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Topics and Preamble 

• Tokamak fundamentals 

• Tokamak stability 

• Confinement and transport 

• DT experiments in TFTR and JET 

• The leap to ITER 

Disclaimer: 

• A single lecture cannot encompass all areas of tokamak physics 

– Tokamaks have been intensely studied for almost 50 years 

• Even within the subset of topics, I have had to be very selective 

Acknowledgements: 

R. Fonck, T. Luce, G. Matthews, J. Menard, H. Qin, J. VanDam 
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Essential Features of the Tokamak 

• Toroidal configuration symmetric about its major axis formed by a 

strong applied toroidal field plus a poloidal field generated by both 

toroidal plasma current and external coil currents 

– The poloidal field is necessary for compensating particle drifts 

– The toroidal field is necessary for plasma stability 

• The configuration need not be symmetric poloidally 

– External poloidal field coils can modify  

the shape of the minor cross-section 

• A tokamak plasma can be described 

by many different coordinate systems 

– relative to the major axis (R, Z, )  

– relative to the minor axis (r, , ) 

– various magnetic coordinates which 

can simplify calculations 
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Tokamak MHD safety factor q 

• q = number of toroidal transits of a field line around the major axis to 

complete one poloidal transit around the minor axis 

• In a stable tokamak plasma, magnetic field lines trace out nested  

flux surfaces each characterized by a poloidal flux  ( Ip), an 

enclosed toroidal flux  ( BT) and value of q 

 

• For magnetohydrodynamic (MHD) stability q must be > 1 everywhere 

• This places an upper bound on the plasma current for a given toroidal 

field, plasma size and cross-section shape 

• A tokamak plasma has a “last closed flux surface” beyond which the 

field lines intersect some material surface 

• In practice, q must be >~2 near the last closed flux surface 


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Tokamak MHD Equilibrium 

• On timescales > Alfvén timescale a/vA, vA = B/(0)1/2, equilibrium is 

determined by static pressure balance 

 J × B = p 

• In a tokamak, axisymmetry reduces this to the 2D “Grad-Shafranov” eqn. 

  D*Y0RJ = -[0R
2dp/dY + FdF/dY]

 where D*YR2 • (Y/ R2) 

  Yis the poloidal flux = RA, (A the magnetic vector potential) 

   p(Y) is the plasma pressure  

   F(Y) the poloidal current = RB, (B the toroidal magnetic field) 

• In principle, there is an infinite number of solutions 

• In practice, the solutions are constrained by experimental data 

– Total plasma current and coil currents 

– External magnetic measurements (fluxes, field components) 

– Internal measurements of plasma pressure and magnetic field 

– Geometry of surrounding structures 

• Important MHD parameter:  = plasma pressure/magnetic pressure (B2/20) 
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Controlling and Shaping the  

Plasma Cross-section in a Tokamak 

• A tokamak requires a major axial (usually vertical) magnetic field to resist 
major radial expansion forces on the plasma 

– Electromagnetic: a current loop tries to maximize its area 

– Hydrodynamic: plasma pressure tries to expand the torus 

• A uniform axial field produces a nearly circular cross-section 

• In modern tokamaks, the equilibrium field is generated by many nearby 
coils to push and pull on the plasma and shape its cross-section 

– Aspect ratio: R0/a (R0: major radius of toroidal axis, a: minor radius on R) 

– Elongation : axial height / width = b/a 

– Triangularity : (inward) displacement of top, bottom points from axis 

• Feedback control of coil currents is needed to maintain desired equilibrium 

Equilibrium control 

in the TCV tokamak 

(EPFL, Lausanne) 
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Creating a Magnetic Separatrix to Produce a 

Divertor in a Tokamak 

• Between two parallel conductors carrying current in the same direction 

there is a magnetic null point: B = 0 

• Through the null there is a surface (separatrix) which separates flux 

surfaces which encircle only one conductor from those that encircle both 

– the null point forms an X-point in a cross-section of the separatrix 

• In a tokamak divertor, a separatrix is formed between the plasma, carrying 

toroidal current, and a poloidal field coil with current in the same direction 

– on the separatrix q   because Bpol  0 

• Particles diffusing from the plasma across this separatrix are then tied to 

field lines which are diverted away from the main plasma 

– these field lines are made to intersect some more distant material surface 

• Divertors were originally incorporated in tokamaks to reduce the influx of 

impurities ejected by plasma impinging on surrounding material surfaces 

– the divertor plate can also be angled to spread the heat over a wider area 

• Divertors are now used primarily because they allow easier access to the 

H-mode of confinement 
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• An (axially) elongated tokamak plasma is unstable to axisymmetric  

major-axial displacement 

– Divertor coils strongly attract the plasma  

– Stability requires fast feedback on radial field 

Tokamak Equilibria Can Be Unstable to Many Modes 

• A current-carrying plasma may be subject to a 

kink instability 

– Higher poloidal field on inside of bend 

reinforces initial displacement 

– In a tokamak, the strong toroidal field helps 

to stabilize the kink 

– A surrounding perfectly conducting wall can 

also stabilize the kink because poloidal field 

is compressed on the outside of the bend 

– A wall with finite conductivity of the wall 

slows growth of the instability unless the 

plasma is moving relative to the wall 
Figure courtesy T. Luce  
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• Can assess MHD stability by perturbing equilibrium fluid elements 

searching for displacement vectors  (perpendicular to the magnetic 

surfaces) which reduce the potential energy of the system 

 = 0exp[i(n + m)] 

 where n, m are toroidal and poloidal mode numbers 

• For kink-like modes (n < ~10) need full 3D displacement 

• For high toroidal mode number/short radial wavelength, calculation 

reduces to ODE   “ballooning” modes on low field side 

• Flux surfaces where q = m/n are susceptible to instability 

Finite Plasma Pressure and Non-Ideal Plasma 

Behavior Introduce Other Instability Modes 

• In “ideal” (infinite conductivity) plasma, flux surface 

topology is preserved 

• Finite plasma conductivity allows reconnection of  

field inside plasma to form magnetic islands 

• Radial excursion of field lines in magnetic islands 

“short circuits” the isolation of perfect surfaces 

• Causes radial transport and flattens profiles 
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Studies in 1980s Produced a Simple Criterion for 

Stability to Pressure-Driven Instabilities  

• Across a range of tokamak shapes, theory showed

max =  C·Ip/aBT 

 where  = 20p/B
2 [  indicates volume average] and C is a 

constant: C ≈ 3.5 mT/MA 

• This expression was usually approximated by experimentalists as 

 T,max  (= 20p/BT0
2) = C·Ip/aBT0 

 where BT0 is the applied toroidal field at the minor axis 

• The normalized beta N = T / (Ip/aBT0)  

could then be compared to the constant C 

• Scaling was confirmed across many 

tokamaks with auxiliary heating 

• To maximize T  operate at lowest 

q stable to current-driven kink 

• Pushed tokamak design to achieve 

high elongation and triangularity 

F. Troyon, et al., PPCF 26, 209 (1984); figure T. Luce, APS-DPP 2009  
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A Consequence of Toroidicity with Important 

Practical Applications is the “Bootstrap” Current  

• In a tokamak, only untrapped (passing orbit) electrons carry toroidal current 

• Bootstrap current arises from differential friction between untrapped 

electrons and trapped particles on co-parallel (larger r) and counter-parallel 

(smaller r) legs of their orbits in presence of a radial pressure gradient 

• IB/Itot ≈ 1/2P;  = a/R0 - inverse aspect ratio, P = 20<p>/BP
2(a) - poloidal-  

• “Supershots” in TFTR achieved sufficiently high P to confirm the effect 

• Important for possibility of a steady-state tokamak reactor 

Hotter,  

more dense 

Cooler,  

less dense 

Can only match measured loop voltage 

by including NBI and bootstrap current 

TFTR 

M. Zarnstorff et al., PRL 60 (1988) 1306  
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While Potentially Beneficial, Bootstrap Current 

Can Destabilize High-Pressure Plasmas 

• Local perturbations to the bootstrap current cause growth of the 

Neoclassical Tearing Mode (NTM) instability 

• NTMs of concern to ITER because there is evidence that their threshold for 

instability decreases with tokamak size  

• NTMs can be controlled by 

feedback stabilization using 

local heating in the island to 

counteract the perturbation 

to bootstrap current 

Courtesy R. Fonck  
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Although We Have Learned to Avoid Many MHD 

Modes, Two Important Instabilities Persist 

• Disruption: a significant rapid (~ms) loss of plasma confinement 

followed by termination of the plasma current (0.01 – 0.1s) 

– Ubiquitous feature of tokamak operation 

• First described over 40 years ago 

– May be triggered by many different conditions 

• low qedge  

• too high or too low density 

• high   

• impurity influx 

• unfavorable pressure or current profiles 

• Edge-Localized Mode (ELM): periodic, rapid losses of energy 

from the edge of plasmas in the “high confinement” mode of 

operation (H-mode) 
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Disruptions are Particularly Dangerous for Burning 

Plasmas: Must be Minimized and Mitigated 

• In ITER, thermal energy in plasma and poloidal field energy ~ 1GJ  

– In current tokamaks ~10MJ 

– “Thermal quench” can damage plasma-facing components (PFCs) 

• Difficult to make PFCs handle both steady-state and transient heat loads 

– “Current quench” can produce damaging electromagnetic forces 

• Currents can be induced in conducting elements surrounding plasma 

• These currents may be non-axisymmetric: J  B ≠ 0 

– Can create large population of energetic (>10MeV) “runaway electrons” 

• ITER will need to achieve disruption frequency ~1% of discharges 

– Identify disruption precursors in real time and take avoidance actions 

• e.g. reduce  (heating power) or density (fueling), apply MHD mode control 

– Once a disruption starts, use measures to mitigate harmful effects 

– Dissipate plasma energy through radiation over entire first wall 

– Increase density with massive gas injection, liquid jet or pellet injection 



MGB / ICTP / 1210 / #2 16  

Several Tokamaks Have Demonstrated Mitigation of 

Disruption Heat Loads, Vessel Currents and Forces 

• Large density increases with Massive 

Gas Injection (MGI), shattered pellets 

and shell pellets in DIII-D, but  

• Critical density for runaway electron 

suppression not yet reached 
[Hollman, APS 09] 

• MGI with argon provoked 

disruptions in Alcator C-Mod, but 

• Resulting divertor heat loads 

were significantly reduced  
[Whyte, APS 09] 

• Method adopted for ITER will need achieve minimal number of  

false negatives ( damage) and positives ( wasted shots) 
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Formation of Stochastic Field Structure Following 

MGI May Inhibit Runaway Electron Avalanche 

• Runaway electrons are generated initially by 

the Dreicer mechanism 

– In presence of sufficient electric field, some 

thermal electrons can be accelerated faster 

than they lose energy by collisions (v-3) 

• Runaways can multiply by direct “knock-on” 

collisions  runaway avalanche 

• Suppressing runaway avalanche by collisions 

alone would require a critical (Connor-Hastie-

Rosenbluth) density equivalent to several 

hundred grams of gas in ITER 

• 3D resistive MHD modeling shows that 

formation of stochastic fields triggered by 

MGI can cause rapid loss of runaways  

• May not be necessary to attain CHR density 

limit to avoid runaway damage in ITER  

Simulation with NIMROD code 

of Alcator C-Mod following MGI 

V. Izzo, APS-DPP meeting (2009) 
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Steep Pressure and Density Gradients in H-mode 

Plasmas Destabilize Edge Localized Modes (ELMs) 

• ELMs readily observed as “spikes” in D line 

emission from plasma edge 

• Each spike is correlated with large, coherent 

filamentary instability at edge 

– Periodic ELMs represent a relaxation instability 

• Many different types of ELM have been found 

• Can reduce impulsive load by operating in 

regimes with (or triggering) more frequent ELMs 
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Edge Localized Modes are Well Described by 

Theory of “Peeling-ballooning” Modes 

• High edge current density drives “peeling”  

• High edge pressure drives “ballooning” 

• Bootstrap current plays crucial role linking 

pressure and current 

• ELM then relaxes unstable gradients  

• Theory describing peeling-ballooning 

modes reproduces ELM threshold and 

observed mode structure 

Simulation of time evolution 
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Repeated Large ELMs Will Damage the Divertor 

Target in ITER and Limit Its Lifetime 

• Calculated erosion lifetime of a tungsten target (10mm thick) or CFC target 

(20mm) as a function of ELM energy loss from the pedestal 

• Heat loads between ELMs are 5 MW/m2 (—) and 10 MW/m2 (…) 

• Curves are shown for different fractions of tungsten lost by melting 

G. Federici, PPCF (2003) 
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Several Tokamaks are Investigating  

ELM Control Methods for ITER 

• ITER will be equipped with non-axisymmetric coils to control ELMS 

• Repetitively injecting small solid H, D 
pellets can trigger ELMs 

– ELM size reduces with frequency 

– Issues: minimum pellet size and 
penetration; compatibility with 
fueling requirements 

V. Mukhovatov, PPCF (2003) T. Evans, APS-DPP meeting (2005) 

• Applying Resonant Magnetic Perturbation 
(RMP) with non-axisymmetric external coils 
can suppress ELMs in certain conditions 

– RMP creates region with stochastic  
field lines (overlapping islands) at edge 

– Additional transport relaxes edge 
pressure gradient 
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Energetic Ions Including -Particles Can Destabilize 

Alfvén Wave Eigenmodes in Toroidal Plasmas 

• In a torus, the shear Alfvén wave ( = kvA, vA = B/(0)1/2) develops an 
eigenmode structure as a result of toroidal and poloidal periodicity  

• Fusion -particles with v > vA can excite Toroidal Alfvén Eigenmodes (TAEs) 
which then affect the -particle orbits and cause losses 

• Theory of Alfvénic modes is now highly developed and successful 

– Many modes beyond basic TAEs have been found in shaped, high- plasmas 

• Existing tokamaks can use NBI ions to excite modes at low magnetic field 

Fast-ion profile becomes flattened 

by strong Alfvén mode activity 

M. Van Zeeland, PRL (2006) 135001  
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For Plasmas Stable to Large-Scale MHD Modes, 

Transport From Micro-Turbulence is Dominant 

• Until 1990s, transport understanding was largely empirical 

• Despite better confinement in tokamaks, transport was anomalous 

– Diffusion exceeded predictions of “neoclassical” (toroidal) theory 

• Turbulence was blamed but theoretical and simulation tools were 

not yet sufficiently developed to tackle the problem quantitatively 

• Measured fluctuations were reduced when plasma underwent 

transitions from low (L-mode) to high (H-mode) confinement 

Confinement degraded  

as NBI power increased 

Broadband turbulent fluctuations 

abruptly fall at L-H transition 

ISX-B 

Transport coefficients 

exceeded neoclassical 

TFTR 

Time (ms) 
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Data from Many Experiments Combined to 

Produce an Empirical Scaling for Design of ITER 



 E,98 IP

0.93BT

0.15n e
0.41PLoss

0.69R0

1.97 0.58 0.78

• ITER needs a confinement time 

of ~4s to achieve Q ≈ 10 

• 1998 data from H-mode divertor 

plasmas with “Type I” ELMs 

• Can also examine scaling of 

“fusion triple product” nT with 

tokamak size and magnetic field 

Can we put confinement on a firmer footing than a purely empirical scaling?  



MGB / ICTP / 1210 / #2 26  

New Instruments and Computational Tools Are 

Revolutionizing the Study of Turbulence 

• Fast cameras (up to 106 fps) can visualize turbulent structures 

• Developments in theory have improved 

computation schemes 

• Massively parallel computers allow  

realistic simulations of turbulence from  

first-principles 

• Codes incorporate “synthetic diagnostics” 

to compare simulations with measurements 

Over 100µs, turbulent edge becomes quiescent at L-H transition 

Courtesy S. Zweben, R. Maqueda, D. D’Ippolito  

Simulations of “blob” propagation in NSTX 
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
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Simulations and Measurements of Ion-Scale 

Turbulence Have Attained Excellent Agreement 

Cover     

• Simulation with GYRO code 

of Ion Temperature Gradient 

(ITG) turbulence in DIII-D 

• Matches fluctuation spectrum 

from Beam Emission 

Spectroscopy (BES) 

• But, some details remain 

unresolved and  

• Electron-scale turbulence not 

yet accessible  

• In last 15 years, a 

“standard model” of 

ion turbulence and 

transport has emerged 

Example 

Courtesy R. Fonck  
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Understanding and Controlling Transport 

Have Led to Improved Confinement 

• Transport barrier: region of locally reduced transport in radial profile 

– Edge transport barrier  “H mode” (high confinement) 

– Internal transport barrier (ITB) in core of plasma 

• Transport barriers form with suppression of turbulence by 

– Flow shear (v/r): driven by plasma gradients and external 

momentum sources  

– Negative magnetic shear (q/r<0) : created by current 

drive including bootstrap current 

– Zonal flows: flows created by fluctuations themselves 



MGB / ICTP / 1210 / #2 29  

Dependence of Tokamak Confinement on 

Plasma-Wall Interactions is Not Well Understood 

• Many techniques have been applied in tokamaks to modify the 

interactions between a plasma and its surroundings 

– Limiters (object defining the last closed flux surface) vs divertors  

– Refractory metallic surfaces (high-Z) vs carbon (graphite, low-Z) 

– Baking PFCs and the vacuum chamber (reduces adsorbed H2O) 

– Discharge cleaning (pulsed or glow discharge) by noble gases 

– Surface coatings: titanium (gettering), boron, silicon, lithium 

• All have been claimed to produce benefits! 

– Reduced impurities in the plasma – fairly obvious connection 

– Better confinement – how? 
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Dependence of Tokamak Confinement on 

Plasma-Wall Interactions is Not Well Understood 

• Many techniques have been applied in tokamaks to modify the 

interactions between a plasma and its surroundings 

– Limiters (object defining the last closed flux surface) vs divertors  

– Refractory metallic surfaces (high-Z) vs carbon (graphite, low-Z) 

– Baking PFCs and the vacuum chamber (reduces adsorbed H2O) 

– Discharge cleaning (pulsed or glow discharge) by noble gases 

– Surface coatings: titanium (gettering), boron, silicon, lithium 

• All have been claimed to produce benefits! 

– Reduced impurities in the plasma – fairly obvious connection 

– Better confinement – how? 

• A common thread in the claims related to “conditioning” is that 

confinement improves with reduced “recycling” from walls 

• Recycling describes ions which diffuse from the plasma, impinge 

on the PFCs, become neutralized and return to the plasma edge 

“C
o

n
d

it
io

n
in

g
” 
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Effects of Wall Conditioning Were 

Dramatic in TFTR  

• Originally used repeated tokamak discharges in helium to deplete the 

graphite limiter surface of adsorbed hydrogen isotopes  lower recycling 

– With centrally deposited NBI, density profile became peaked 

– Ion temperature increased by factor >5 and became very peaked 

• Injecting lithium into the plasma edge further improved confinement 

– Benefits of lithium have since reproduced in tokamaks T-11, NSTX (divertor), 

EAST and stellarator TJ-II 

E(s):   0.06  0.18 

neTiE: 0.15   4.3 
(1020m-3keVs ) 

Theory-based model with ITG turbulence 
suppressed by self-consistent flow shear 
matches data in supershot power scan 

• Model reproduces observed inverse dependence 
of ion thermal diffusivity on ion temperature 

D. Ernst et al., PRL 81 (1998) 2454  
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TFTR Measured Confinement and Thermalization 

of Fusion Alphas in DT Plasmas 

Flux of -particles to 

detector agrees with 

calculated loss for 

unconfined orbits 

• Shading shows result from 

an orbit-following code 

based on calculated alpha-

particle birth and plasma 

current profiles 

• At 2.5MA, ~3% of alphas 

lost on first orbit after birth 

Profile of thermalized  

particles matches 

model for helium puff 

• Calculated spectrum from 
Fokker-Planck calculation 
using measured plasma 
parameters 

• Concern was that with 
central source, ’s might 
accumulate in core and 
dilute fuel 

Confined -particles 

show classical slowing- 

down energy spectrum  

Model 

• In TFTR and JET, the achieved fusion power was 

modeled quite accurately based on measured 

plasma parameters and classical ion thermalization 

R. Hawryluk et al., PoP 5 (1998) 1577   
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TFTR and Later JET Confirmed  

Electron Heating by DT Alpha Particles 

DT plasmas in TFTR showed an 

increase in electron temperature 

compared to D-only plasmas 

• Prediction includes model 

for isotopic dependence of 

electron thermal transport 

With higher Q, JET provided a 

more definitive demonstration of  

-particle heating 

•  D  DT  T variation 

“T-only” DT 

• JET experiment also included a comparison 

discharge in which electrons were heated by 

energetic ions from ICRH to mimic -heating 

-heating term 

P. Thomas et al., PRL 80 (1998) 5548 G. Taylor et al., PRL 76 (1996) 2722  
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“Advanced Operating Modes”  

Also Achieved in DT Plasmas 

JET “Hybrid Mode” DT plasma  

with Internal Transport Barrier 

First observation of -driven TAE 

• Mode develops in core when damping by  
 sub-Alfvén NBI-ions decays 

• Both JET and TFTR investigated DT plasmas with q-profile 
modified to produce q(0) > 1 and low magnetic shear 

Achieved PDT=8MW, N=1.9, H=1.5 

M. Bell et al., PoP 4 (1997) 1714  C. Gormezano et al., PRL (1998)  
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Can Use the Empirical Scaling to Assess Fusion 

Burn Control and Thermal Stability in ITER 

• Vary plasma temperature and 

density to generate Plasma 

Operation Contours (POpCon) 

• Sustained fusion ignition (Paux=0) 

and finite-Q (Paux > 0) are 

accessible 

• Need to achieve H-mode  

(Psep ≥ PL-H) and stay below the 

beta limit 

• Plasma burn will be stable since 

ITER operates near the stable 

(right) branch of the ignition curve 

– Power loss increases faster 

than fusion power as 

temperature rises 
Contours depend on Ip, BT, scaling of 

confinement and assumed profile shapes 
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What New Physics Should We Anticipate in ITER? 

• ITER requires high energy NBI to penetrate its large plasma 

–  ~1MeV NBI will dominantly heat electrons (like -particles) 

– JT-60U has demonstrated good performance with 0.4MeV NBI 

– Will good confinement in plasmas with Ti > Te (hot-ion modes) persist? 

– Will TAE activity affect confinement of NB injected ions? 

• Physics of wave heating (ICRH, ECRH, LHH) is reasonably well 

understood but there are practical issues 

– Coupling power to the plasma is often the limiting factor 

– Wave couplers must operate in a more hostile environment 

– Large -particle population may affect wave absorption 

• Dominant self-heating by fusion -particles creates challenges, 

particularly for achieving and maintaining high-confinement modes 

– Equilibrated ion & electron temperatures 

– Low rotation (reduced momentum input) 

– Profiles (n, T, q) become self-organized 

All factors involved in 

controlling confinement 

and MHD stability 
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Choice of Plasma Facing Materials is Critical 

• Until recently, most high-power, high-performance tokamaks 

operated with carbon PFCs in high-heat flux regions 

– Carbon is extremely “forgiving” of transient heat loads and low-Z 

• Carbon retains too much tritium for use in ITER 

– Experience in TFTR, JET showed retention of up to 50% of T fuel 

• ITER planned to use tungsten for its divertor targets during DT 

– Other areas would be covered with beryllium tiles (JET experience) 

– Concerns about damage to tungsten and tungsten impurities (high-Z) 

• Several tokamaks are now investigating metal divertor PFCs 

– Alcator C-Mod has operated with Mo walls and will soon switch to W 

– ASDEX-U has applied W coating on all its graphite PFCs 

– JET is now operating with an “ITER-Like Wall”: W divertor, Be elsewhere 

• Other tokamaks also investigating liquid metals, e.g. lithium in NSTX, 

for future beyond ITER 
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JET has Completed the First Year of 

Operation With Its ITER-Like Wall (ILW) 

Lower D retention 

• Similar results in ASDEX-U 

Concerns 

• higher disruption loads, 

• narrower window for  

good H-mode 

Be 

W 

Low Zeff 

Lower H-mode threshold 

G. Matthews, 20 PSI Conf. (May 2012)  
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After 40 Years,Tokamaks Remain the  

Most Successful Confinement Concept  

• They emerged because they demonstrated better confinement and 

• They were simpler than stellarators – a few, axisymmetric coils 

– Allowed larger devices with auxiliary heating and good diagnostics 

• We have made great strides in understanding confinement & stability 

– Advances in diagnostic techniques allowed much of this progress 

• We are developing the capability to predict tokamak plasma behavior from 

first principles: theory  computation  experimental test 

• Some of the original simplicity of tokamaks has had to be sacrificed to 

operate them with high power heating and near stability limits 

– Many poloidal field coils are needed for plasma shaping and divertors 

– They require advanced feedback involving magnets, heating and fueling 

systems and real-time measurements of many plasma parameter 

– Even axisymmetry has been modified for MHD mode (including ELM) control 

• The first experiments with DT fusion fuel were a resounding success 

– We learned how to operate tokamaks in a fusion nuclear environment 

– The fusion rates were consistent with our understanding and simulations 

– The alpha particles behaved as expected and heated the plasma effectively 
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Tokamaks are Ready for the “Leap to ITER”  

• The knowledge we have gained from several generations of 

tokamaks has given us confidence to proceed to ITER, but ... 

• There remain unresolved issues in some areas 

– Validation of the choice of PFC material 

• Alcator C-Mod, ASDEX-U and JET-ILW provide grounds for optimism 

– Adequacy of the auxiliary heating systems to achieve the H-mode in 

order to reach plasma self-heating 

– Adequacy of the schemes proposed for ELM control 

– Ability to eliminate damaging disruptions reliably 

• The ultimate success of ITER still depends on research underway 

now in many tokamaks 

– We cannot rely on just one experiment to answer critical questions 

• Existing tokamaks also need to train the next generation of 

physicists and engineers who will operate ITER 


