

Progress and Plans for NSTX Upgrade and Kinetic Resistive Wall Mode Stability Jack Berkery, Columbia University and the NSTX-U team University of Washington, Seattle, WA October 26, 2015

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Transport and Turbulence
 - Power Exhaust
 - Plasma Start-up
 - Scenarios, Control, and Stability
- Modifications to Ideal Stability by Kinetic Effects
- Summary

2

"Spherical" tokamak (ST) has aspect ratio A < 2

• ST has high I_P , economically, due to high κ and low A $I_P \sim I_{TF} (1 + \kappa^2) / (2 \text{ A}^2 \text{ q}^*)$

Energy confinement time $\tau_{\rm E} \propto I_{\rm P}$

• Favorable average curvature improves stability at high beta Access high pressure, rapid rotation, low collisionality

NSTX-U

3

Design studies show ST potentially attractive as FNSF

 Projected to access high neutron wall loading at moderate R, P_{fusion}

- W_n ~ 1-2 MW/m² , P_{fus} ~ 50-200MW, R ~ 0.8-1.8m

Modular, simplified maintenance

• Tritium breeding ratio (TBR) near 1 – Requires sufficiently large R, careful design

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Transport and Turbulence
 - Power Exhaust
 - Plasma Start-up
 - Scenarios, Control, and Stability
- Modifications to Ideal Stability by Kinetic Effects
- Summary

5

The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Lab

The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Lab

New

Previous

- New center column doubles toroidal magnetic field, plasma current
 - Access conditions closer to FNSF
 - Pulse lengths increase from 1 to 5 seconds
- Second neutral beam injection system
 - Doubles heating power, increases flexibility available for experiments
 - More tangential injection improves current drive, especially at small plasma current
- Increased flexibility in divertor configuration

7

NSTX Upgrade mission elements

- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
- Develop solutions for the plasmamaterial interface (PMI) challenge

 Advance ST as candidate for Fusion Nuclear Science Facility (FNSF)

Develop ST as fusion energy system

Center stack installed

First test plasma (Ohmic heating only)

Physics research operations to begin in December 2015

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Transport and Turbulence
 - Power Exhaust
 - Plasma Start-up
 - Scenarios, Control, and Stability
- Modifications to Ideal Stability by Kinetic Effects
- Summary

Low collisionality operation achieved on NSTX using lithium wall coatings

- Lithium coatings on carbon tiles reduced gas source from wall
 - Lead to a larger H-mode pedestal, larger core temperature
 - Confinement continued to improve with reduced collisionality
- Longer discharges will address first wall solutions
 - New diagnostics and campaigns with different wall materials will advance studies of plasma-wall interaction

NSTX-U

October 26, 2015 14

Major motivation for NSTX Upgrade: Determine if confinement trend continues, or is like conventional A

U. of Washington Seminar – NSTX-U Progress / Kinetic RWM stability– J.W. Berkery October 26, 2015 15

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Transport and Turbulence
 - Power Exhaust
 - Plasma Start-up
 - Scenarios, Control, and Stability
- Modifications to Ideal Stability by Kinetic Effects
- Summary

NSTX-U will test ability of radiation and advanced divertors to mitigate very high heat-fluxes

- NSTX: reduced heat flux 2-4 × via radiation (partial detachment)
- Additional null-point in divertor expands field, reduces heat flux

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Transport and Turbulence
 - Power Exhaust
 - Plasma Start-up
 - Scenarios, Control, and Stability
- Modifications to Ideal Stability by Kinetic Effects
- Summary

I_P Start-up/Ramp-up Critical Issue for ST-FNSF/Demo

Compact ST-FNSF has

~ 1-2 MA of solenoidfree start-up current needed for FNSF

- Two novel techniques for solenoid-free startup and ramp-up will be investigated
 - RF: ECH/EBW and HHFW
 - Helicity Injection

Helicity Injection is efficient method for current initiation Coaxial Helicity Injection (CHI) concepts being developed

20

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Transport and Turbulence
 - Power Exhaust
 - Plasma Start-up
 - Scenarios, Control, and Stability
- Modifications to Ideal Stability by Kinetic Effects
- Summary

NSTX achieved 70% "transformer-less" current drive Will NSTX-U achieve 100% as predicted by simulations?

Steady-state operation required for ST, tokamak, or stellarator FNSF

NSTX-U developing a range of profile control actuators for physics studies, scenario optimization

U. of Washington Seminar – NSTX-U Progress / Kinetic RWM stability– J.W. Berkery October 26, 2015

Record β_N and β_N / I_i accessed in NSTX using passive + active resistive wall mode stabilization

- High β_N for fusion performance, high noninductive fraction for continuous operation
 - High bootstrap current fraction -> Broad current profile -> Low I_i = <B_p²>/<B_p>_ψ²
- Unfavorable for ideal stability since low l_i reduces the ideal n = 1 nowall beta limit
- The highest β_N/I_i is <u>not</u> the least stable in NSTX
- Passive stability of the resistive wall mode (RWM) must be explained

Major NSTX-U mission is to achieve fully non-inductive operation at high β

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Transport and Turbulence
 - Power Exhaust
 - Plasma Start-up
 - Scenarios, Control, and Stability
- Modifications to Ideal Stability by Kinetic Effects
- Summary

An unstable RWM is an exponential growth of magnetic field line kinking that can cause disruptions

• The resistive wall mode (RWM) is a kinking of magnetic field lines slowed by penetration through vessel structures

RWMs in NSTX cause a collapse in β , disruption, and termination of the plasma

RWM dispersion relation evaluated with ideal and kinetic components allows for passive stabilization of the RWM

Resistive Wall Mode (RWM) fluid dispersion relation:

> $\frac{\delta W_{\infty}}{\delta W_{b}}$ $\gamma_f \tau_w = -$

 τ_{w}^{-1} is slow enough for <u>active</u> stabilization (feedback)

However, experiments operate above the no-wall limit without active control!

Passive stabilization

[B. Hu et al., Phys. Rev. Lett. 93, 105002 (2004)]

[S. Sabbagh et al., Nucl. Fusion 50, 025020 (2010)]

stability could not explain experiments

()NSTX-U

Kinetic effects arise from the perturbed pressure, are calculated in MISK from the perturbed distribution function

1 .

1

Force balance:

$$\rho \frac{d\mathbf{v}}{dt} = \mathbf{j} \times \mathbf{B} - \boldsymbol{\nabla} \cdot \mathbb{P}$$

leads to an energy balance:

$$-\frac{1}{2}\int\rho\omega^{2}|\boldsymbol{\xi}_{\perp}|^{2}d\mathbf{V} = \frac{1}{2}\int\boldsymbol{\xi}_{\perp}^{*}\cdot\left[\mathbf{\tilde{j}}\times\mathbf{B_{0}}+\mathbf{j_{0}}\times\mathbf{\tilde{B}}-\boldsymbol{\nabla}\tilde{p}_{F}-\boldsymbol{\nabla}\cdot\mathbf{\tilde{P}}_{K}\right]d\mathbf{V}$$
Kinetic Energy Fluid terms Change in potential energy due to perturbed kinetic pressure is:
$$\delta W_{K} = -\frac{1}{2}\int\boldsymbol{\xi}_{\perp}^{*}\cdot\left(\boldsymbol{\nabla}\cdot\mathbf{\tilde{P}}_{K}\right)d\mathbf{V}$$

1

 δW_K is solved in MISK by using \tilde{f} from the drift kinetic equation for $\tilde{\mathbb{P}}_K$

U. of Washington Seminar – NSTX-U Progress / Kinetic RWM stability– J.W. Berkery October 26, 2015 28

Kinetic RWM theory consistent with RWM destabilization at intermediate plasma rotation; stability altered by collisionality

• Stability gradient with ω_{ϕ} stronger at low collisionality

MISK calculations are grounded in validation against unstable experimental plasmas

 MISK calculations (at t_{MISK}) include kinetic effects, have been tested against many marginally stable NSTX experimental cases [J. Berkery et al., accepted by Nuclear Fusion (2015)]

MISK calculations generally reproduce the approach towards marginal stability seen in experiments

- In each case, the calculations trend towards instability ($\gamma \tau_w = 0$) as the time approaches the time of experimental RWM instability growth
 - Twelve equilibria from discharges with no RWM show no trend and are more stable in the calculations
 [J. Berkery et al., accepted by Nuclear Fusion (2015)]

NSTX-U

U. of Washington Seminar – NSTX-U Progress / Kinetic RWM stability– J.W. Berkery October 26, 2015 31

Summary

- NSTX-U project recently completed on cost and schedule with ~100kA test plasma in August
 - Physics research to begin in December 2015
- NSTX began, and NSTX-U will extend, opportunities to study toroidal confinement physics in novel regimes:
 - Low aspect ratio, strong shaping, high β , low collisionality
 - Advanced divertors, lithium walls, unique start-up solutions
 - Will inform optimal configuration for next-step FNSF device
- Modification of ideal stability by kinetic effects can explain resistive wall mode stability at high beta

More: Berkery APS poster Tues. morning, Sabbagh talk Weds. afternoon

Unique ST properties also support ITER

ST Extends Predictive Capability for ITER and Toroidal Science

- High β physics, rotation, shaping extend stability, transport knowledge
- NBI fast-ions in present STs mimic DT fusion product parameters in ITER → study burning plasma science
- STs can more easily study electron scale turbulence at low collisionality → important for all magnetic fusion

Burning Plasma Physics - ITER

Brief Overview of FY2016-18 NSTX-U Goals

• FY2016

- Obtain first data at 60% higher field/current, 2-3× longer pulse:
 - Re-establish sustained low I_i / high- κ operation above no-wall limit
 - Study thermal confinement, pedestal structure, SOL widths
 - Assess current-drive, fast-ion instabilities from new 2nd NBI

• FY2017

- Extend NSTX-U performance to full field, current (1T, 2MA)
 - Assess divertor heat flux mitigation, confinement at full parameters
- Access full non-inductive, test small current over-drive
- First data with 2D high-k scattering, prototype high-Z tiles

• FY2018

- Assess causes of core electron thermal transport
- Test advanced q profile and rotation profile control
- Assess CHI plasma current start-up performance
- Study low-Z and high-Z impurity transport
 - Possibly test/compare pre-filled liquid-Li tiles/PFCs vs. high-Z solid

Five Year Facility Enhancement Plan (green = ongoing) 2015: Engineering design for high-Z tiles, Cryo-Pump, NCC, ECH

NSTX-U

U. of Washington Seminar – NSTX-U Progress / Kinetic RWM stability– J.W. Berkery

October 26, 2015 36