

Supported by

Recent progress in transport and turbulence research at NSTX

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Washington **U Wisconsin**

Walter Guttenfelder¹, S.M. Kaye¹, J.L. Peterson¹, Y. Ren¹, D.R. Smith², H. Yuh³ and the NSTX Research Team

¹PPPL, ²UW-Madison, ³Nova Photonics Inc.

Plasma Conference 2011 Kanazawa, Japan Nov. 22-25, 2011

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA. Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

NSTX accesses a broad range of parameter space to address many turbulence and transport issues

- Low aspect ratio, high β (high ∇P), and strong E×B flow shear in NSTX stabilize "traditional" electrostatic low-k turbulence, such as Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM)
- Ion thermal transport is close to neoclassical (collisional) in NSTX H-modes
 → electron and ion thermal transport is largely decoupled
- With relatively small magnetic field Electron Temperature Gradient (ETG) turbulence can cause significant transport at ρ_{e} -scales (high-k)

→ desire for high-k turbulence measurements to correlate with electron transport and validate with nonlinear ETG simulations

- Achievable range of $\beta_T \le 40\%$ can also lead to significant EM contribution \rightarrow micro-tearing turbulence can cause electron transport through magnetic flutter
- Must still consider low-k turbulence, for example in L-mode (ITG/TEM) and in H-mode pedestal region (ITG/TEM/KBM)
 - \rightarrow desire for large scale (low-k) turbulence measurements such as BES

- First nonlinear gyrokinetic simulations of micro-tearing turbulence for "high beta" NSTX H-mode plasmas
- Parametric dependence of high-k turbulence measured by a microwave scattering diagnostic in "low beta" plasmas
- First low-k turbulence measurements from a newly implemented BES diagnostic
- Summary

See website for recent APS presentations:

http://nstx.pppl.gov/DragNDrop/Scientific_Conferences/APS/APS-DPP_11/

- Ion transport is neoclassical, consistent with strong toroidal flow and flow shear
- What is the cause of anomalous electron thermal transport?
- Will favorable τ_E scaling hold at lower v_* envisioned for next generation ST (high heat flux, CTF, ...)?

Microtearing modes found to be unstable in many high v_{*} discharges

- Microtearing dominates over r/a=0.5-0.8, $k_{\theta}\rho_s$ <1 (n≈5-70)
- Real frequencies in electron diamagnetic direction, $\omega \approx \omega_{*e} = (k_{\theta}\rho_s) \cdot (a/L_n + a/L_{Te}) \cdot (c_s/a)$
- ETG mostly stable due to larger $Z_{eff} \approx 3$, $(R/L_{Te})_{crit,ETG} \sim (1+Z_{eff}T_e/T_i)$

Linear GYRO simulations [Candy & Waltz, Phys. Rev. Lett. (2003); https://fusion.gat.com/theory/Gyro] with kinetic ions and electrons, fully electromagnetic, collisions, local general equilibrium

Microtearing modes found to be unstable in many high v_{*} discharges

- Microtearing dominates over r/a=0.5-0.8, $k_{\theta}\rho_s$ <1 (n≈5-70)
- Real frequencies in electron diamagnetic direction, $\omega \approx \omega_{*e} = (k_{\theta}\rho_s) \cdot (a/L_n + a/L_{Te}) \cdot (c_s/a)$
- ETG mostly stable due to larger $Z_{eff} \approx 3$, $(R/L_{Te})_{crit,ETG} \sim (1+Z_{eff}T_e/T_i)$
- KBM competes farther out (r/a≥0.8) where α_{MHD} =-q²R β' much larger (larger q, a/L_n)

Linear GYRO simulations [Candy & Waltz, Phys. Rev. Lett. (2003); https://fusion.gat.com/theory/Gyro] with kinetic ions and electrons, fully electromagnetic, collisions, local general equilibrium

A distinguishing feature of the microtearing mode is the nonmonotonic dependence on $v^{e/i}/\omega$

- Peak γ occurs for $v^{e/i}/\omega = Z_{eff} v_{ei}/\omega \sim 1-6$, similar to slab calculations (Gladd et al., 1980)
- γ decreases with v_e in experimental range \rightarrow qualitatively consistent with observed confinement scaling

* Guttenfelder et al., Scaling of linear microtearing stability for a high collisionality NSTX discharge, submitted to Phys. Plasmas (Oct, 2011)

Predicted nonlinear transport comparable to experiment, scales with v_e similar to experimental confinement scaling^{*}

- As transport drops, a/L_{Te} will increase (for fixed heat flux), at some point ETG (TEM?) should become important
- This transition likely to determine limit of "favorable" v_* scaling

* Guttenfelder et al., APS-DPP invited talk TI2.06, Salt Lake City (2011)

Predicted transport "stiff" with ∇T_e , susceptible to suppression via E×B shear

- Complicates simple interpretation from $\chi_{e,sim} \sim v_e^{1.1}$ scaling
- Useful to characterize scaling of threshold gradient
- Transport reduced when increasing γ_E to local experimental value, partially recovered with increase in ∇T_e

~98% of transport due to magnetic "flutter" contribution

NSTX has studied electron transport for a range of beta and collisionality

- Microtearing exhibits a threshold in β_e (or a/L_{Te}) that depends on v_{ei} , Z_{eff}, etc...
- Distinguishes earlier scaling studies (Kaye, 2007) at higher beta compared to more recent studies (Ren, 2011)

• Following studies investigate ETG turbulence at "low β_e " where microtearing is predicted to be stable

Overview

- Motivation
 - Improve understanding of core anomalous <u>electron</u> thermal transport in NSTX
 - Attempt to validate with turbulence simulations
- First nonlinear gyrokinetic simulations of micro-tearing turbulence for "high beta" Hmode plasmas
 - Predicts experimental level of electron thermal transport
 - Scaling of transport with collisionality ($\chi_{e,sim} \sim v_e$) consistent with confinement ($\Omega_i \tau_E \sim v_*^{-0.8}$)
- Parametric dependence of high-k turbulence measured by a microwave scattering diagnostic in "low beta" plasmas
 - Collisionality dependence of high-k turbulence in H-mode
 - Density gradient stabilization of ETG turbulence in H-mode, partially validated with nonlinear simulations
 - Suppression of ETG turbulence in reverse shear L-mode plasmas with e-ITB, partially validated with non-linear simulations
- First low-k turbulence measurements from a newly implemented BES diagnostic
 - Decrease in low-k turbulence from L-H mode transition, from edge to core
 - Poloidal correlation lengths in the edge pedestal region correlated with q, s⁻¹, ∇ n
- Summary

High-k microwave scattering system capable of measuring electron-scale turbulence

More recent experiment to study v_{*_e} scaling of electron scale turbulence using high-k scattering

- Factor ~2.5 change in v_{*e} ; local ρ_e , β_e , q_{95} are well matched around high-k measurement region (R=130-140 cm)
- Confinement scaling Ω_iτ_E~v^{*-0.82}, similar to previous scaling Ω_iτ_E~v^{*-0.95}

- High-k turbulence intensity decreases with increasing ν_{\star_e}
- Trend holds at all k⊥ρ_s except for one case where local E×B shear is ~2× larger

* Ren et al., APS-DPP invited talk TI2.02, Salt Lake City (2011)

Local nonlinear ETG simulations show large deviation from experimental transport

- In these lower beta discharges ETG is locally unstable (no microtearing)
- Predicted heat flux much smaller than experiment
- Can not be accounted for by sensitivity in a/L_{Te}

Local nonlinear ETG simulations show weak collisionality dependence

- No dependence of predicted ETG transport on v_e
- Can not explain confinement scaling through ETG dependence on ν_e alone

Profile variations lead to significant variation in local transport predictions

- Radial variation in other parameters (notably a/L_n, q & s) cause dramatic change in predicted transport over high-k measurement region (ΔR~4 cm)
- Large discrepancy remains for the low collisionality shot
- Match with experimental Q_e found at inner radii for the high collisionality shot

- Pursuing "global" ETG simulations with profile variations
- ITG also found to be unstable at different radii with $\gamma_{lin} > \gamma_E \rightarrow$ ion scale (~7 ρ_i) turbulence spreading may also be important

Overview

- Motivation
 - Improve understanding of core anomalous electron thermal transport in NSTX
 - Attempt to validate with turbulence simulations
- First nonlinear gyrokinetic simulations of micro-tearing turbulence for "high beta" Hmode plasmas
 - Predicts experimental level of electron thermal transport
 - Scaling of transport with collisionality ($\chi_{e,sim} \sim v_e$) consistent with confinement ($\Omega_i \tau_E \sim v_*^{-0.8}$)
- Parametric dependence of high-k turbulence measured by a microwave scattering diagnostic in "low beta" plasmas
 - Collisionality dependence of high-k turbulence in H-mode
 - Density gradient stabilization of ETG turbulence in H-mode, partially validated with nonlinear simulations
 - Suppression of ETG turbulence in reverse shear L-mode plasmas with e-ITB, partially validated with non-linear simulations
- First low-k turbulence measurements from a newly implemented BES diagnostic
 - Decrease in low-k turbulence from L-H mode transition, from edge to core
 - Poloidal correlation lengths in the edge pedestal region correlated with q, s⁻¹, ∇ n
- Summary

Using increased density gradient induced by a large ELM as a tool for local turbulence studies

- After the ELM event:
 - Large density gradient developed in the high-k measurement region.
 - Electron temperature gradient also increases
 - Electron density has only a moderate decrease
 - Electron temperature remains essentially constant
 - No large MHD mode appears before and right after the ELM event

Correlation between reduced measured turbulence intensity and improved plasma thermal confinement*

- Significant decrease in spectral power observed for $k_{\perp}\rho_s \lesssim 10$
- Electron thermal diffusivity is decreased by a factor of ~2 after the ELM event

*Y. Ren et al., PRL 106, 165005 (2011)

Threshold gradients for ETG modes are much higher after the ELM

- Before ELM, ETG is largely unstable
- After ELM, ETG is largely stable

• Stability analysis performed with GS2 code (Kotschenreuther et al., 1995)

Increase in ETG threshold gradient is due to large density gradient

- Before ELM, ETG is largely unstable After ELM, ETG is largely stable

Manually decreasing R/L_{ne} brings down critical gradient as expected from linear theory (e.g. Jenko et al, 2001)

$$(R_0/L_{T_e})_{crit} = \max\{(1 + Z_{eff}\frac{T_e}{T_i})(1.33 + 1.99\hat{s}/q)f(\epsilon, \kappa, \delta, \cdots), 0.8R_0/L_{n_e}\}$$

Stability analysis performed with GS2 code (Kotschenreuther et al., 1995)

Nonlinear ETG simulations reproduce observed dependence of electron transport on density gradient

- Experimental Q_e is found to decrease after the ELM event with large density gradient
- The same trend is found from nonlinear ETG simulations, but does not agree quantitatively

Predicted Q_e sensitive to temperature gradient

- Before ELM, a 20-30% increase in a/L_{Te} is able to match the experimental Q_e
- After ELM, increasing a/L_{Te} by 40% after still cannot match experimental Q_e

Trapped Electron Mode (TEM) destabilized by large density gradient may contribute to transport

- Before ELM, a 20-30% increase in a/L $_{\rm Te}$ is able to match the experimental Q_e
- After ELM, increasing a/L_{Te} by 40% after still cannot match experimental Q_e
- Large TEM-induced transport (~30 MW) is predicted after ELM without E×B shear stabilization
- Using experimental E×B shear almost completely suppresses transport
 - \rightarrow does not require much residual transport to match experimental Q_e

Overview

- Motivation
 - Improve understanding of core anomalous <u>electron</u> thermal transport in NSTX
 - Attempt to validate with turbulence simulations
- First nonlinear gyrokinetic simulations of micro-tearing turbulence for "high beta" Hmode plasmas
 - Predicts experimental level of electron thermal transport
 - Scaling of transport with collisionality ($\chi_{e,sim} \sim v_e$) consistent with confinement ($\Omega_i \tau_E \sim v_*^{-0.8}$)
- Parametric dependence of high-k turbulence measured by a microwave scattering diagnostic in "low beta" plasmas
 - Collisionality dependence of high-k turbulence in H-mode
 - Density gradient stabilization of ETG turbulence in H-mode, partially validated with nonlinear simulations
 - Suppression of ETG turbulence in reverse shear L-mode plasmas with e-ITB, partially validated with non-linear simulations
- First low-k turbulence measurements from a newly implemented BES diagnostic
 - Decrease in low-k turbulence from L-H mode transition, from edge to core
 - Poloidal correlation lengths in the edge pedestal region correlated with q, s⁻¹, ∇ n
- Summary

Electron internal transport barrier (e-ITB) occurs in L-mode with large reverse magnetic shear, s<<0

e-ITB occurs only during reversed shear portion of discharge, even in the absence of E×B shear
 Very low, or bursty, high-k fluctuations in e-ITB

Current is suddenly redistributed by MHD leading to monotonic q profile

 \rightarrow near zero or positive s, larger high-k fluctuations, smaller maximum gradient

2

3

Largest gradients and weak high-k turbulence correlated with largest negative shear

Large negative magnetic shear causes strong upshift in effective non-linear ETG threshold

 Nonlinear threshold much larger than linear threshold for large negative shear in agreement with supercritical ETG gradients observed in experiments

- Nonlinear threshold increases with reverse shear magnitude, s<0
- Magnitude and scaling of predicted transport consistent with experiment

J.L. Peterson, Ph.D. Thesis, PPPL (2011); APS invited talk TI2.03, Salt Lake City (2011)

Overview

- Motivation
 - Improve understanding of core anomalous <u>electron</u> thermal transport in NSTX
 - Attempt to validate with turbulence simulations
- First nonlinear gyrokinetic simulations of micro-tearing turbulence for "high beta" Hmode plasmas
 - Predicts experimental level of electron thermal transport
 - Scaling of transport with collisionality ($\chi_{e,sim} \sim v_e$) consistent with confinement ($\Omega_i \tau_E \sim v_*^{-0.8}$)
- Parametric dependence of high-k turbulence measured by a microwave scattering diagnostic in "low beta" plasmas
 - Collisionality dependence of high-k turbulence in H-mode
 - Density gradient stabilization of ETG turbulence in H-mode, partially validated with nonlinear simulations
 - Suppression of ETG turbulence in reverse shear L-mode plasmas with e-ITB, partially validated with non-linear simulations
- First low-k turbulence measurements from a newly implemented BES diagnostic
 - Decrease in low-k turbulence from L-H mode transition, from edge to core
 - Poloidal correlation lengths in the edge pedestal region correlated with q, s⁻¹, ∇n
- Summary

Beam Emission Spectroscopy (BES) diagnostic recently commissioned, obtained data routinely during FY10-11

- Presently 32 detection channels
- 56 sightlines in radial and poloidal arrays spanning core to SOL
- 2 MHz sampling
- $k_{\perp}\rho_i \le 1.5$ & 2-3 cm spot size
- Field-aligned optics with high throughput (etendue = 2.3 mm²-ster)

*D.R. Smith et al., Rev. Sci. Instrum (2010)

Decrease in low-k turbulence observed at L-H transition from edge to core

R. Fonck, G. McKee, D. Smith, and I. Uzun-Kaymak (UW-Madison) and B. Stratton (PPPL)

Poloidal correlation length (L_c) obtained from BES poloidal array at R=140 cm (r/a \approx 0.8-0.95)

Plasma Conference 2011 - NSTX turbulence and transport (Guttenfelder et al.)

Poloidal L_c in pedestal region are 7-22 cm, appear to be correlated with q, 1/s, ∇n_e

- Poloidal L_c database for ELM-free, MHD-quiescent H-mode contains 130 entries from 29 shots (fixed $B_{T0} = 4.4 \text{ kG}$), in the pedestal region
- Regression analysis attempts to fit scaling of L_c to different parameters, e.g. n_e, T_e, T_i, ∇ (n_e, T_e, T_i), a/L_(ne,Te,Ti), q, ŝ, v, β , etc... $L_C = \overline{L}_C + \sum_{n} \alpha_i^N \frac{x_i - \overline{x}_i}{\sigma_{xi}}$ plasma parameters

scaling coefficient

• Best fits find poloidal L_c increases with q, ∇n_e , decreases with s, T_i , T_e/T_i

D.R. Smith et al., APS-DPP, Salt Lake City (2011)

Summary: NSTX is making progress towards understanding anomalous electron thermal transport

- First nonlinear gyrokinetic simulation of micro-tearing turbulence in NSTX H-mode "high beta" plasmas reproduce magnitude and v_{*} scaling of electron transport
- In "lower beta" plasmas, where microtearing is stable:
 - High-k scattering intensity increases with decreasing v_{*} → ETG appears to be relevant at limited radial locations, doesn't directly account for v_{*} scaling, requires more work to include profile effects, ITG may also be important
 - High-k turbulence stabilized by large density gradient → scaling reproduced by non-linear ETG simulations, TEM may become important at large a/L_{ne}
 - e-ITB occurs at large negative magnetic shear in L-mode plasmas → large nonlinear threshold reproduced by ETG simulations
- The newly implemented BES diagnostic provides first low-k turbulence measurements in NSTX
 - Decrease in low-k turbulence during L-H transition, from core to edge
 - Poloidal correlation lengths increase with q, a/L_n , decrease with s, T_i , T_e/T_i
- Please note, I have not covered many transport and turbulence topics: (1) core impurity and momentum transport, (2) transport driven by energetic particle modes, GAEs, CAEs, (3) many other edge/pedestal/SOL measurements→see NSTX website!

Significant decrease in scattering signal power observed after the ELM

- All five channels saw decreased scattering power after the ELM event
- Interpretation has to take into account the change of wavenumber measured by each channel due to the increase density gradient & refraction after the ELM event

Linear microtearing instability

- High-m tearing mode around a rational q(r₀)=m/n surface (k_{||}(r₀)=0) (Classical tearing mode stable for large m, Δ'≈-2m/r<0)
- Driven by ∇T_e with time-dependent parallel thermal force^{*} \Rightarrow requires e-i collisions

Conceptual linear picture

- Imagine helically resonant (q=m/n) δB_r perturbation
- δB_r leads to radially perturbed field line, finite island width
- ∇T_e projected onto field line gives parallel gradient
- Parallel thermal force $(R_{T\parallel} \sim -\alpha(\omega)n_e \nabla_{\parallel} T_e)$ drives parallel electron current that reinforces δB_r via Amperes's law $k_{\perp}^2 \rho_s^2 \hat{A}_{\parallel} = \frac{\beta_e}{2} \hat{j}_{\parallel}$, $B_r = ik_{\theta}A_{\parallel}$
- Instability requires sufficient ∇T_e , β_e , ν_e , and time dependence (ω) important

*e.g. Hazeltine et al., Phys. Fluids 18, 1778 (1975); Gladd et al., Phys. Fluids 23, 1182 (1980); D'Ippolito et al., Phys. Fluids 23, 771 (1980); M. Rosenberg et al., Phys. Fluids 23, 2022 (1980).

h
$$w = 4 \left(\frac{\delta B_r}{B} \frac{rR}{n\hat{s}}\right)^{1/2}$$

 $\nabla_{||} T_{e0} = \frac{\vec{B} \cdot \nabla T_{e0}}{B} = \frac{\delta B_r}{B} \nabla T_{e0}$

 $\delta B_r \sim \cos(m\theta - n\phi)$

Microtearing Modes Found to be Unstable in High v_{*} Discharge

- Focusing on high- v_* NSTX discharge, part of dimensionless scaling experiments where favorable scaling found $\Omega \tau_{\rm E} \sim v_*^{-0.95}$ [S.M. Kaye et al., Nucl. Fusion 47, 499 (2007)]
- Microtearing dominates $k_{\theta}\rho_s < 1$ (n \approx 5-70) in outer half-radius (r/a=0.5-0.8)
- ETG stable due to higher $Z_{eff}=2.5-3.0$ (R/L_{Te})_{crit,ETG}~(1+ $Z_{eff}T_e/T_i$)
- Microtearing exhibits threshold in $\nabla T_e, \nu_e, \beta_e$
- Growth rates decrease with $v_e < v_{e,exp}$ (consistent with experimental v_* scan)

Linear growth rates ($\gamma \cdot a/c_s$) for NSTX 120968 t=0.56 s r/a=0.6 with B_T=0.35T, I_p=0.7 MA, P_{NBI}=4 MW, n_e \approx 6×10¹⁹ m⁻³, T_e(0)~1 keV

A distinguishing feature of the microtearing mode is the nonmonotonic dependence on $v^{e/i}/\omega$

- Peak γ occurs for $v^{e/i}/\omega = Z_{eff} \cdot v_{ei}/\omega \sim 1-6$, similar to slab calculations (Gladd et al., 1980)
- γ decreases with v_e in experimental range, qualitatively consistent with confinement scaling
- In addition to shifting peak in v^{e/i}/ω, Z_{eff} can enhance instability through shielding potential (from adiabatic ion response, δn_i~-Z_{eff}δφ/T_i)

* Guttenfelder et al., Scaling of linear microtearing stability for a high collisionality NSTX discharge, submitted to Phys. Plasmas (Oct, 2011)

Significant Decrease in Scattering Signal Power Observed After the ELM Event

- ELM event
- However, interpretation has to take into account the change of wavenumber measured by each channel due to the increase density gradient after the ELM event

