and the NSTX Research Team

¹Department of Applied Physics, Columbia University, New York, NY ²Plasma Physics Laboratory, Princeton University, Princeton, NJ ³University of Rochester, Rochester, NY ⁴General Atomics, San Diego, CA ⁵University of Wisconsin, Madison, WI ⁶Johns Hopkins University, Baltimore, MD

Joint US-Japan MHD Workshop / ITPA MHD Meeting March 8 - 12, 2010 National Institute for Fusion Science, Toki, Japan

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA.** Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep **U** Quebec

NSTX MHD Research is Addressing Needs for Maintaining Long-Pulse, High Performance Spherical Torus Plasmas

- Motivation
 - □ Maintenance of high β_N with sufficient physics understanding allows confident extrapolation to ST applications (e.g. ST-CTF, ST-DEMO)
 - **Sustain** target β_N of ST applications with margin to reduce risk
 - Leverage unique ST operating regime to test physics models, apply to ITER
- □ 3-D field / mode physics knowledge needed to ensure steady-state ST
 - □ n = 1 locked mode behavior at low to moderate $\beta_N < \beta_N^{no-wall}$
 - **\Box** Ability of plasma rotational stabilization to maintain high β_N
 - Physics of 3D fields to control plasma rotation profile (for greater stability, confinement)
 - NTM onset and marginal island width for stabilization
 - □ Multiple scalable control systems to maintain $<\beta_N >_{pulse}$
 - Possibility of multiple RWMs that can affect active mode control

NSTX is a spherical torus equipped for passive and active global MHD control, general application of 3D fields

- □ High beta, low aspect ratio
 - □ R = 0.86 m, A > 1.27
 - **a** $I_p < 1.5$ MA, $B_t = 5.5$ kG
 - **a** $\beta_t < 40\%, B_N < 7.4$
- Copper stabilizer plates for kink mode stabilization
- Midplane control coils
 - □ n = 1 3 field correction, magnetic braking of V_{ϕ}
 - n = 1 resistive wall mode (RWM) control
 - ELM modification
- Varied sensor combinations used for RWM feedback
 - □ 48 upper/lower B_p, B_r

□ 3D fields and mode locking

- Resistive wall mode stability physics
- Non-resonant magnetic braking by 3D fields
- □ NTM threshold physics
- □ Improving $<\beta_N>_{pulse}$ with active n = 1 control, β_N feedback control

Ideal plasma amplification of applied resonant field restores linear correlation of mode locking threshold with density

n = 1 error field threshold for mode locking decreased as β_N increased
 n = 1 rotating modes sometimes observed, study limited to static modes
 IPEC resonant field joins linear n_e correlation from low-β to increased-β
 XP903: J.-K. Park (see talk, Monday afternoon)

IPEC computed total resonant field unifies linear dependence of mode locking threshold on density among devices A MDC-2.14

NSTX

Optimal n = 3 Error Field Correction Determined vs. I_P, B_T

- "optimal" n = 3 error field correction attained by maximizing angular momentum, scanning I_p, B_t, elongation
- □ n = 3 error field consistent with known equilibrium field coil distortion
 - scales with equilibrium field coil current
 - field phase and amplitude of correction is consistent with that expected from coil distortion
- n = 3 error field correction routinely used to maximize plasma performance in conjunction with n = 1 RWM feedback control

XP902: S. Gerhardt

- □ 3D fields and mode locking
- Resistive wall mode stability physics
- Non-resonant magnetic braking by 3D fields
- NTM threshold physics
- □ Improving $<\beta_N>_{pulse}$ with active n = 1 control, β_N feedback control

Resistive wall modes can terminate NSTX plasmas at intermediate plasma rotation levels without active control

- \Box Change in plasma rotation frequency, ω_{o}
- Growing signal on low frequency poloidal magnetic sensors
- Global collapse in USXR signals
- **Leads** to β collapse and plasma disruption \Rightarrow high ω_{α} alone is not enough!

Modification of Ideal Stability by Kinetic theory (MISK code) investigated to explain experimental RWM stabilization

- Simple critical ω_{ϕ} threshold stability models or loss of torque balance do not describe experimental marginal stability
- Kinetic modification to ideal MHD growth rate
 - Trapped and circulating ions, trapped electrons
 - Alfven dissipation at rational surfaces
- Stability depends on

$$\gamma \tau_{w} = -\frac{\delta W_{\infty} + \delta W_{K}}{\delta W_{b} + \delta W_{K}}$$

Hu and Betti, Phys. Rev. Lett **93** (2004) 105002.

Integrated $\underline{\omega}_{\phi}$ profile: resonances in δW_{K} (e.g. ion precession drift)

 $\underline{\omega}_{\phi}$ profile (enters through ExB frequency)

Particle <u>collisionality</u>

<u>Trapped ion component of δW_{κ} (plasma integral)</u>

$$\delta W_{K} \propto \int \left[\frac{\omega_{*_{N}} + \left(\hat{\varepsilon} - \frac{3}{2}\right)\omega_{*_{T}} + \omega_{E} - \omega - i\gamma}{\left\langle \omega_{D} \right\rangle + l\omega_{b} - i\nu_{eff}} + \omega_{E} - \omega - i\gamma \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon} \quad \leftarrow \text{Energy integral}$$

MISK calculations consistent with RWM destabilization at intermediate plasma rotation; stability altered by collisionality

Destabilization appears between precession drift resonance at low V_{ϕ} , bounce resonance at high V_{ϕ} (J.W. Berkery, et al., PRL (2010) 035003; APS 2009 inv. talk)

MISK computed RWM stability of ITER advanced scenario 4 including energetic particles near marginal at $\beta_N = 3$

ITER advanced scenario 4

- With β_N = 3 (20% above n = 1 no-wall limit)
- Polevoi plasma rotation profile (IAEA FEC 2002)

Energetic particle (EP) effect

- Isotropic slowing down distribution of alphas
- Present model yields significant stabilization
- □ At expected $\beta_{\alpha}/\beta_{\text{total}} = 0.19$, near RWM marginal stability

Plasma rotation effect

□ Stabilizing precession drift resonance $\omega_{\phi} = 0.8 \omega_{\phi}^{\text{Polevoi}}$

How does MISK result with EP compare to experiment?

Experimental RWM stability is changed by EP population, present MISK mode overestimates stability somewhat

- Fast particle fraction altered by scaling I_p, B_t at fixed q
 - Fast-ion D_α measurements (FIDA) confirm successful scan of energetic particle fraction
 - **TRANSP** confirms change in β_{fast}
- At RWM marginal stability, ω_{ϕ} profiles are altered at different EP fraction
 - Plasmas always reach instability
- MISK calculations indicate stability
 - But change in $\gamma \tau_{wall}$ due to EP effects (0.35) is same magnitude as change due to ω_{ϕ} variation
- Presently implementing new terms in MISK computed δW

00 NSTX

- Adding destabilizing electrostatic term important at high ω_E
- Adding non-isotropic distribution of NBI fast particles

0.2

 $\beta_{fast}/\beta_{total}$

0.3

0.4

XP921: J.W. Berkerv

0.0

0.1

- □ 3D fields and mode locking
- Resistive wall mode stability physics
- □ Non-resonant magnetic braking by 3D fields
- NTM threshold physics
- □ Improving $<\beta_N>_{pulse}$ with active n = 1 control, β_N feedback control

NSTX experiments examining 3-D field-induced neoclassical viscosity theory (NTV) in collisionless plasma regime

Present goal

- □ Investigate NTV-induced magnetic braking over range of collisionality, $\omega_{\rm F}$ (i.e. $v_{\rm i}/|\epsilon nq\omega_{\rm F}|$)
 - Key for ITER, ST Component Test Facility
 - If $v_i / |\epsilon n q \omega_E| << 1$: NTV saturated (indep. of v)
 - If $v_i / |\epsilon nq\omega_E| > 1$: NTV ~ 1/v
 - If low ω_E (< ω_{VB}): NTV maximized (indep. of v) (superbanana plateau: K.C. Shaing, et al, PPCF 51 (2009) 035009)

Past NSTX work

K.C. Shaing, et al, PPCF 51 (2009) 035004

- $\Box \quad \omega_{\phi} \text{ damping consistent with "1/v regime" magnitude} \\ \& \text{ scaling } (\mathsf{T}_{i}^{5/2}) \qquad \text{e.g. Zhu, et al., PRL 96 (2006) 225002; S.A. Sabbagh, et al, NF 50 (2010) 025020} \\ & \left\langle \stackrel{\circ}{e_{t}} \bullet \vec{\nabla} \bullet \vec{\Pi} \right\rangle_{u=1} = B_{t} R \left\langle \frac{1}{R^{2}} \right\rangle \left\langle \frac{1}{R^{2}} \right\rangle \frac{\lambda_{1i} p_{i}}{\pi^{3/2} v_{i}} \varepsilon^{3/2} (\omega_{\phi} \omega_{NC}) I_{\lambda}$
- Recent experimental results
 - **D** NTV braking observed over all $v_i/|\epsilon nq\omega_E|$ variations made in experiment
 - Strong NTV braking observed at increased T_i even if $v_i/|\epsilon nq\omega_E| < 1$
 - $\hfill \label{eq:constant}$ Stronger braking at constant 3-D applied field as $\omega_{\rm E},\,\omega_{\phi}$ reduced
 - Not due to resonant drag at rational q (no locking, no $1/\omega_{\phi}$ scaling of torque)
 - Perhaps due to "island NTV" ~ ω_{ϕ} (K.C. Shaing et al., PRL 87 (2001) 245003)
 - Perhaps due to superbanana plateau physics

Stronger braking with constant n = 3 applied field and β_N as ω_E reduced – accessing superbanana plateau NTV regime

(K.C. Shaing et al., PPFC **51** (2009) 035009) – analysis continues

XP933: S.A. Sabbagh

- □ 3D fields and mode locking
- Resistive wall mode stability physics
- Non-resonant magnetic braking by 3D fields
- NTM threshold physics

□ Improving $<\beta_N>_{pulse}$ with active n = 1 control, β_N feedback control

m/n = 2/1 NTM marginal island width for stability compared in analogous NSTX and DIII-D experiments

Used gas puff to stay in H-mode

NSTX

 Achieved a reproducible onset condition using modest Li evaporation

NSTX XP914: R. LaHaye

- $\square W_{marg}/\epsilon^{0.5}\rho_{\theta i} \text{ ratio } \sim 2 \text{ in tokamaks}$
 - □ AUG, DIII-D, JET data for 3/2 mode
- □ Initial analysis: $W_{marg}/\epsilon^{0.5}\rho_{\theta i}$ ratio ~ 3
 - For NSTX at q_{95} = 8, DIII-D at q_{95} = 4
 - **Ratio** ~ 1.6 for DIII-D q_{95} ~ 7

NSTX studies show how 3-D fields change tearing stability

Braking plasma changes bootstrap drive needed to trigger NTM

- □ Variation of ω_{ϕ} by applied n = 1, 3 fields
- Action correlates better with rotation shear, rather than rotation
- Consistent with previous NTM onset scans
- 3D fields act on NTM through rotation profile change, rather than direct interaction

Continuity between rotating & locked mode onset

- $\hfill\square$ Field and β ramped with varying rates
- $\hfill \Box$ More field early \rightarrow mode sooner + locked
- □ Significant braking \rightarrow leads to mode
- Criteria for instability is about what is required to perturb torque balance

XP915: R. Buttery (see talk, Monday afternoon)

- □ 3D fields and mode locking
- Resistive wall mode stability physics
- Non-resonant magnetic braking by 3D fields
- □ NTM threshold physics

□ Improving $<\beta_N>_{pulse}$ with active n = 1 control, β_N feedback control

RWM control physics examined, disruptivity initially assessed

- Larger β_N fluctuation at low V_{ϕ}
- RWM control effective at low I_i (key for future STs)
- n = 1 feedback response speed significant

• unstable RWM more likely with slow error field correction

Optimal n=3 error field correction found vs. I_P, B_T (XP902: S. Gerhardt)

Activity in RWM frequency range coincident in magnetic and kinetic diagnostics investigated as multi-mode RWM

Activity appears separate from unstable RWM

XP931: Delgado-Aparicio; XP935: Sabbagh (Columbia)

Initial VALEN tests of multi-mode time evolution show n = 1 eigenmodes tracking phase of an applied n = 1 field

- Simulated n = 1 toroidally rotating field from RWM control coils
- **Eigenmodes**
 - track n = 1 applied field phase
 - Vary in relatively amplitude by a small amount

J. Bialek (Columbia U.)

24

β_N feedback combined with n = 1 RWM control to reduce β_N fluctuations at varied plasma rotation levels

Addresses PAC25-17-(1)

Prelude to ω_φ control

- Reduced ω_φ by
 n = 3 braking
 does not defeat
 FB control
- Increased P_{NBI}
 needed at
 lower ω_φ
- Steady β_N established over long pulse
 - independent of ω_φ over a large range

<u>2010+ plans</u>

- □ XP to investigate lower plasma rotation, I_i, collisionality
- S.A. Sabbagh, S. Gerhardt, D. Mastrovito, D. Gates

XP934: Sabbagh (Columbia U.)

NSTX MHD Research is Addressing Topics Furthering Steady Operation of High Performance Plasmas

Ideal plasma amplification of applied n = 1 resonant field (IPEC) joins linear density scaling of mode locking threshold from low to moderate-β

□ Optimal n=3 error field correction determined vs. I_P, B_T

- RWM instability, observed at intermediate plasma rotation, correlates with kinetic stability theory; role of energetic particles under study
- Strong non-resonant braking observed NTV braking observed from all $v_i/\epsilon nq\omega_E(R)$ variations made; apparent transitions in NTV at low ω_{ϕ}
- Expanded NTM onset experiments continue to find best correlation between NTM onset drive and flow shear
- □ Low frequency ~ $O(1/\tau_{wall})$ mode activity at high β_N being investigated as potential driven RWM
- Theory shows multi-mode RWM response may be important at high β_N; multi-mode VALEN code now passing initial tests
- □ Successful NBI power limitation via new β_N feedback control system; initial success in regulation of β_N at varied plasma rotation levels

Backup Slides

Kinetic modifications show decrease in RWM stability at relatively high V₆ – consistent with experiment

Inclusion of energetic particles in MISK: isotropic slowing down distribution (ex. alphas in ITER)

- Energetic particles add to δW_{K} , lead to greater stability
- Example: α particles in ITER
- Higher β_{α} leads to greater stability
- Isotropic f is a good approx.
- Model ω_{ϕ} profile linear in ψ

E.P.s: Slowing-down
$$f(\varepsilon, \Psi) = \frac{C(\Psi)}{\varepsilon^{\frac{3}{2}} + \varepsilon_c^{\frac{3}{2}}}$$

Required (missing) bootstrap drive for NTM onset better correlated with rotation shear than rotation magnitude

- Rotation variation via n = 1 or 3 applied field
 - Operational space fully spanned up to locked mode limits
- No measureable trend vs. rotation
- Weak positive correlation with normalized rotation shear
 - Lowest/highest thresholds at low/high rotation shear
 - 2d fit vs rotation & rotation shear offers little improvement
 - Consistent with prior results (S.P. Gerhardt, et al., 2008)

XP915: R. Buttery

Initial VALEN tests of multi-mode time evolution - toroidally rotating n = 1 applied field

Used to determine if eigenmodes will track phase of n = 1 applied field, lock to the plates/vessel, change in relative amplitude

Stronger non-resonant braking at increased T_i

Multi-energy soft X-ray measurements consistent with mode being a driven RWM

TF7

light

0 NSTX

Multi-mode VALEN code (RWM control) testing successfully on ITER Scenario 4 cases (reversed shear)

Illustration of Bⁿ(θ , ϕ) on plasma surface from mmVALEN for ITER Scenario 4, $\beta_N = 3.92$

