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Outline 

•  The magnetic fusion plasma edge 
–  Diverted tokamaks, heat and particle flux 
–  Sheath heat transmission 

•  NSTX and edge measurement capabilities 
–  NSTX overview 
–  The Liquid Lithium Divertor and associated diagnostics 

•  Diagnostics for heat flux analysis 
–  Dense Langmuir probe array 
–  Dual-band IR camera 

•  Heat flux data and analysis 
–  Data acquistion 
–  Analysis methods 
–  Measurements of sheath heat transmission 

•  Conclusions and Discussion 
•  Future work 
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The diverted tokamak 

•  The divertor is a magnetic 
field geometry that directs 
particle flux to target plates 
rather than using device walls 
as limiting structures 

•  Allows for control of location 
of particle interaction: isolates 
from main plasma and can be 
located near pump ducts for 
ease of exhaust 

•  Drawbacks: high localized 
heat flux magnitudes; in ITER, 
where average heat flux 
magnitudes can be expected 
to be >10 MW/m2, with peak 
values from 20-50 
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Heat and particle flux at the divertor 
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•  All power input into 
plasma (ohmic, NB, RF) 
must be exhausted by 
particles or radiation 

•  Particles escaping core 
confinement enter the 
scrape-off layer (SOL), 
and are transported to 
divertor surfaces 

•  Wall-interactions are 
localized, but can have 
far-reaching 
consequences for the 
plasma 
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Recycling – not the good kind 

•  Graphite, a traditional 
tokamak wall material, is an 
excellent heat handler, but a 
poor particle sink  

•  Incoming particles will 
saturate the wall tiles, and 
subsequent incoming ions will 
lead to ejection of cold 
neutrals 

•  Recycling coefficients for 
graphite can exceed 98% 
when saturated 

•  Recycled neutrals re-enter the 
SOL, and consume energy as 
the are re-ionized, increasing 
edge density and lowering 
edge temperature 
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The plasma sheath links the wall to the main plasma 

•  An electrostatic sheath forms 
around all plasma-facing 
surfaces 

•  All particles impacting the 
divertor surface must pass 
through the sheath 

•  The surface is linked to the 
SOL through the sheath, and 
the SOL parameters set the 
boundary conditions for the 
bulk plasma 

•  Modeling efforts can 
quantitatively establish this 
relationship, but require 
knowledge of how power is 
transmitted through the sheath  

6 

Stangeby, ibid.

Main 
plasma

Sheath

Wall

SOL

Radial
transport

Parallel
transport

Sheath heat
transmission Recycling



Sheath Heat Transmission with Lithium Coatings in NSTX - Kallman 7/18/2011 

Classical picture of sheath heat transmission relies on 
several key assumptions 

•  The sheath heat transmission coefficient, γ, links the material walls 
with the plasma 

•  SOL electrons are modeled as a Maxwellian distribution, while the 
ions are treated as a drifting Maxwellian moving at the sound speed  

•  The net heat flux to the sheath is the contribution from these 
populations and is given by: q = γkBTeΓ 

•  The classical value of γ is ~ 6.9 if Te = Ti, and δe = 0 
•  Does the experimental sheath heat transmission match the classical 

value, or does an ‘effective’ value need to be used? 
•  Requires multiple diagnostics for measurement, good cross-

calibration abilities 

7 

€ 

γ = 2.5 Ti
Te

+
2

1−δe
− 0.5ln 2π me

mi

 

 
 

 

 
 1+

Ti
Te

 

 
 

 

 
 

2
1−δe( )2

 

 
 
 

 

 
 
 



Sheath Heat Transmission with Lithium Coatings in NSTX - Kallman 7/18/2011 

Measurements necessary for determining sheath heat 
transmission 

•  Heat flux is given by: q = γkBTeΓ 
•  The necessary quantities are therefore: 

–  a direct measurement of the heat flux to the surface, q 

–  the electron temperature, Te 

–  the particle flux to the surface, Γ 

•  The heat flux measured via IR camera readings 

•  Electron temperature and particle flux determined from 
Langmuir probe measurements 

•  Empirical value of γ given by ratio of IR and Langmuir probe 
measurements 

8 
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The National Spherical Torus eXperiment (NSTX) 
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The NSTX Facility 
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The Liquid Lithium Divertor (LLD) 

•  Lithium research in NSTX 
has produced many 
favorable results linked to 
reductions in recycling1 

•  This motivated the 
installation of a substrate 
specifically designed for 
liquid lithium surfaces 

•  A suite of diagnostics was 
installed to support this 
research, making possible 
the measurements 
necessary to determine 
sheath heat transmission 
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1M. Ono. Fus. Eng. and Design. 85:6 (2010)
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•  99 individual electrodes arrayed as 
33 rows of triple probes, providing 
density and temperature on a 
continuous basis 
−  can also be operated as swept or 

SOL current probes 
−  triple probes acquire at 250 kHz, 

swept at 500 Hz 

•  Probes based on MAST design 
utilizing a Macor cassette of closely 
spaced probes embedded in a 
carbon tile 

–  tile mount with radial coverage of 
divertor  

–  electronics provided by UIUC  
–  described in RSI papers1 

•  Close spacing of probes provides better 
resolution in high-gradient (strike point) regions 

–  each probe covers 3 mm radially, including spacing 
–  probe heads are 2mm radial x 7mm toroidal 

rectangles 

Triple Langmuir probe array addresses edge diagnostic 
needs 

10 cm
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1Kallman; Jaworski, RSI (2010); 81:10 
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Heavy lithium depositions on divertor surfaces present 
materials challenge 

•  Graphite chosen as probe material due to ease of machineability 
and previous experience 
–  previously installed (graphite) Langmuir probes showed no appreciable 

loss of signal with heavy lithium loading – but LLD operations 
necessitated large lithium depositions 

•  Elemental lithium is conductive, providing a possible path for 
shorting electrodes to each other or ground 

•  Lithium also reacts with carbon in the presence of oxygen 
(residually present in NSTX) to form lithium carbonate, or reacts 
with water to form LiOH, both insulators 
–  beneficial in avoiding grounding and direct conduction, but can provide 

barrier for incident electrons and ions  

•  Strike point ablation can remove evaporated lithium, but large 
integral effect of continuous loading depositions was unknown 
–  comparison of signal strength throughout run year showed that signal 

magnitude did not decrease appreciably  

13 
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Cassette design allows for ease of probe mounting and  
includes channels for wire transport 

•  Boron nitride cassette features interlocking segments that allow for individual probe 
seating and securement 

–  screwless design reduces mechanical stresses on the probes 

•  Wiring channels allow for the wires from each group of probes to exit independently 
–  wires exit on sides of edge probes and through base of central probes 
–  graphite cement used to attach wires to probes; near-identical thermal properties reduce 

risk of loss of contact due to material expansion 
–  Fortafix adhesive used to provide strain relief for wires exiting cassette 
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Probe design includes features to protect underlying 
surfaces and uses novel materials to facilitate assembly 

•  Boron nitride offers greater lithium compatibility than original macor design 
•  Probes are shaped so as to minimize direct exposure of BN to plasma or 

lithium  
–  probe bend prevents direct line of sight for lithium or plasma down to cassette 
–  probe widening at top allows for smaller gaps and greater shielding of surfaces below 
–  electrode material is vacuum compatible HK-6 Tokai graphite  
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Probe array is located near LLD to provide local 
measurements 

•  Probe array begins just outboard of  
lower divertor gap and extends 
over roughly 1/3 of LLD radially 

•  Provides local measurements for 
plasma incident on both carbon 
and lithium PFCs  

•  Probe array engineering 
requirements lead to surface 
geometry different from 
surrounding structures 
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Langmuir probe data acquisition 

•  Each electrode is attached to a single insulated copper conductor by means of 
graphite cement 

•  Wires run to a vertical ‘organ pipe’ where they exit the vessel through a vacuum-
feedthru 

•  Wire bundles run to a diagnostic rack where they enter a patch panel, allowing for fast 
reassignment of electrodes to sensor sets 

•  Initial package from UIUC provides for 8 triple-probe sets and 4 swept probes 
•  Triple probes biased through isolated 48V DC power supply 

–  acquire floating potential, as well as current and voltage on one of the electrodes 

•  Single probes swept to -40/+28V using a 200 W Kepco BOP with a sinusoidal 
waveform 

–  acquire current and voltage on electrode only 

17 
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Swept probe signal interpretation 

•  Electron current flow to probe tip 
is given as a Boltzmann 
distribution dependent on bias 
voltage, while ions are free-
streaming at the sound speed 

•  Four traces (two periods) are 
averaged to account for 
fluctuations (250 Hz effective) 

•  A 3-parameter least-squares fit is 
performed to determine Isat, Te, 
and Vf 

•  Several fits are performed on 
each trace, varying the cutoff 
voltage to stay in the exponential 
region 
–  resulting temperature is normalized 

by the chi-square of each fit range 
to produce error bars 

•  Once a temperature is fit, density 
can be obtained from the 
saturation current equation 
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Triple probe interpretation 

•  Three individual electrodes can be utilized to 
give instantaneous temperature readings 

–  two probe tips offset by a DC voltage (48 V) 
referenced to a third tip operating at floating potential 

–  the two biased tips are offset around the floating 
potential so that there is no net current flowing (i.e. 
electron current = ion current) 

•  Using the same assumptions about the electron 
distribution as the swept probes, setting I1 = -I2 
yields an equation for the electron temperature 

•  If bias voltage is sufficiently above electron 
temperature, measured current is generally ion 
saturation 

•  Density can be obtained in the same manner as 
swept probes 

•  Provides temperature and density 
measurements at 250 kHz, but median filtering 
smoothes noise and reduces effective frequency 
to ~400 Hz  
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Dual-band IR camera compensates for emissivity changes in 
the lithium surface 

•  ORNL collaboration to take 
fast camera IR 
measurements at 2 
wavelengths at 1.6 kHz 
–  4-6 μm and 7-10μm 
–  ratio of signals cancels out 

emissivity-dependence in 
radiated power 

•  In-situ calibration using 
heated LLD allows for 
precise temperature 
measurements 

•  2D heat-conduction code 
THEODOR determines 
incident heat flux necessary 
for observed temperature 
change 
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Raw pixel data is mapped to NSTX geometry 
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Different toroidal locations, surface geometries necessitate 
mapping of flux coordinates 

•  The probes are approximately 180° 
away from the IR viewing region and 
have a unique surface geometry 

•  FARO arm measurements are 
utilized to provide an accurate 
topographical map of the surface at 
both toroidal positions 

•  The use of magnetic equilibrium 
reconstructions in the EFIT code 
(Grad-Shafranov solver) allows for 
the determination of polodial flux at 
any point in the device 

•  Using the assumption of toroidal 
axisymmetry, two positions on the 
same flux surface experience 
identical plasma conditions 

•  Using a fixed probe radius, the flux at 
each camera point is compared to 
that at the probe at each time point 
and the closest match is obtained 

–  generally changes effective radius by 
2-3 cm, which is significant in high-
gradient regions 
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Heat flux and Langmuir probe radial profiles show good 
qualitative agreement 
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Sample dataset from probe shows heat flux evolution 
agreement with IR 
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Data selection criteria 

•  Discharges must have the strike point position on the probe array 
to ensure sufficient signal 

•  Quiescent periods chosen to minimize high transient fluxes due to 
ELMs 
–  generally restricted time windows to 100-200 ms 

•  IR camera data not available for all shots; sufficient signal desired 
for optimal comparison 

•  2D heat flux model for IR data uses thin lithium film on bulk thermal 
conductor 
–  works better for carbon tiles, motivates chord selection discussed above 

•  Only looked at signals where floating potential was close to ground 
–  floating potential crosses zero at strike point, so this ensures high signal 

in the relevant region 
–  mitigates effects of non-zero floating potential on γ 
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Case study: combine 3 similar discharges for good statistics 

•  Selection criteria above limit the 
number of useable data points for 
each discharge 

•  100-150ms time window limits to 
approximately 25 points per single 
probe and 50 points per triple probe 

•  Floating potential criteria further 
eliminates data points, sometimes 
excluding probes altogether 

•  Signals excluded if low strength or if 
probes exhibited intermittency/
shorting issues 

•  All 4 single probes kept, but only 4 of 
7 triple probe signals included 

•  Results from three discharges 
combined to give best possible 
statistics with remaining data with 
good confidence interval   

26 
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Aggregate data from several shots show deviation from 
classical predictions 
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Distribution of measured values of γ inadequately described 
by Gaussian statistics 

28 

Mean = 3.24
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Weighted average method shows that γ ~ one third of 
classical value 
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Conclusions and discussion (I) 

•  New diagnostic capabilities allow for precision edge 
measurements – an area traditionally neglected  

•  High density Langmuir probe array used in conjunction with 
IR camera data to successfully calculate sheath heat 
transmission for the first time in NSTX 

•  Good statistics obtained by overlaying multiple shots with 
similar profiles 

•  Sheath heat transmission coefficient is measured to be 2.49 
+/- 0.04 

•  This value is about one third of the classical value, so what 
accounts for the discrepancy? 
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Discussion (II) 

•  Previous measurements of γ 
have trended lower as well 

•  Lithium can alter basic picture 
–  changes to temperature ratio 
–  impurity accumulation/suppression 
–  collisionality 

•  Conception of γ comes from  
fluid picture of plasma edge in 
thermodynamic equilibrium 
–  does lithium alter the fundamental 

physics by changing collisionality? 

31 

J. Marki et al. Journal Nuc. Mat. 363-365 (2007)

Present
result



Sheath Heat Transmission with Lithium Coatings in NSTX - Kallman 7/18/2011 

Future research ideas 

•  Link edge heat transport regimes to lithium loading; explicit 
study with different amounts/quality of lithium surfaces 

•  Build/install diagnostics to measure edge ion temperature 
and impurity levels directly 

•  Test fluid picture with edge modeling; match conditions at 
probes to mid-plane diagnostics 

•  Develop and employ kinetic modeling tools with empirical 
input if fluid picture proves inaccurate 

32 
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Raw temperature and saturation currents used 
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Mike Jaworski’s measurements of kinetic effects in NSTX 
SOL 

• 35

• Langmuir probes with non-local 
interpretation infer non-Maxwellian 
features in EVDF 

• Preliminary fluid code run indicates SOL is at marginal  

• collisionality even for High-recycling PFC 

  OEDGE = Onion-Skin-Method(OSM) + EIRENE + DIVIMP Edge code 
  OSM assumes single fluid equations 

  Collisionality calculated based on distance, s, from PFC along field-line 

• Courtesy of M. Jaworski  


