

Progress and plans for NSTX Upgrade and prospects for next-step spherical tori

Jonathan Menard, PPPL

Plasma Physics Seminar (Physics/ECE/NE 922) Physics Building, Room 2241 September 14, 2015

Outline

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Global MHD Stability
 - Transport and Turbulence
 - Energetic Particles
 - Power Exhaust
 - Plasma Start-up
- Brief Overview of NSTX-U Research Plans
- Summary

"Spherical" tokamak (ST) has aspect ratio A < 2

Aspect Ratio A = R /a	Elongation $\kappa = b/a$	Toroidal Beta $\beta_T = \langle p \rangle / (B_{T0}^2 / 2\mu_0)$
-----------------------	---------------------------	---

- Natural elongation makes its spherical appearance
- Favorable average curvature improves stability at high beta → access high normalized pressure, rapid rotation, low collisionality

ST can be compact, high β , and high confinement Higher elongation κ and low A lead to higher I_P, β_T and τ_E

Aspect Ratio A = R /a | Elongation κ = b/a | Toroidal beta $\beta_T = \langle p \rangle / (B_{T0}^2/2\mu_0)$

• ST has high I_P due to high κ and low A $I_P \sim I_{TF} (1 + \kappa^2) / (2 A^2 q^*)$

- I_P increases tokamak performance
 Energy confinement time τ_E ∝ I_P
 Normalized pressure β_T [%] ≡ β_N I_P / (aB_{T0})
- ST achieves high performance cost effectively

 $I_P \sim I_{TF}$ for ST due to low A and high κ

5

Fusion technology development is major challenge Fusion Nuclear Science Facility (FNSF) could aid development

Need to develop reliable, qualified nuclear and other components unique to fusion:

- Divertor, plasma facing components
- Blanket and Integral First Wall
- Vacuum Vessel and Shield
- Tritium Fuel Cycle
- Remote Maintenance Components

- Without R&D, fusion components could fail prematurely
- FNSF can help develop reliable fusion components
- FNSF facilities must be: modest cost, low T, and reliable

Design studies show ST potentially attractive as FNSF

 Projected to access high neutron wall loading at moderate R, P_{fusion}

 $- W_n \sim 1-2 \text{ MW/m}^2$, $P_{fus} \sim 50-200 \text{MW}$, $R \sim 0.8-1.8 \text{m}$

Modular, simplified maintenance

• Tritium breeding ratio (TBR) near 1 – Requires sufficiently large R, careful design

Tritium breeding at top/bottom of ST device important for achieving high Tritium Breeding Ratio (TBR) > 1

Recent studies show sufficiently large major radius ST-FNSF can be tritium self-sufficient

R=1.0m: **TBR < 1 (≈ 0.9)**

R=1.7m: **TBR ≥ 1**

TBM NBI NBI TBM MTM 1m device cannot achieve TBR > 1 even with design changes **Requirement:** purchase ~0.4-0.55kg of T/FPY from outside sources мтм

NBI = Neutral Beam Injector, TBM = Test Blanket Module, MTM = Materials Test Module

NSTX-U

HTS potentially attractive for making electrically efficient ST* (~10× lower magnet cooling power vs. copper)

 $R_0 = 1.4m, B_T = 3.2T, I_P = 7-8MA, P_{fusion-DT} = 100MW$

*Work supported by Tokamak Energy (UK) - 2014

- Possible missions:
 - Steady-state toroidal PMI facility, FNSF
 - ST Pilot Plant (Q_{eng}~1 for weeks/months)
 - Requires high $H_{98y2} = 1.7-2$
- Initial configurations favorable:
 - A=1.8-2, strong shaping: κ ~2.5-2.7, δ ~0.5
 - All equilibrium PF coils outside TF
 - No joints needed for HTS TF coils
 - Long-legged divertor for $q_{div-pk} < 5MW/m^2$
 - Vertical port-based maintenance
 - WC inboard thermal shield for TF
- Now actively investigating:
 - HTS lifetime in radiation environment
 - Blanket/shield thickness, location, TBR

Unique ST properties also support ITER

ST Extends Predictive Capability for ITER and Toroidal Science

- High β physics, rotation, shaping extend stability, transport knowledge
- NBI fast-ions in present STs mimic DT fusion product parameters in ITER → study burning plasma science
- STs can more easily study electron scale turbulence at low collisionality → important for all magnetic fusion

Burning Plasma Physics - ITER

Outline

ST Overview and Motivation

- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Global MHD Stability
 - Transport and Turbulence
 - Energetic Particles
 - Power Exhaust
 - Plasma Start-up
- Brief Overview of NSTX-U Research Plans
- Summary

NSTX Upgrade mission elements

- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
- Develop solutions for the plasmamaterial interface (PMI) challenge

 Advance ST as candidate for Fusion Nuclear Science Facility (FNSF)

Develop ST as fusion energy system

NSTX and MAST are undergoing major upgrades ~2x higher B_T , I_p , P_{NBI} and ~5x pulse length vs. NSTX / MAST

Super-X Px **Conventional** D3 D2 D1

MAST-U

Tangential 2nd NBI + high β_N and f_{BS} for full non-inductive sustainment, ramp-up

First test plasma ~1 month ago

Super-X divertor configuration for FNSF/DEMO divertor solution

First test plasma 2017

NSTX-U

NSTX Upgrade project recently completed On cost and schedule, first test plasma ~100kA (Aug. 10, 2015)

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard

New centerstack (CS) highlights: Jan – Aug 2015

CS crane lift

CS installed

First test plasma (Ohmic heating only)

Magnetics functional → EFIT reconstructions

NSTX-U

Outline

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Global MHD Stability
 - Transport and Turbulence
 - Energetic Particles
 - Power Exhaust
 - Plasma Start-up
- Brief Overview of NSTX-U Research Plans
- Summary

Mega-ampere-class STs rely heavily on coinjected neutral beams for heating, current drive

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard

NSTX-U developing a range of profile control actuators for physics studies, scenario optimization for FNSF/Pilot

q-Profile Actuators

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard

Rotation Profile Actuators

Record β_N and β_N / I_i accessed in NSTX using passive + active resistive wall mode stabilization

Major NSTX-U mission is to achieve fully non-inductive operation at high β

Kelvin-Helmholtz (KH) instabilities predicted when central sound-speed Mach number $M_s \approx 0.7-0.8$

Figure 4. The n = 1 KH_{\parallel} eigenfunction when the flow profile (dashed line) is centred at r/a = 0.5.

Figure 5. The KH_{||} stability boundary in terms of flow speed and gradient for three different plasma pressures when the safety factor is fixed at $q_{\min} \simeq 1.3$. A typical rotation profile from TRANSP predictions is shown for reference, indicating that CTF with fully uni-directional beams is likely to be KH_{||} unstable.

20

NSTX-U

Hybrid MHD-drift-kinetic stability calculations find rotation + fast-ions reduce stability of ∇p-driven Ideal Wall Mode

Outline

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Global MHD Stability
 - Transport and Turbulence
 - Energetic Particles
 - Power Exhaust
 - Plasma Start-up
- Brief Overview of NSTX-U Research Plans
- Summary

High confinement multiplier H needed for compact ST Fusion gain Q depends strongly on "H", Q \propto H ⁵⁻⁷

- Ion energy transport in H-mode ST plasmas near neoclassical level due to high shear flow and favorable curvature
- Electron energy transport anomalous (as for all tokamaks)

Electron and ion τ_E scale differently in ST, and different than at higher aspect ratio

Favorable confinement trend with collisionality, β found Important implications for future ST FNSF, Demo with lower v_*

Very promising ST scaling to reactor condition, if continues on NSTX-U/MAST-U

NSTX-U

Micro-tearing-driven (MT) transport may explain ST τ_{F} collisionality scaling

MT growth rate decreases with reduced collisionality in qualitative agreement with the NSTX experiment.

Further electron confinement improvement expected due to reduced collisionality.

> W. Guttenfelder, PoP 2013, PoP 2012, PRL 2011

W. Wang: Recently found dissipative TEM has similar v^* scaling (GTS)

Outline

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Global MHD Stability
 - Transport and Turbulence
 - Energetic Particles
 - Power Exhaust
 - Plasma Start-up
- Brief Overview of NSTX-U Research Plans
- Summary

CAE mode-conversion to kinetic Alfvén waves (KAW) predicted to transfer core NBI power to mid-p electrons

- GAE/CAEs cause large χ_e through stochastic orbits (N. Gorelenkov, NF 2010) 1)
- CAEs also couple to KAW Poynting flux redistributes fast ion energy near 2) mid-radius, E_{II} resistively dissipates energy to thermal electrons
 - $-P_{CAE \rightarrow KAW} \sim 0.4$ MW from QL estimate + experimental mode amplitudes
 - $-\,\mathsf{P}_{e,\mathsf{NBI}}\,{\sim}\,$ 1.7 MW for ρ <0.3, NBI power deposited on core electrons

NBI-heated STs excellent testbed for α -particle physics Alfvenic modes readily accessible due to high V_{fast} > V_{Alfvén}

- α -particles couple to Alfvénic modes strongly when $V_{\alpha} > V_{A} \sim \beta^{-0.5} C_{s}$
- $V_{\alpha} > V_A$ in ITER and reactors: condition easily satisfied in ST due to high β
- Fast-particle-driven Alfvén Eigenmodes: Toroidal, Global, Compressional
- NSTX-U will also explore $V_{fast} < V_A$ regime giving more flexibility

"TAE avalanche" shown to cause energetic particle loss Uncontrolled α -particle loss could cause reactor first wall damage

NSTX-U

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard

Rapid TAE avalanches could impact NBI current-drive in advanced scenarios for NSTX-U, FNSF, ITER AT

NSTX-U

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard

NSTX-U TRANSP simulations

1.2

1.0

Outline

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Global MHD Stability
 - Transport and Turbulence
 - Energetic Particles
 - Power Exhaust
 - Plasma Start-up
- Brief Overview of NSTX-U Research Plans
- Summary

All modern tokamaks / STs use a "divertor" to control where power and particles are exhausted

NSTX-U

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard

Tokamak + ST data: power exhaust width varies as 1 / $B_{poloidal}$ Will previous ST trend continue at 2× I_P , B_P , B_T , power?

Wider heat-flux width may offset smaller $R \rightarrow$ maybe better than tokamak?

NSTX-U will test ability of radiation and advanced divertors to mitigate very high heat-fluxes

- NSTX: reduced heat flux 2-4 × via radiation (partial detachment)
- Additional null-point in divertor expands field, reduces heat flux

Outline

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Global MHD Stability
 - Transport and Turbulence
 - Energetic Particles
 - Power Exhaust
 - Plasma Start-up
- Brief Overview of NSTX-U Research Plans
- Summary
I_P Start-up/Ramp-up Critical Issue for ST-FNSF/Demo

Compact ST-FNSF has

~ 1-2 MA of solenoidfree start-up current needed for FNSF

- Two novel techniques for solenoid-free startup and ramp-up will be investigated
 - RF: ECH/EBW and HHFW
 - Helicity Injection

Helicity Injection is efficient method for current initiation Coaxial Helicity Injection (CHI) concepts being developed

NIMROD simulations \rightarrow CHI in NSTX has resemblance to 2D Sweet-Parker reconnection

- Toroidal electric field generated in injector region by reduction of injector voltage and current
 - $E_{toroidal} \times B_{poloidal}$ drift brings oppositely directed field lines closer and causes reconnection, generating closed flux
 - Elongated Sweet-Parker-type current sheet
- n > 0 modes / MHD not strongly impacting 2D reconnection

F. Ebrahimi, PoP 2013, PoP 2014

September 14, 2015 39

CHI current sheet unstable \rightarrow plasmoids \rightarrow merging Possible lab observation of plasmoids \rightarrow contribute to lab-astro

NSTX-U

Outline

- ST Overview and Motivation
- NSTX-U Mission and Status
- NSTX/NSTX-U Research Highlights
 - Global MHD Stability
 - Transport and Turbulence
 - Energetic Particles
 - Power Exhaust
 - Plasma Start-up
- Brief Overview of NSTX-U Research Plans
- Summary

Brief Overview of FY2016-18 NSTX-U Goals

• FY2016

- Obtain first data at 60% higher field/current, 2-3× longer pulse:
 - Re-establish sustained low I_i / high- κ operation above no-wall limit
 - Study thermal confinement, pedestal structure, SOL widths
 - Assess current-drive, fast-ion instabilities from new 2nd NBI

• FY2017

- Extend NSTX-U performance to full field, current (1T, 2MA)
 - Assess divertor heat flux mitigation, confinement at full parameters
- Access full non-inductive, test small current over-drive
- First data with 2D high-k scattering, prototype high-Z tiles

• FY2018

- Assess causes of core electron thermal transport
- Test advanced q profile and rotation profile control
- Assess CHI plasma current start-up performance
- Study low-Z and high-Z impurity transport
 - Possibly test/compare pre-filled liquid-Li tiles/PFCs vs. high-Z solid

Five Year Facility Enhancement Plan (green = ongoing) 2015: Engineering design for high-Z tiles, Cryo-Pump, NCC, ECH

NSTX-U

Summary

- NSTX-U will provide many opportunities to study toroidal confinement physics in novel regimes:
 - Low aspect ratio, strong shaping, high β , low collisionality
 - Access strong fast-ion instability drive, high rotation
 - Advanced divertors, high-Z PFCs, lithium walls
- NSTX-U/ST results will inform optimal configuration, aspect ratio for next-step PMI, FNSF, Pilot devices
- Physics research to begin in Nov/Dec 2015
 - Many UW researchers already collaborating on NSTX-U!

Thank you!

NSTX-U Milestone Schedule for FY2016-18

	FY2016	FY2017	FY2018
Run Weeks: Incr	remental 14 16	16 18	12 16
Boundary Science + Particle Control	R16-1 Assess H-mode confinement, pedestal, SOL characteristics at higher B _T , I _P , P _{NBI}	R17-1 Assess scaling, mitigation of steady- state, transient heat-fluxes w/ advanced divertor operation at high power density R17-2 Assess high-Z divertor PFC performance and impact on operating scenarios	R18-1 Assess impurity sources and edge and core impurity transport IR18-1 Investigation of power and momentum balance for high density and impurity fraction divertor operation
Core Science	R16-2 Assess effects of NBI injection on fast- ion f(v) and NBI-CD profile	R17-3 Assess τ_E and local transport and turbulence at low ν^* with full confinement and diagnostic capabilities	Assess role of fast-ion driven instabilities versus micro-turbulence in plasma thermal energy transport Begin ~1 year outage for major facility enhancement(s) sometime during FY2018
Integrated Scenarios	R16-3 Develop physics + operational tools for high-performance: κ , δ , β , EF/RWM	R17-1 Assess fast-wave SOL losses, core thermal and fast ion interactions at increased field and current R17-4 Develop high-non-inductive fraction NBI H-modes for sustainment and ramp-up	R18-2 Control of current and rotation profiles to improve global stability limits and extend high performance operation R18-3 Assess transient CHI current start-up potential in NSTX-U
FES 3 Facility Joint Research Target (JRT)	C-Mod leads JRT Assess disruption mitigation, initial tests of real-time warning, prediction	DIII-D leads JRT TBD possibly something on energetic particles	NSTX-U leads JRT TBD

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard

NSTX-U

September 14, 2015 46

NSTX Physics Results

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard September 14, 2015 47

Kinetic RWM theory consistent with RWM destabilization at intermediate plasma rotation; stability altered by collisionality

NCC Physics Design completed: Optimization for NTV braking performed with IPEC coupling matrix

- NCC and midplane coils can be combined to remove the dominant resonant modes up to the second, giving the optimized NTV for core
 - NCC 2x12 provides n=1,2,3,4,6 optimized NTV, and 2x6 provides n=1,2,6
 - Optimized NTV can be used to control local torque with minimized resonance

Study of RMP characteristics with NCC extended with TRIP3D (T. Evans, GA) – 2x12 NCC (and 2x7) favorable for RMP

- Vacuum Island Overlap Width (VIOW) analysis shows full NCC 1kAt can produce sufficient VIOW in a wide range of q₉₅, but partial NCC needs more currents with low q₉₅ targets
 - Also shows 2x7, with "one" more additional array upon partial NCC can provide the greater VIOW by toroidal coupling (n=2,4,9)

Excellent Agreement between TRANSP and FIDAsim when Using the Same ADAS Ground State Cross Section Tables (2)

Linear stability analysis of fishbones with M3D-K finds rotation / rotation shear destabilizing at elevated q

New "kick" model for fast-ion transport predicts different J_{NB} , ion/electron power split, inferred thermal transport

Nucl. Fusion 55 (2015) 053018

M. Podestà et al

53

Figure 11. (*a*)–(*c*) Current density profiles calculated by TRANSP with different assumptions for fast ion transport (NSTX #139048). TRANSP results are averaged over t = 300-305 ms. (*d*)–(*f*) Total heating power transferred to electrons and ions for the three cases.

NSTX-U

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard September 14, 2015

Major motivation for NSTX/MAST Upgrades: Determine if confinement trend continues, or is like conventional A

Favorable confinement results could lead to more compact ST reactors

NSTX-U

NSTX achieved 70% "transformer-less" current drive Will NSTX-U achieve 100% as predicted by simulations?

Steady-state operation required for ST, tokamak, or stellarator FNSF

NSTX-U

Progress in predicting T_e using reduced χ_e models in regimes where single micro-instability is dominant

- Linear gyrokinetic simulations find microtearing unstable in mid-radius region of high-collisionality H-modes
 - Other micro-instabilities subdominant at this location for this class of discharge
- Reduced model for micro-tearing χ_e (*Rebut-Lallia-Watkins (RLW) - 1988*) shows reasonable agreement between predicted & measured T_e for r/a > 0.3
 - $\chi_e >>$ RLW must be used in core to match central T_e may be due to GAE/CAE
- Reduced ETG models in low- β Lmodes also show reasonable T_e agreement for r/a > 0.3 (not shown)

Strong flow shear can destabilize Kelvin-Helmholtz (K-H) instability in NSTX (Wang, TTF 2014)

• K-H instability expected for $|ML_n/L_m| > 1$ from linear ML_n/L_m 1.5 analytic theory (Catto, 1973; Garbet, 1999) (R₀/L₀)/10 K-H identified in global electrostatic ITG simulations for 0.5 GTS code 0.5 0.6 0.7 NSTX low β L-mode (Ren, 2013) r/a Mostly unstable K-H modes r/a=0.68 have finite k_{\parallel} (shifted away from oroidal mode nun nq=m) $k_{\parallel} \sim \frac{k_{\theta} \rho_s}{2c_s} \frac{1}{n} \frac{d(nV_{\parallel})}{dr} \sim \frac{d\omega_{\phi}}{dr}$ 200 220 240 150 200 250 30 poloidal mode number m 300 350 poloidal mode number m K-H/ITG + neoclassical close to 10 experiment χ_i 'e.exp ر (m²/s) $-\chi_{e}$ underpredicted ETG possibly important 2 Nonlinear ETG simulations to be run in FY14-15 to investigate contribution in NSTX L-modes 0.2 0.6 0.6 04 **NSTX-U**

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard

September 14, 2015 57

Collaborating with QUEST to explore CHI + ECH solenoid-free start-up in support of ST-FNSF

CHI Implementation on QUEST

U. Washington

- Refurbishment of CHI Cap Bank completed.
- Fabrication of the CHI gas injection system and operation procedure for the QUEST ST experiment in Japan completed.
- Fabrication of the CHI capacitor bank for QUEST is nearing completion.

Magnum-PSI experiments on high-temperature Li show strongly reduced erosion and stable cloud production

- Gross erosion measured spectroscopically in divertor-like plasma
 - Neon plasma reproduces Langmuir Law
 - Deuterium suppresses erosion
- Reduced gross erosion and strong re-deposition result in 10× longer lifetime of 1 micron coating
 - Consistent with Li trapping in pre-sheath
 - Pre-sheath scale length consistent with neutral Li emission region (~3mm)

Neutral Li emission, t=2.5s

NSTX-U

Copper TF ST-FNSF

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard September 14, 2015 60

High β_T enables compact Fusion Nuclear Science Facility (FNSF) with high neutron wall loading

 $W_n \propto \beta_T^2 B_{T0}^4$ a (not strongly size dependent) $W_n \sim 1-2 MW/m^2$ with R ~ 1-2m FNSF feasible!

ST-FNSF shielding and TBR analyzed with sophisticated 3-D neutronics codes

- CAD coupled with MCNP using UW DAGMC code
- Fully accurate representation of entire torus
- No approximation/simplification involved at any step:
 - Internals of two OB DCLL blanket segments modeled in great detail, including:
 - FW, side, top/bottom, and back walls, cooling channels, SiC FCI
 - 2 cm wide assembly gaps between toroidal sectors
 - 2 cm thick W vertical stabilizing shell between OB blanket segments
 - Ports and FS walls for test blanket / materials test modules (TBM/MTM) and NNBI

Two sizes (R=1.7m, 1m) assessed for shielding, TBR

<u>Parameter:</u>		
Major Radius	1.68m	1.0m
Minor Radius	0.95m	0.6m
Fusion Power	162MW	/ 62MW
Wall loading (a	vg) 1MW/m	1MW/m ²
TF coils	12	10
TBM ports	4	4
MTM ports	1	1
NBI ports	4	3
Plant Lifetime	~20 yea	ars
Availability	10-50% 6 Full Power	
	30% avg 🖌	F Years (FPY)

Peak Damage at OB FW and Insulator of Cu Magnets

3-D Neutronics Model of Entire Torus

Mapping of dpa and FW/blanket lifetime (R=1.7 m Device)

NSTX-U

Options to increase TBR > 1

- Add to PF coil shield a thin breeding blanket (∆TBR ~ +3%)
- Smaller opening to divertor to reduce neutron leakage
- Uniform OB blanket (1m thick everywhere; no thinning)
- Reduce cooling channels and FCIs within blanket (need thermal analysis to confirm)
- Thicker IB VV with breeding

Potential for TBR > 1 at R=1.7m

66

UW has carried out most advanced and detailed analysis of Dual-Coolant Lead-Lithium (DCLL) blanket for ST-FNSF

NSTX-U

$R_0 = 1m \text{ ST-FNSF}$ achieves TBR = 0.88

- 1m device cannot achieve TBR > 1 even with design changes
- Solution: purchase ~0.4-0.55kg of T/FPY from outside sources at \$30-100k/g of T, costing \$12-55M/FPY

HTS-ST Pilot Plant Study

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard September 14, 2015 69

$Q_{eng} = P_{electric} / P_{consumed}$ is maximized between A = 1.8-2.5 for tokamak using HTS magnets

- Assumes fixed major radius R₀
- Elongation κ and β_N increase with increasing $\epsilon = A^{-1}$
- Assumes no inboard tritium breeding (WC shield only)

HTS-ST Plasma constraints

- Fix plasma major radius at $R_0 = 2.5$ -3m
 - Chosen to be large enough to allow space for HTS neutron shield and access $Q_{eng} > 1$
- Inboard plasma/FW gap = 4cm
- Use ϵ dependent $\kappa(\epsilon)$, $\beta_N(\epsilon)$ (see next slide)
- Greenwald fraction = 0.8
- q* not constrained
 - $-q^*$ is better ϵ -invariant than q_{95} for current limit
 - Want to operate with $q^* > 3$ to reduce disruptivity
- 0.5MeV NNBI for heating/CD fixed $P_{NBI} = 50$ MW
- H_{98y2} adjusted to achieve full non-inductive CD

Aspect ratio dependence of limits: $\kappa(\epsilon)$, $\beta_N(\epsilon)$

- NSTX data at low-A (+ NSTX-U and ST-FNSF modelling)
- DIII-D and EAST for higher-A

•
$$\kappa \rightarrow 1.4$$
 for A $\rightarrow \infty$

Profile-optimized no-wall stability limit at f_{BS} ≈ 50%

- Menard PoP 2004

$$\beta_N \rightarrow 3.1 \text{ for } A \rightarrow \infty$$

$$\beta_T \sim A^{-1/2} (1 + \kappa^2) \beta_N^2 / f_{BS}$$
$$P_f \propto \epsilon (\kappa \beta_N B_T)^4$$
HTS-ST engineering constraints

- Magnet constraints (T. Brown ST-HTS Pilot, K-DEMO)
 - Maximum stress at TF magnet = 0.67-0.9GPa
 - Maximum effective TF current density = $65MA/m^2$
 - OH at small R \rightarrow higher OH solenoid flux swing for higher A
- Shielding / blankets
 - Assume HTS fluence limit of $3x10^{22}$ 10^{23} n/m²
 - No/thin inboard blanket, ~1+ m thick outboard blanket
 - 10x n-shielding factor per 15-16cm WC for HTS TF
 - Also 8cm inboard thermal shield + other standard radial builds
- Electrical system efficiency assumptions:
 - 30% wall plug efficiency for H&CD typical of NNBI
 - 45% thermal conversion efficiency typical of DCLL
 - Also include pumping, controls, other sub-systems
 - See Pilot Plant NF 2011 paper for more details

Selection of HTS-ST device performance goals

- Decided w/ CCFE + UW for HTS-ST to have goals of:
 - $-\,6MWy/m^2$ neutron wall loading (peak) at outboard midplane AND Q_{eng} ~ 1 similar to previous PPPL Pilot Plant Study
 - Assume n-radiation damage limit of 3-4 \times 10²²/m²
 - HTS already tested to this damage fluence range (see next slide) \rightarrow WC shield thickness ~ 60cm, $\Delta/R = 0.2 \rightarrow R_0 = 3m$
- With only outboard breeding, optimal A ~ 2.1-2.4
- But, for TBR ~ 1 probably need A \leq 2 \rightarrow chose A=2
- Chosen design point (so far):

-R=3m, $B_T = 4T$, A=2, $\kappa=2.5$, $\beta_N = 4.2$ (~no-wall limit)

 $-H_{98y2} \sim 1.7, H_{Petty} \sim 1.2$ -1.3, $H_{ST} \sim 0.7, P_{fusion} \sim 500$ -600MW

-80% Greenwald fraction, 50MW of 0.5-0.7 MeV NNBI

 $-I_{P}$ = 12MA, double-swing of small OH provides ~ 2-3MA

Figure 6. Critical currents (ASC-40) in magnetic fields applied parallel to the ab-plane (left) and parallel to the *c*-axis (right) before and after irradiation to a fast neutron fluence of $2.3 \cdot 10^{22} \text{ m}^{-2}$.

Figure 8. Normalized critical currents in a magnetic field of 15 T applied parallel to the ab-plane (left) and parallel to the *c*-axis (right) as a function of neutron fluence.

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard

Long-leg divertor aids heat flux reduction in HTS-ST

NSTX-U

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard

Can also exhaust onto back of OB blanket (like vertical target in conventional divertor)

T. Brown radial build (includes small OH)

	• • • •		07												
	3.00 m R0 CCFE H18 SI radial build														
		10 TF coils	2.00	AR					4.00	B0					
		COMP BUILD, Z=0				TOTAL	TOTAL		16.5	Bmax					
		(in)	(mm)	(in)	(mm	(mm)	(in)		854	Ave Tresca stress (Mpa)					
Added space between OH and TF		Machine Center				0		180							
		TF center bore	68	2.677		68.0									
		OH coil	225.0	8.858	225	293.0	11.535								
		OH - TF gap	10	0.394		303.0									
	TF inbd leg	Ext structure	190.0	7.480		493.0		0	needed t	to add to nose stu					
		Clearance	2.00	0.079		_	230.000			CALCULATIONS for OH at inner bore					(
		ground wrap	4.00	0.157		499.0	19.646			$\mathbf{B}_{\bullet\bullet} = \boldsymbol{\mu}_{\bullet} \mathbf{J}_{\bullet} (\mathbf{Ro} - \mathbf{Ri})$ where $\boldsymbol{\mu}_{0} = 4\pi$				μ ₀ =4π ×	10-7
		Winding pack thk	240	9,449		729.0	28.701		A	Assume J₀ (MA/m^2) 70					
		ground wrap	4.00	0.157		733.0	28.858				B(T) =	19.8			
		Clearance	2.00	0.079											
		Ext structure	35.0	1.378	477	780.0	30.709			OH stress = B _i R _i J _o /2					
		TF-OH TPT	2.0	0.079						stress =	47.11	Mpa			
		VV TPT	5.0	0.197											
	wedge coil asmbly fit up			0.039						OH flux =	OH flux = B x mean area of xolenoid				
	Thermal Insu	Thermal Shield	8.0	0.315						flux = 2.03 volt seconds (weber)			ber)		
		Min TF/VV Gap	5.0	0.197	21	801	31.535								
	inbd VV	VV shell thk	12	0.472											
		borated water/W shield	100	3.937											
lises VV	>	VV shell thk	12	0.472	124	925	36.417								
		WC inboard shield	500	19.685		1425	56.102								
shield and		VV TPT	5.0	0.197											
shiold in	FW	FW	30	1.181		1460	57.480								
SIIIGIU III		Plasma SO	40	1.575		1500	59.055								
front of it.		Plasma minor radii	1500	59.055											
	Plasma R0	··	·			3000									

For AR 2 device:

OH located inside of TF bore: 854 Mpa Tresca stress with 4.0 B0 and 176.5 TF Bmax OH flux: 2 Vs with 70 Jc solenoid and 19.8 T

TF and OH magnet parameters vs. aspect ratio using models from Brown and Zhai

NSTX-U

UW-Madison Seminar – NSTX-U Progress / ST Prospects – J. Menard

Latest HTS-ST: R=3m, A=2, P_{fusion}~ 500MW, Q_{eng}~1-1.5

OB blanket module with divertor + extended blanket at top/bottom fits through vertical ports

- Potential advantages of this low-A configuration:
 - Reduced part count + no inboard breeding → simplified maintenance (?)
- But, very likely need to breed at top + bottom (included)
 - UW will assess TBR for DCLL
 - Analysis similar to Cu ST-FNSF
- Initiating study of LM/Li wall and divertor compatibility with this HTS configuration