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 Modifications to Ideal Stability by Kinetic Effects
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“Spherical” tokamak (ST) has aspect ratio A < 2

Aspect Ratio A = R /a | Elongation x = b/a | Toroidal beta B = {p) / (B15°/21,)

Magnetic Surface

Magnetic Field Line \ —
Tokamak | B = ST
A~ 3-4, A~1.2-2,
= 1.5-2 » -———-Unstable— T = 2.3
Oos = 3-4, | " (g5 = 6-20,
Br = 3-10% : B// Br=10-40%

* ST has high I, economically, due to high k and low A
b~ e (1 +x2) /(2 A% %)
Energy confinement time 1 « I

« Favorable average curvature improves stability at high beta
Access high pressure, rapid rotation, low collisionality
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Design studies show ST potentially attractive as FNSF

PPPL ST-FNSF concept

* Projected to access high neutron
wall loading at moderate R, P; qion
- W, ~1-2 MW/m2 , P, . ~ 50-200MW, R ~ 0.8-1.8m

 Modular, simplified maintenance >

* Tritium breeding ratio (TBR) near 1

— Requires sufficiently large R, careful design
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Outline

« NSTX-U Mission and Status
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The National Spherical Torus Experiment Upgrade
(NSTX-U) at the Princeton Plasma Physics Lab

NSTX
(1999-2011)

TE————

~2x higher By, |, Pyg and ~5x pulse
length vs. NSTX
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The National Spherical Torus Experiment Upgrade
(NSTX-U) at the Princeton Plasma Physics Lab

Previous New
center-stack center—stack * New center column doubles toroidal

magnetic field, plasma current
— Access conditions closer to FNSF
— Pulse lengths increase from 1 to 5 seconds

« Second neutral beam injection system

— Doubles heating power, increases flexibility
available for experiments

— More tangential injection improves current
drive, especially at small plasma current

* Increased flexiblility in divertor
configuration

Present NBI New 2“°' NBI
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NSTX Upgrade mission elements

« EXplore unique ST parameter regimes
to advance predictive capabillity - for
ITER and beyond

* Develop solutions for the plasma-
material interface (PMI) challenge

“SnonIéke”

ST-FNSF/
Pilot-Plant

« Advance ST as candidate for Fusion |
Nuclear Science Facility (FNSF) _|BrAm

-, L
= | - L
ol (179 ey il S

* Develop ST as fusion energy system
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NSTX Upgrade project recently completed
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NSTX Upgrade project recently completed
On cost and schedule, first test plasma ~100kA (Aug. 10, 2015)

Center stack installed
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NSTX Upgrade project recently completed
On cost and schedule, first test plasma ~100kA (Aug. 10, 2015)

First test plasma
(Ohmic heating only)
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NSTX Upgrade project recently completed
On cost and schedule, first test plasma ~100kA (Aug. 10, 2015)

Plasma Current

First test plasma 120 ~oTo0c
(Ohmic heating only) 100l 201077 |]
201078
sol 201079/]
201080
6ol 201084 |
201085/ |

s
Ip [KA]

40}
20}

redl
Vel )
(0]

—205 10 20 30 40 50
Time [ms]

« NSTX-U EFIT Model created
and used for first test shots

— Challenging at I /1,5, ~ ¥4, but
successful (good magnetics)

L]

Physics research operations to begin in December 2015
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Outline

* NSTX/NSTX-U Research Highlights
—Transport and Turbulence
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Low collisionality operation achieved on
NSTX using lithium wall coatings

* Lithium coatings on carbon tiles
reduced gas source from wall

— Lead to a larger H-mode pedestal,
larger core temperature

— Confinement continued to improve
with reduced collisionality

Energy Confinement Time (ms)

* Longer discharges will address
first wall solutions

— New diagnostics and campaigns
with different wall materials will
advance studies of plasma-wall
Interaction

Collisionality

R. Maingi, PRL 2011

a
* T (ms) , @
® T _(ms .
100} Ee(MS) o ]
L 2 L 2
¢
: .
¢ v "
: § .
|-
|
10
0 e ——
L (b) .V*|
¢V e
04} $
z x=0.7
¢
o3f [ *% , «
] , &
0.2} o |
[ "I |
<4
0.1} - o
', [ ]
%00 0 200 400 600 800 1000

Between-Shot Li Deposition (mg)

@NSTX-U U. of Washington Seminar — NSTX-U Progress / Kinetic RWM stability— J.W. Berkery October 26, 2015




Major motivation for NSTX Upgrade: Determine If
confinement trend continues, or is like conventional A

Micro-tearing-driven transport may

explain ST 1 collisionality scalin
104 ST-FNSF borp—— Plail 57 Te LOTBIONATY Seammd
AN constant g, 3, p* .
NSTX I= o' L - NSTX-U |
D Upgrade b R ]
|_I E No-w
~ 0.1 - . qc) — L NSTX O ]
tl—J)J EITER_'“ke = E‘L 0 experiment\
= | scaling - ol0 F 0 E
m ¢ =2 - ]
o < s ]
O - " GYRO o
. NSTX120968A02
—* ol ~Ve " t=0.560 s 1/a=0.6 y_=0
—=— Thermal » | E |
0.01 Y SO S 107 il il i
0.001 0.01 Ve* 0.10 10 10 10 10
: ST v_(c /a)
Normalized electron collisionality ei \ s
Ve* o« ne/ Te2 = NEVE, N2 A0 " Sggezrgflzc,le;’RFl)_ozpoigls’

Favorable confinement results could lead to more compact ST reactors
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Outline

* NSTX/NSTX-U Research Highlights

— Power Exhaust
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NSTX-U will test ability of radiation and advanced
divertors to mitigate very high heat-fluxes

 NSTX: reduced heat flux 2-4 X via radiation (partial detachment)
 Additional null-point in divertor expands field, reduces heat flux

NSTX-U peak heat fluxes will be
up to 4-8 X higher than in NSTX

Snowflake/X Divertor

‘:E:l 1B ‘\, - - >

Standard Divertor

a p.‘- n

11 = e
B DTy Yy paW isaseasannn
» -

Div. heat flux (MW/m2)

6l 0.36 s - before snowflake _
0.57 s, 0.70 s - forming snowflake |
4l 0.895 s - radiative snowflake
2 = - P .
! g ] NSTX-U has additional coils for up-down
0L 2% - o o == symmetric snowflake, improved control

03 04 05 06 0.7
Divertor R (m)

V. Soukhanovskii, JINM, 2013
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Outline

* NSTX/NSTX-U Research Highlights

— Plasma Start-up
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|, Start-up/Ramp-up Critical Issue for ST-FNSF/Demo

Compact ST-FNSF has ST-FNSF Scenarios

no/small central solenoid high B-. By, «, disruption

avoidance, high H, heat

I, [MA] ANce,
] / flux mitigation i\

7

Current ramp-
up and profile
control

NBI

Solenoid-free
Startup HHFW

EC/EBW, HI, PF

Vv

Time —

» Two novel techniques for solenoid-free start-
up and ramp-up will be investigated
free start-up current - RF: ECH/EBW and HHFW

needed for FNSF - Helicity Injection

~ 1-2 MA of solenoid-
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Helicity Injection is efficient method for current initiation
Coaxial Helicity Injection (CHI) concepts being developed

CHI developed on HIT, HIT-II Discharge evolution of 160 kA closed flux
Transferred to NSTX / NSTX-U current produced by CHI alone in NSTX
250 X y v y
2006 plasma current 120879
0 i <« Absorber 200/ 9 FiiE 118326 |
— PF coils —
| ﬁ £ 150 12 ms
<
Insulating gap [0)
I (Top & Bottom) 5 100
Injector
' 50 current \\ N\ 1
‘f)oIXBtor 0 . .
| Lower divertor 4 6 8 10 12 14 16
region Time(ms)
1000 134555I“‘II‘III‘
I 800 142109 h
| <
I Gas Injection f 600
c
ah]
: + s0mF £ o0l
capacitor O i . . ]
- bank - Standard NSTX inductive start-up,-
200 requires 50% more inductive flux |
than CHI started discharge
R. Raman et al., PRL 2006 R. Raman et al., POP 2011 0 g
002 004 006 008 010 012 0.14
UNIVERSITY of WASHINGTON o
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Outline

* NSTX/NSTX-U Research Highlights

— Scenarios, Control, and Stability
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NSTX achieved 70% “transformer-less” current drive
Wil NSTX-U achieve 100% as predicted by simulations?

TRANSP Contours of Non-Inductive Fraction
1.2

1.1F

ITER H-mode .
confinement (.9 F
scaling '
multiplier

04 05 06 0.7 08 09 1.0
Normalized Density (Greenwald fraction)
=1 MA, B:=1.0 T, P\g=12.6 MW S. Gerhardt, NF 2012

Steady-state operation required for ST, tokamak, or stellarator FNSF
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NSTX-U developing a range of profile control actuators
for physics studies, scenario optimization

qmin

S. Gerhardt,
NF 2012

g-Profile Actuators

Variations in Beam Sources
800 kA Partial Inductive, 87% < f, < 100%

10 00 kAand 1 T
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Record 3, and B,/ |.accessed in NSTX using
passive + active resistive wall mode stabilization

BN/I 14 1312 11 10 — High By forfusion

8 — performance, high non-
: RWM State Space Control inductive fraction for
ST-Pilot RS S5H continuous operation
6 - ST-ENSF “/‘/( o ) e i = High bootstrap current
) N X {4 - | fraction -> Broad current
By l ‘.d’ 2 ". profile -> Low |, =
I /A.‘ % @Q I <B,2>/<B,>,?
4 ;@ o O | - Unfavorable for ideal
I ot X 2’ 3 = 6.7 '- stability since low |,
TS > — reduces the ideal n = 1 no-
- v o% 4 n =1 no-wall limit | o
9l o N — z S wall beta limit
: K. O% ot & s 1 The highest By/l: is not the
@ 19 Unstable RWM ; -
0 o RNE2T G A Proad®eX]  — Passive stability of the
0.0 0. 2 0.4 | 0.6 0.8 resistive wall mode (RWM)
S. Sabbagh, NF 2013: J. Berkery, POP 2014 i must be explained

Major NSTX-U mission is to achieve fully non-inductive operation at high 3
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Outline

 Modifications to Ideal Stability by Kinetic Effects
e SumMmmary
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An unstable RWM is an exponential growth of magnetic field
line kinking that can cause disruptions

* The resistive wall mode (RWM) is a kinking of magnetic field lines slowed by
penetration through vessel structures

130235

— 60

.
.

. )
. —_—

1 7

.

.

-

£, ~ e’

where

0.74 0.77
[S. Sabbagh et al., Nucl. Fusion 46, 635 (2006)] Time (s)

RWMs in NSTX cause a collapse in B, disruption, and termination of the plasma
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RWM dispersion relation evaluated with ideal and kinetic
components allows for passive stabilization of the RWM

Resistive Wall Mode (RWM) Resistive Wall Mod Ideal Kink Mode
fluid dispersion relation: 1 esistive vvall vioae

oW
Tw = —
Yf SW,

T, ! is slow enough for active
stabilization (feedback)

>
7

However, experiments operate B no-wall B with-wall
L N N
above the no-wall limit without

active control! \

Ideal Stability || Kinetic Effects

Passive stabilization

Collisional dissipation

Rotational stabilization

Models with scalar “critical rotation” for
stability could not explain experiments [B. Hu et al., Phys. Rev. Lett. 93, 105002 (2004)]

[S. Sabbagh et al., Nucl. Fusion 50, 025020 (2010)]
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Kinetic effects arise from the perturbed pressure, are
calculated in MISK from the perturbed distribution function

Force balance: leads to an energy balance:
dv . 1 2 2 1 * ~ . ~ - ~
PE:JXB—V'P 5 [ P €. | dV:g €¢‘[JXBoJrJoXB—VPF—V'PK]dV

! Y
Kinetic Energy Fluid terms

Change in potential energy due to perturbed
kinetic pressure is:

W is solved in MISK by using f from the drift kinetic equation for Pk
~ Plasma Rotation

Precession Drift  Collisionality
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Kinetic RWM theory consistent with RWM destabilization at
intermediate plasma rotation; stability altered by collisionality

YT, contours vs. vand w, (@/® ) [%]
0 2 4 6

10.0 MISK code

I I T T TTTTI

Veff/VeXp (marginal stability)

1= |
B instability
I (experiment) o
0.1 |
unstable Lo 1.0 Ly 2.0
U)d)/wq)e)(p (marginal stability)
* Destabilization appears between precession drift 1. Berkery et al., Phys. Rev.

, , Lett. 104, 035003 (2010)]
resonance at low Wy bounce/transit resonance at high Wy,

* Stability gradient with w,, stronger at low collisionality
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MISK calculations are grounded in validation against unstable
experimental plasmas

| a) 121083

B B1/10 (G)

| b) 128858

| ¢) 128863

| d) 130229

- e) 130235

/10 (GQ)

C Vam=5oMS

P B,

j .Y ;WM = 4 mS \ _‘.; “\\

i Y;wmz4m5 a0

I V¥ ;wm =5ms ~
tMlSI( D tRWM tRWM tN'lIS
0.52 0.55 0.58 0.61 0.64 0.56 0.59
| ) 140094 - g) 140095 - h) 140132

F Ve =AMS YL

(0.8655) i taum

I tMISK + tRWM 1 ‘_otMISK
0.70 0.74 0.76 0.88 0.91
Time (s) Time (s)

_tMISK O tRWM tMISK * tRWM
0.94 0.69 0.72 0.75 0.67 0.70
Time (s) Time (s)

0.73

e MISK calculations (at t,, ) include kinetic effects, have been
tested against many marginally stable NSTX experimental cases

[J. Berkery et al.,
accepted by Nuclear
Fusion (2015)]
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MISK calculations generally reproduce the approach towards
marginal stability seen in experiments

"\ :\ T T T T T T T T T T T T T T T "\ :\ T T T T T T T T T T T T T T T
0‘5 L ' [ I E i 0‘5 L ' [ I E

_unstable

................................................................................... e

0.0~ unstable

- stable

-
(@)
o OEND &

with energetic particles
! | | | | I | | I I | TR S

Thermal particles
| | | | 1 | | L | |

—co -30 -20 -10 0 -0 -30 -20 -10 0
(t-tRWM) / T. (t-tRWM) / T

e |n each case, the calculations trend towards instability (yt,, = 0) as the
time approaches the time of experimental RWM instability growth

— Twelve equilibria from discharges with no RWM show no trend  [. Berkeryetal.,

. . ted by Nucl
and are more stable in the calculations accepted by uciear
Fusion (2015)]
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Summary

 NSTX-U project recently completed on cost and schedule
with ~100KA test plasma in August

— Physics research to begin in December 2015

« NSTX began, and NSTX-U will extend, opportunities to
study toroidal confinement physics in novel regimes:
— Low aspect ratio, strong shaping, high B, low collisionality
— Advanced divertors, lithium walls, unique start-up solutions
— WIll inform optimal configuration for next-step FNSF device

* Modification of ideal stabllity by kinetic effects can explain
resistive wall mode stability at high beta

More: Berkery APS poster Tues. morning, Sabbagh talk Weds. afternoon
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Backup
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Unique ST properties also support ITER

ST Extends Predictive Capability
for ITER and Toroidal Science

« High B physics, rotation, shaping extend
stability, transport knowledge

* NBI fast-ions in present STs mimic DT
fusion product parameters in ITER -
study burning plasma science

« STs can more easily study electron
scale turbulence at low collisionality -
Important for all magnetic fusion

Burning Plasma
Physics - ITER
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Brief Overview of FY2016-18 NSTX-U Goals

* FY2016

— Obtain first data at 60% higher field/current, 2-3x longer pulse:

» Re-establish sustained low [, / high-x operation above no-wall limit
» Study thermal confinement, pedestal structure, SOL widths
= Assess current-drive, fast-ion instabilities from new 2"d NBI

 FY2017

— Extend NSTX-U performance to full field, current (1T, 2MA)
= Assess divertor heat flux mitigation, confinement at full parameters

— Access full non-inductive, test small current over-drive
— First data with 2D high-k scattering, prototype high-Z tiles

« FY2018

— Assess causes of core electron thermal transport
— Test advanced ¢ profile and rotation profile control
— Assess CHI plasma current start-up performance
— Study low-Z and high-Z impurity transport
» Possibly test/compare pre-filled liquid-Li tiles/PFCs vs. high-Z solid
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Five Year Facility Enhancement Plan (green = ongoing)

2015: Engineering design for high-Z tiles, Cryo-Pump, NCC, ECH

Fiscal Year:| 2015 2016 2017 2018 2019 e h .
ajor ennancements:
Upgrade Outage 152> 2MA, 1s = 5s J _
— @ Base funding
Run Weeks: 14-16 16-18 ) 10-12 O +15% incremental
New ! b
center-stack Pulse-burst MPTS @ o Iéﬁ)vg?rurlr\]/ertor
Boundal'y Boronization High-Z | yo-pump
i tile row on ' High-Z
SCIence ‘ ‘ lower OBD ||Dg|:c
+ Particle Lj gra?ule diagnostics
injector
Control ‘ Upward LLD using bakeable
MAPP @) LITER @ cryo-baffle
Upgraded halo Off-midplane 3D coils
MGl sensors (NCC) c
disruption >
mitiggtion o ‘ 8B diag. -
i y Enhanced
Core Laser blow-off @) Incigental MHD sensors
: 42 ch MPTS DBS, PCI, or other
Science ® High ks @ intermediate-k
48 ch BES @ _
MSE/LIF @Fio=d fusiiiroduct @ Neutron collimator
‘ 4 coll AE antenna
Establish control of: Rotation  Y9min HHEW limiter
Snowﬂake‘ ‘ . upgrade
Integrated FIReTIP‘ ‘ﬁe . Divertor P, 4
2nd NBI Scenarios 1 MW ECHEBW O >
fUpgraded CHI 0.5-1 MA
or ~0.5MA CHI to 1 MA
‘ ‘ . B asmagun
October 26, 2015 36
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