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“Spherical” tokamak (ST) has aspect ratio A< 2

Aspect Ratio A = R/a || Elongation k = b/a || Toroidal Beta B; = (p) / (B¢%/ 2,)

* Natural elongation makes its spherical appearance
« Favorable average curvature improves stability at high beta

Magnetic Surface

Magnetic Field Line \ —
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Tokamak | A~3-4, ST | A~1.2-2, FRC | A-~1,
k= 1.5-2, K = 2-3, k = 0.5-10,
Qos = 3_4’ Qo5 = 6'20, q-~ 0

B 3-10% By = 10-40% B~ 100%




High B+ enables compact Fusion Nuclear Science
Facility (FNSF) with high neutron wall loading
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W_ ~1-2 MW/m? with R ~ 1-2m FNSF feasible!




MA-Class ST Research Started ~2000

Complementary Physics Capabilities of NSTX and MAST
Complementary Capabilities MAST
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« Comprehensive diagnostics
* Physics integration
M. Ono, IAEA 2000, NF 2001 * Scenario development A. Sykes, IAEA 2000, NF 2001




Mega-ampere-class STs rely heavily on co-
iInjected neutral beams for heating, current drive
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Original NBI New 2nd NBI
(Ryay = 50, 60, 70cm)  (Ryan=110, 120, 130cm)
SMW, 5s, 80keV SMW, 5s, 80keV
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New physics accessed in ST - enhanced
understanding of toroidal confinement physics

Lower A - higher 3, strong shaping
Higher =
— Electromagnetic effects in turbulence

— More potential drive for fast-ion-driven instabilities
« Simulate fast-ion transport of ITER / burning plasmas

— Over-dense plasmas: RF heating, current drive
Low-A / high-p broadly impact transport, stability:
— Higher fraction of trapped particles (low A)

— Increased normalized orbit size (high [3)

— Increase flow shear (due to low B, low A)

Compact geometry (small R) = higher power and
particle fluxes relevant to ITER, reactors
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* Global MHD Stability



Simulations find ([3,,) is more aspect ratio invariant
than B, — both with & without wall stabilization

Para / diamagnetic
effects and B,/ B ratio
Important at low-A

Br=2py(p) / Byy?

(B) =2p,p) / (B?)
Iy =1,/ aB;, [MA/mT]

Bn=PBr (%) /1,
B =(B) (%) / 1

J. Menard, PoP 2004, PPPL-3779

W A~ O O

O ~N 0

Inverse aspect ratio s = A”

0.2 04 0.6 0.8

_ no wall
_ ~ 0
i:Bootstrap 50%

By

L r Ja=1.1

wall

[ fos ~100%

10 5 33 25 21816 1.4 1.25
Aspect ratio



Record By and B/ | accessed in NSTX using
passive + active resistive wall mode stabilization
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S. Sabbagh, PRL 2006
J. Berkery, PRL 2011
W. Zhu, PRL 2006

Major NSTX-U mission is to achieve fully non-inductive operation at high 3
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Rotation / centrifugal effects important
and measureable in equilibrium
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Kelvin-|

elmholtz (KH) instabilities predicted when

central sound-speed Mach number M, = 0.7-0.8

Perturbation, Toroidal Rotation [au]
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Figure 4. The n = 1 KH eigenfunction when the flow profile
(dashed line) is centred at r/a = (0.5.

I. Chapman, NF 2012
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Figure 5. The KH stability boundary in terms of flow speed and
gradient for three different plasma pressures when the safety factor
1s fixed at g, == 1.3. A typical rotation profile from TRANSP
predictions 1s shown for reference. indicating that CTF with fully
uni-directional beams is likely to be KH; unstable.
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Hybrid MHD-drift-kinetic stability calculations find rotation +
fast-ions can weaken wall-stabilization of Vp-driven kink

vessal wall 2 | * MARS-K code needed / used to
|Bn=1| Vort = 1_0ms-1i @ explain NSTX instability onset
[Gauss] 0 at highest rotation, B, fractions

Solid: with-wall
] "\p"l/'ﬂ \ Low-rotation fluid with-wall limit

Is very high - marginal B, ~ 7-8

Pn

o E Experimental By

T fast-ions = marginal B ~3.5 =2
0.30 0.35 most consistent with experiment
Time [s] J. Menard, PRL 2014
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* Energy Confinement



High confinement multiplier H needed for compact ST

Fusion gain Q depends strongly on “H”, Q o« H >
H = 1.2 - 1.3 enables compact FNSF, design flexibility/margin

* lon energy transport in H-mode ST plasmas near neoclassical
level due to high shear flow and favorable curvature

* Electron energy transport anomalous (as for all tokamaks)

I T I I Enhanced pedestal H-mode (EPH) has
NSTX H up to 1.5-2 - attractive for ST-FNSF
200 NSTX ¢ o
1 o I |
w10 F 1 219
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0 :{‘i{n‘:' £ 03}
10°F From NCLASS 1 oob ... .
S T T T T TN TN N N N TN T NN TN AN M AN AN B 4 6 8 10 12 14
100 110 120 130 140 150 -
H {Cm} R. Maingi, PRL 2010

Y. Ren (PPPL) S. Gerhardt NF 2014
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Electron and ion t¢ scale differently in ST,
and different than at higher aspect ratio

100 4
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10 Neoclassical
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* lon ¢ ~ I, consistent with =% &
. . — 41'p~v- Ih=1.1 MA
neoclassical ion transport z 7" ’
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— Implies ion turb. suppressed by — ]
high E X B shear - possibility of
isolating causes of e-transport
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* Electron Tg ~ BT 1007 Electrons: g ~ By [

— Could imply Electron Temperature
Gradient (ETG) modes, and/or
electromagnetic turbulence
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S.M. Kaye, PRL 2007
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Favorable confinement trend with collisionality, § found
Important implications for future ST FNSF, Demo with lower v

T th € Vg1 B0 tokamak empirical scaling (ITER 98, ,)

Te 1 € Vi 08 B00 ST scaling
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S.M. Kaye, NF 2007, 2013
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M. Valovic, NF (2011)

Very promising ST scaling to reactor condition, if continues on NSTX-U/MAST-U
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Micro-tearing-driven (MT) transport
may explain ST t¢ collisionality scaling

MT-driven %, vs. v using the GYRO code
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MT growth rate
decreases with
reduced collisionality
In qualitative
agreement with the
NSTX experiment.

Further electron
confinement
Improvement
expected due to
reduced collisionality.

W. Guttenfelder, PoP 2013,
PoP 2012, PRL 2011
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* Energetic Particles



NBI-heated STs excellent testbed for a-particle physics

Alfvenic modes readily accessible due to high V., > V,

EP parameter space

1 1
e -  NSTX Quiescent
"~._data: TAE avalanche
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E. Fredrickson, NF 2013

Ifvén

a-particles couple to Alfvénic modes strongly when V>V, ~ 0> C,

V, >V, in ITER and reactors: condition easily satisfied in ST due to high p
Fast-particle-driven Alfvén Eigenmodes: Toroidal, Global, Compressional
NSTX-U will also explore V¢, < V,regime giving more flexibility

TAES significantly modified at high  as V, = C,
Stabilization of TAEs at high f in MAST

mode amp., a.u.
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M.P. Gryaznevich, PPCF 2004
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“TAE avalanche” shown to cause energetic particle loss
Uncontrolled a-particle loss could cause reactor first wall damage

Multi-mode TAE avalanche can cause Progress in simulation of
significant EP losses as in “sea”of neutron rate drop
TAEs expected in ITER due to TAE avalanche
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D.S. Darrow, NF (2013) E. Fredrickson, NF 2013
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Rapid TAE avalanches could impact NBI current-drive
In advanced scenarios for NSTX-U, FNSF, ITER AT

NSTX-U TRANSP simulations
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CAE mode-conversion to kinetic Alfven waves (KAW)
predicted to transfer core NBIl power to mid-p electrons

1) GAE/CAEs cause large y, through stochastic orbits (N. Gorelenkov, NF 2010)

2) CAEs also couple to KAW - Poynting flux redistributes fast ion energy near
mid-radius, E resistively dissipates energy to thermal electrons

—Pecae_kaw ~ 0.4 MW from QL estimate + experimental mode amplitudes
—Pgonei ~ 1.7 MW for p <0.3, NBI power deposited on core electrons

' Radial Poynti g flux, 1
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ST Upgrade Status



NSTX and MAST are undergoing major upgrades
~2x higher By, |, Pyg and ~5x pulse length vs. NSTX/MAST

Highly tangential 2" NBI for non-

inductive sustainment, profile control
First test plasma few weeks ago

MAST-U

id

Px
| ‘ ! -
e | i

D7
D5

pils
D3 D2 D1

Super-X divertor configuration for

FNSF/DEMO divertor solution
First test plasma 2017
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NSTX Upgrade project recently completed
On cost and schedule flrst test plasma ~100kA (Aug 10 2015)




New centerstack (CS) highlights: Jan — Aug 2015

Magnetics functional -
EFIT reconstructions
‘-'"'l' l"'_'"'l I AL [‘I? | R L ["T T Iy

CS crane lift

CS installed First test plasma
(Ohmic heating only)
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Summary

» Upgraded STs will provide many opportunities to
study toroidal confinement physics in new regimes:

— Low aspect ratio, strong shaping, high B, low collisionality
— Access to strong fast-ion instability drive, high rotation

— Advanced divertors, lithium walls, high-Z PFCs

* There are potentially interesting linkages between ST
and CT / FRC physics that could be explored further:

— Role of rapid rotation, strong beams, kinetic effects, ...

* Thank you!
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