

Supported by

Electron gyro-scale fluctuations in NSTX plasmas

David R. Smith

UW-Madison

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

with E. Mazzucato¹, S. M. Kaye¹, W. Lee², H. K. Park², C. W. Domier³, N. C. Luhmann, Jr.³, and the NSTX Research Team

¹PPPL, ²POSTECH, ³UC-Davis

Plasma Physics Seminar UW-Madison February 15, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA.** Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep U Quebec

Outline

- Turbulence and transport in NSTX
- The NSTX collective scattering system
- Analysis tools
 - Ray tracing calculations
 - Linear gyrokinetic calculations
- Fluctuation measurements and analysis
 - Enhanced fluctuations and the ETG critical gradient
 - Reduced fluctuations, ETG growth rates, and E×B flow shear
 - Fluctuations and transport
 - Fluctuation magnitudes and k-spectra
- Summary

Outline

• Turbulence and transport in NSTX

- The NSTX collective scattering system
- Analysis tools
 - Ray tracing calculations
 - Linear gyrokinetic calculations
- Fluctuation measurements and analysis
 - Enhanced fluctuations and the ETG critical gradient
 - Reduced fluctuations, ETG growth rates, and E×B flow shear
 - Fluctuations and transport
 - Fluctuation magnitudes and k-spectra
- Summary

NSTX is well-suited to investigate the connection between ETG turbulence and electron thermal transport

- Turbulence & transport in NSTX
 - Large E×B flow shear with NBI → inferred ITG/TEM suppression (no direct evidence) → ion thermal transport is near neoclassical in H-mode (Kaye et al, NF, 2007 & PRL, 2007)
 - Electron thermal transport remains anomalous \rightarrow what is the mechanism?
- Electron temperature gradient (ETG) turbulence
 - ETG modes can be linearly unstable with growth rates exceeding E×B flow shear rates
 - NL GK simulations predict experimentallyrelevant electron thermal transport for \$ > 0.4 for typical tokamak parameters (Nevins et al, PoP 2006)
 - Electron gyro-scale fluctuations $\rightarrow k_{\perp} \rho_e \leq 1$
 - Propagate in electron diamagnetic direction

ETG turbulence can generate greater normalized transport than ITG turbulence due to a weak secondary instability

ETG and ITG modes are isomorphic for linear, electrostatic dynamics with adiabatic background species

$$\gamma_{etg} \sim \frac{v_{te}}{\sqrt{RL_{Te}}} \qquad \chi_e^{gB} \equiv \frac{\rho_e^2 v_{te}}{L_{Te}}$$

For nonlinear ETG dynamics, the ion response weakens the secondary Kelvin-Helmholtz instability and ρ_e -scale zonal flows

Consequently, ETG turbulence can saturate at higher normalized amplitudes and generate greater normalized transport than ITG turbulence for typical tokamak parameters

$$\frac{\chi_i^{itg}}{\chi_i^{gB}} \le 2 \qquad \qquad \frac{\chi_e^{etg}}{\chi_e^{gB}} \le 1$$

5

F. Jenko et al, PoP 2001 W. Nevins et al, PoP, 2006

Outline

- Turbulence and transport in NSTX
- The NSTX collective scattering system
- Analysis tools
 - Ray tracing calculations
 - Linear gyrokinetic calculations
- Fluctuation measurements and analysis
 - Enhanced fluctuations and the ETG critical gradient
 - Reduced fluctuations, ETG growth rates, and E×B flow shear
 - Fluctuations and transport
 - Fluctuation magnitudes and k-spectra
- Summary

Collective scattering measures density fluctuations with spatial and k-space localization

3-wave coupling among 2 high-frequency EM waves and 1 low-frequency plasma fluctuation

k-matching: $\vec{k_s} = \vec{k_i} + \vec{k}$ Bragg condition: $k = 2k_i \sin(\theta_s/2)$ k-space resolution: $\Delta k = 2/a$ frequency matching: $\omega_s = \omega_i + \omega$ high-freq EM waves: $\omega_i, \omega_s >> \omega$

The NSTX collective scattering system measures fluctuations up to $k_{\perp}\rho_e < 0.6$

- 280 GHz collective scattering system
- Five detection channels
 - k_{\perp} spectrum for up to five discrete k_{\perp}
 - $k_{\perp}\rho_e < 0.6$ and $k_{\perp} < 20$ cm⁻¹
 - $-\omega$ spectrum from time-domain sampling
 - 7.5 MS/s \rightarrow f \leq 3.25 MHz
 - Heterodyne detection
- Tangential scattering
 - Beams nearly on equatorial midplane
 - Sensitive to radial fluctuations
 - Toroidal curvature enhances spatial localization along probe beam,
 ΔL ≈ 10 cm
 - Radial localization, ΔR ≈ ±2.5 cm
- Steerable optics
 - Scattering volume can be positioned throughout the outer half-plasma

Steerable optics enable good radial coverage; toroidal curvature enhances spatial localization

E. Mazzucato, POP, 2003 E. Mazzucato, PPCF, 2006

Scattering system hardware

- BWO source
 - ~200 mW at 280 GHz
- Overmoded, corrugated waveguide
 - low-loss transmission
 - delivers ~100 mW for PB
- Probe & receiving beams
 - quasi-optically coupled with
 5 cm dia. waist
- Heterodyne receiver
 - five channels
 - two mixing stages
 - quadrature detection with
 7.5 MHz bandwidth
 - reference signal from BWO

D. R. Smith et al, RSI, 2008

Outline

- Turbulence and transport in NSTX
- The NSTX collective scattering system
- Analysis tools
 - Ray tracing calculations
 - Linear gyrokinetic calculations
- Fluctuation measurements and analysis
 - Enhanced fluctuations and the ETG critical gradient
 - Reduced fluctuations, ETG growth rates, and E×B flow shear
 - Fluctuations and transport
 - Fluctuation magnitudes and k-spectra
- Summary

Ray tracing calculations optimize configurations and provide measurement parameters

Measurement parameters

	Ch. 2	Ch. 3	Ch. 4	Ch. 5
r/a	0.27	0.28	0.29	0.30
d _{min} (cm)	0.1	0.1	0.1	0.1
k _∥ (cm⁻¹)	0.1	0.0	0.2	0.0
k _r (cm⁻¹)	6.9	11.0	14.6	17.8
k _θ (cm⁻¹)	-1.6	-3.4	-4.4	-5.5
k_{\perp} (cm ⁻¹)	7.1	11.5	15.2	18.6
k _θ /k _r	0.23	0.30	0.30	0.31
$k_{\perp} \rho_{\rm e}$	0.23	0.38	0.51	0.62
$k_{\perp} \rho_s$	14	22	30	37
k _T (cm ⁻¹)	-0.4	-0.7	-1.2	-1.3
f _D (MHz)	-1.0	-1.8	-3.0	-3.3

Alignment

Ion/electron drift direction

ETG scale

Doppler shift

Linear GS2 calculations provide ETG growth rates and critical gradients

GS2 is an initial value, flux tube code that evolves the gyrokinetic Vlasov-Maxwell equations

February 15, 2010

Outline

- Turbulence and transport in NSTX
- The NSTX collective scattering system
- Analysis tools
 - Ray tracing calculations
 - Linear gyrokinetic calculations
- Fluctuation measurements and analysis
 - Enhanced fluctuations and the ETG critical gradient
 - Reduced fluctuations, ETG growth rates, and E×B flow shear
 - Fluctuations and transport
 - Fluctuation magnitudes and k-spectra
- Summary

Toroidal rotation from NBI (co-I_p) produces a Doppler shift in fluctuation spectra toward the ion diamagnetic direction

🔘 NSTX

Enhanced fluctuations observed in core region of high-Te L-mode plasma

5.5 kG, 600 kA, 1.2 MW HHFW, R=119±2 cm, r/a≈0.28

Enhanced fluctuations occur when Te gradient is comparable to the ETG critical gradient

February 15, 2010

Enhanced fluctuations observed at mid-radii in NBI-heated H-mode plasma

4.5 kG, 700 kA, 4 MW NBI, R=133±2 cm, r/a≈0.55

Near ETG marginal stability, fluctuation amplitudes decrease when the E×B shear rate exceeds the ETG growth rate

D. R. Smith et al, PRL, 2009

E×B shear rate is larger at higher B_T, yet enhanced fluctuations are still observed

5.5 kG, 700 kA, 4 MW NBI, R=133±2 cm, r/a≈0.55

Near ETG marginal stability, fluctuation amplitudes decrease when the ETG growth rate drops below the E×B shear rate

D. R. Smith et al, PRL, 2009

February 15, 2010 21

Fluctuation amplitudes decrease at higher B_T with similar E×B shear rates, ETG growth rates, and ∇ Te

Note that the 4.5 kG case exhibits the largest difference between E×B shear rates and ETG growth rates.

D. R. Smith et al, PoP, 2009

Observation suggests no simple relation between measured fluctuation amplitude and transport

D. R. Smith et al, PoP, 2009

Again, electron thermal diffusivity decreases when fluctuation amplitudes increase

D. R. Smith et al, PoP, 2009

Fluctuation magnitudes and wavenumber spectral exponents

5.5 kG discharges 124885 @ R=111-115 cm 124889 @ R=131-135 cm

 $|\delta n_e(k_r)/n_e|^2 \propto k_r^{-\alpha}$ k - spectrum :

Fluctuation magnitudes are in order-of-magnitude agreement with NL GK simulations for typical tokamak parameters

- Spectral exponent is α = 4.6 near magnetic axis and α = 2.8 at midradius (Δα ≈ 0.5–0.6)
- ETG simulations with GYRO predict $|\delta n_e(k_r)/n_e|^2 \sim 10^{-10} 10^{-11}$ for $k_r \rho_s \sim 10 20$, but spectral resolution is about 10× greater; synthetic diagnostics needed (R. Waltz et al, PoP 2007) D. R. Smith et al, PoP, 2009

February 15, 2010

Similar magnitudes and exponents at lower TF

4.5 kG discharges 124887 @ R=111-115 cm 124888 @ R=131-135 cm

Ideas to extend high-k measurements and analysis

- Nonlinear gyrokinetic simulations
 - Saturation amplitudes
 - Turbulence spreading into core
 - Synthetic diagnostics
- ETG isotropy in $k_r k_{\theta}$ plane
 - Adjust vertical position of scattering volume to vary k_r/k_{θ}
 - Radial streamers
 - Unique capability for NSTX
- Mode coupling coefficients
 - Mode coupling is necessary for turbulence
 - Calculate mode coupling coefficients with bicoherence analysis (see Itoh et al, PoP, 2005)
 - Unique capability for NSTX
- Low-k fluctuation measurements with BES
 - Coupling between low-k ITG and high-k ETG
 - ETG saturation via ion-scale zonal flows

Summary

- In L-mode plasmas, enhanced fluctuation amplitudes occur when ∇T_e is comparable to or exceeds the ETG critical gradient
- At mid-radii in H-mode plasmas with large toroidal rotation, fluctuation amplitudes decrease when the E×B shear rate exceeds the ETG growth rate
- For similar ∇T_e, ETG growth rates, and E×B shear rates, fluctuation amplitudes decrease at higher B_T at mid-radii in H-mode plasmas
- No simple relation between transport and measured fluctuation amplitudes
- Fluctuation magnitudes, |δn_e(k_r)/n_e|² ~ 10⁻⁹ 10⁻⁸, are within order-of magnitude agreement with NL GK simulations for typical tokamak parameters
- Wavenumber spectral exponents are in the range $\alpha = 2.8 4.6$ in H-mode plasmas

For more information...

- Instrument papers:
 - D. R. Smith et al, RSI 79, 123501 (2008)
 - D. R. Smith et al, RSI 75, 3840 (2004)
- Physics results:
 - D. R. Smith et al, PoP 16, 112507 (2009)
 - E. Mazzucato et al, NF 49, 055001 (2009)
 - D. R. Smith et al, PRL 102, 225005 (2009)
 - E. Mazzucato et al, PRL 101, 075001 (2008)
- Dissertation and additional information at website:
 - http://homepages.cae.wisc.edu/~drsmith

