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Non-axisymmetric magnetic perturbations can fundamentally change neoclassical transport

in tokamaks by distorting particle orbits on deformed or broken flux surfaces. This so-called

non-ambipolar transport is highly complex, and eventually a numerical simulation is required to

achieve its precise description and understanding. A new df particle orbit code (POCA) has

been developed for this purpose using a modified pitch-angle collision operator preserving

momentum conservation. POCA was successfully benchmarked for neoclassical transport and

momentum conservation in the axisymmetric configuration. Non-ambipolar particle flux is

calculated in the non-axisymmetric case, and the results show a clear resonant nature of non-

ambipolar transport and magnetic braking. Neoclassical toroidal viscosity (NTV) torque is

calculated using anisotropic pressures and magnetic field spectrum, and compared with the

combined and 1=� NTV theory. Calculations indicate a clear dB2 scaling of NTV, and good

agreement with the theory on NTV torque profiles and amplitudes depending on collisionality.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4740511]

I. INTRODUCTION

Non-axisymmetric magnetic perturbations can fundamen-

tally change neoclassical transport in tokamaks by distorting

particle orbits on deformed or broken flux surfaces.1,2 Under-

standing transport under the non-axisymmetric magnetic

perturbations is a critical issue for ITER (Ref. 3) and future

fusion devices where the non-axisymmetric perturbations are

potentially important control elements to actively stabilize

locked modes, edge localized modes, and resistive wall

modes.4–8 The neoclassical transport in non-axisymmetry,

often called neoclassical toroidal viscosity (NTV) transport in

tokamaks, is intrinsically non-ambipolar,9 and highly complex

depending on parametric regimes. Progress has been substan-

tially made by various analytical attempts,10–14 but the

analytic studies were limited in narrow regimes or strong

approximations on particle orbits, geometries, and collisions.

Therefore, a numerical approach with more realistic physics

models is eventually required to achieve a precise and self-

consistent description by directly following complex guiding-

center orbits of particles without any approximation. This

paper reports a development of new df particle code for this

purpose and successful calculations of the non-ambipolar

transport and NTV torque in perturbed tokamaks.

A new df particle code, POCA (Particle Orbit Code for

Anisotropic pressures) has been developed for transport

study in perturbed tokamaks. POCA aims to calculate fun-

damental properties of the neoclassical transport with the

non-axisymmetric magnetic perturbations and to efficiently

provide viable information to a 3D equilibrium solver.

POCA follows guiding-center particle motions on the flux

coordinates and solves Fokker-Planck equation with df
Monte Carlo method to obtain a perturbed distribution func-

tion df . Collisions are calculated using a modified pitch-

angle scattering collision operator, in which a momentum

restoring term is included to conserve toroidal momentum.

POCA is a local code which calculates the particle transport

at a single flux surface, so it is more efficient than global

code. In addition, df Monte Carlo method applied to POCA

is much more efficient than standard Monte Carlo method

by a factor of 104,15,16 which means the df code requires

less particles by a factor of 10�4 than the standard Monte

Carlo code to achieve the same accuracy. These features

will enable us to efficiently obtain the precise solutions of

3D neoclassical transport, as well as to couple and integrate

them to a 3D equilibrium solver17 by providing the aniso-

tropic pressure tensor in the future.

For application of POCA, we will first verify its con-

vergence and momentum conserving property and perform

benchmarking of diffusion and bootstrap current with neo-

classical theories and other numerical simulations in the

axisymmetric configurations. In the non-axisymmetric con-

figurations, we will show non-ambipolar transport calcula-

tions and a clear resonant nature of the transport and

magnetic braking. Then, we will present benchmarking in

the non-axisymmetric configuration with analytic theories,

such as a combined formula and 1=� formula. Good agree-

ments will be shown on NTV torque profiles and ampli-

tudes depending on collisionality. Possible explanations on

the discrepancies between POCA and the theories will be

suggested, and effects of collision model, regime separation

by collisionality, and Maxwellian energy distribution on

the NTV calculation will be finally discussed.

This paper is organized as follows: in Sec. II, theoretical

formulations and numerical implementation for df Monte

Carlo method are introduced. Benchmarking tests against

neoclassical theory and simulations are described in Sec. III.

In Sec. IV, non-ambipolar transport in the presence of non-

axisymmetric magnetic perturbations is calculated and ana-

lyzed by applying an analytic magnetic perturbation model.
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Section V describes NTV torque calculation by POCA and

comparison results with NTV theories. Summary will be

given in Sec. VI.

II. df MONTE CARLO METHOD FOR NEOCLASSICAL
TRANSPORT CALCULATION

In this section, we will describe theoretical formulations

of the Fokker-Planck equation, collision operator, Hamilto-

nian equations of motion, and their technical implementa-

tions. Note that df Monte Carlo method employed in POCA

is based on the drift-kinetic equation, thus gyrating particle

orbit is a gyro-averaged guiding-center motion. For this

study, ion guiding-center motion is tested and solved since

the non-ambipolar transport is dominated by ion trans-

port.9,12 Only ion-ion collisions are considered for collisions

due to sub-dominance of ion-electron collisions.

A. Fokker-Planck equation

We start from Fokker-Planck equation,

df

dt
¼ @f

@t
þ~v � @f

@~x
þ
~F

m
� @f

@~v
¼ Cðf Þ: (1)

Distribution function f can be written as f ¼ fM expðf̂ Þ, where

f̂ is a deviation from local Maxwellian fM. The distribution

function can be further approximated to f � fMð1þ f̂ Þ since

typically f̂ � 1 in fusion plasmas. The Fokker-Planck equa-

tion can be rewritten using the approximation as

d ln fM
dt
þ d f̂

dt
¼ Cmðf Þ; (2)

where Cmðf Þ is a collision operator defined by Cmðf Þ ¼
Cðf Þ=f .

The Fokker-Planck equation is more convenient to solve

with df Monte Carlo method when it is expressed in terms of

f̂ rather than f. Neglecting external force term ~F in Eq. (1)

and using the local Maxwellian, which is a function of toroi-

dal flux and energy, the Fokker-Planck equation is reduced to

df̂

dt
¼ �~v � ~rw

@ ln fM

@w
þ Cmðf̂ Þ; (3)

where w is the toroidal flux. It is indicated in Eq. (3) that the

deviation from Maxwellian, f̂ is proportional to the displace-

ment of particles from home flux surface, w0 where the test

particles are initially distributed. Therefore, f̂ can be

obtained by tracking the guiding-center motions of test par-

ticles with proper calculation of the collision term Cmðf̂ Þ.

B. Collision operator

A modified pitch-angle scattering collision operator,

which is composed of Lorentz collision operator and a mo-

mentum restoring term, is used to calculate the collision

term in Eq. (3) and to preserve the conservation of the toroi-

dal momentum. Energy scattering is neglected for computa-

tional efficiency and simplicity but can be included in the

future upgrade.

The original Lorentz collision operator representing the

pitch-angle scattering has a following form:

Cðf Þ ¼ �
2

@

@k
ð1� k2Þ @f

@k

� �
; (4)

where k is the particle pitch defined by k ¼ vk=v with the

parallel velocity along the magnetic field line vk and � is the

collision frequency. The Lorentz collision operator in Eq. (4)

conserves energy but does not conserve the toroidal momen-

tum. An additional term is required to conserve the momen-

tum, which restores the momentum lost by collisions. One

form of the momentum conserving pitch-angle collision

operator is given by Rosenbluth et al.18 and Boozer and

Gardner19 as

Cm:c:ðf Þ ¼ �
m

B
vk
@

@l
l vk

@f

@l
þ uB

T
f

� �� �
; (5)

where B is the magnetic field, l is the magnetic moment, and

T is the temperature. The collision operator in Eq. (5) can be

written as

Cm:c:ðf Þ ¼
�

2

@

@k
ð1� k2Þ @f

@k
� 3

u

v
f

� �� �
; (6)

by using l ¼ mv2
?=2B and T¼ 2/3 E. Here, u is the mean

flow velocity defined by

u ¼ 1

2

ð
f̂ vkdk: (7)

A practical form of the momentum conserving collision

operator, Cm:c:ðf Þ is obtained as a function of f̂ by partial

derivatives and ignoring subdominant terms20 as

Cm:c:ðf̂ Þ ¼
�

2

@

@k
ð1� k2Þ @ f̂

@k

" #
þ 3�

u

v
k: (8)

Now the momentum conserving operator can be imple-

mented by two steps. First, the particle pitch, k is updated

using a Monte Carlo equivalent of the original Lorentz colli-

sion operator in Eq. (4) by

knew ¼ koldð1� �sÞ6½ð1� k2
oldÞ�s�

1=2; (9)

where s is a size of time step.21 The symbol 6 indicates that

the sign is statistically determined by uniformly generated

random number. The next step is to bring the momentum

restoring term 3�ðv=uÞk of Eq. (6) into the right hand side of

Eq. (3). Then, f̂ is calculated as following:

Df̂ ¼ �Dw
@ ln fM

@w
þ 3�

u

v
ks; (10)

which conserves the toroidal momentum. The time step size,

s should be selected to ensure an energy conservation during

each time step.

C. Hamiltonian equations of motion

The guiding-center motions of the test particles are calcu-

lated by Hamiltonian equations of motion. In order to derive
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orbit equations in the non-axisymmetry, it is convenient to

use four variables of three dimensional spatial coordinates on

the flux coordinates and the pitch. We start from Boozer coor-

dinates,22 by which the magnetic field is expressed as

~B ¼ l0

2p
½GðwÞ~r/þ IðwÞ~rhþ b�ðw; h;/Þ~rw�; (11)

where l0 is the permeability of free space, GðwÞ and IðwÞ
are the poloidal and the toroidal current, respectively. The

drift Lagrangian is written as

L ¼ 1

2
mv2
k þ

q

2p
ðw _h � v _/Þ � lB� qU; (12)

where q is the electric charge and U is the potential. The

canonical momenta are

ph ¼
mvk
2p B

l0I þ qw
2p
¼ q

2p
ðl0Iqk þ wÞ; (13)

p/ ¼
mvk
2p B

l0G� qv
2p
¼ q

2p
ðl0Gqk � vÞ; (14)

where qk is the parallel gyroradius defined by qk ¼ mvk=qB.

Then, the drift Hamiltonian is written as

H ¼ 1

2
mv2
k þ lBþ qU ¼ q2B2

2m
þ lBþ qU: (15)

The orbit equations of motion in terms of ðh;/; ph; p/Þ are

obtained from _h ¼ @H
@ph

, _/ ¼ @H
@p/

, _ph ¼ @H
@h , and _p/ ¼ @H

@/.20

Then, a set of orbit equations as a function of

ðw; h;/; qkÞ23 can be obtained throughout the coordinate

transforms and can be expressed as

_h ¼ � 1

J

@H

@qk

 !
w

@p/

@w

� �
qk

� @p/

@qk

 !
w

@H

@w

� �
qk

2
4

3
5

h;/

; (16)

_/ ¼ � 1

J

@H

@w

� �
qk

@ph

@qk

 !
w

� @ph

@w

� �
qk

@H

@qk

 !
w

2
4

3
5

h;/

; (17)

_qk ¼
1

J

@p/

@w

� �
qk;h;/

@H

@h

� �
qk;w;/

� 1

J

@ph

@w

� �
qk;h;/

@H

@/

� �
qk;w;h

;

(18)

_w ¼�1

J

@p/

@qk

 !
w;h;/

@H

@h

� �
qk;w;/

þ 1

J

@ph

@qk

 !
w;h;/

@H

@/

� �
qk;w;h

;

(19)

where the Jacobian J is defined as J ¼ ðq=2pÞ2l0ðGþ iIÞ
with the rotational transform i. The final form of the Hamil-

tonian equations of motion is given in Ref. 20.

One of primary results of POCA is a single guiding-

center orbit motion. POCA reproduces various guiding-

center orbits such as passing, barely trapped, and trapped

particles depending on the magnetic field, particle energy,

and pitch. For instance, Figure 1 presents trajectories of

the guiding-center orbit of a single particle in the axisym-

metric and non-axisymmetric configurations. The non-

axisymmetric perturbation was applied to a typical NSTX

plasma by Eq. (30) with � ¼ 0:05. Trapped particle draws a

perfect banana orbit in the axisymmetry; however, shifts of

the banana bounce points are found in the non-axisymmetry

as shown in Figure 1.

D. Numerical implementation

In order to practically solve the Fokker-Planck equation

with the df Monte Carlo method, POCA follows two steps,

orbit and collision step. In the orbit step, a number of test

particles ð�104Þ are initially distributed at the home flux sur-

face, w0 where the neoclassical quantities are calculated.

Poloidal and toroidal positions are randomly determined by a

random number generator in order to distribute the test par-

ticles uniformly in the poloidal and toroidal spaces. Initial

pitch of each particle is determined to be uniformly distrib-

uted in �1 	 k 	 1. POCA can test any given energy distri-

bution function, but here we only report cases with

monoenergetic and Maxwellian distribution. After the initial-

ization, particles’ guiding-center motions are solved by the

Hamiltonian equations of motion. Fourth order Runge-Kutta

scheme is applied for time integration of the Hamiltonian

variables. Next, a collision step followed by orbit step

updates the particle pitch and calculates f̂ with conserving

the momentum by Eq. (10).

POCA is a local code. It calculates the neoclassical

properties locally at the home flux surface. Thus, it is

required to define an annulus representing the home flux sur-

face. The annulus should be narrow but sufficiently wide to

ensure that particles do not leave the annulus in several colli-

sion times. Particles leaving the annulus are reinserted at the

home flux surface with re-generated random variables of

w; h;/, and k to maintain the total particle number. In this

work, the annulus width is defined as 10 times of the banana

width. After one cycle of orbit and collision step, a new f̂
and df is obtained by df ¼ fM f̂ , which is used to calculate

the actual neoclassical transport properties. Even though the

FIG. 1. Trajectories of the guiding-center orbit of a single particle in the axi-

symmetric (black) and non-axisymmetric (red) configuration. Perfect banana

orbit in the axisymmetry is distorted by the non-axisymmetric perturbations,

which cause shifts of the banana bounce points.
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df code is much faster than standard Monte Carlo code, com-

putational cost is still expensive. POCA is parallelized by

using MPI packages so that the computation speed is signifi-

cantly enhanced, and this allows a larger number of test par-

ticles and/or simultaneous calculations at the multiple flux

surfaces. Typically, POCA requires less than half an hour to

calculate a single local flux surface with 5
 104 test par-

ticles by using 128 processors.

III. BENCHMARKING ON 2D NEOCLASSICAL
TRANSPORT

Various benchmarking tests such as convergence, diffu-

sion, bootstrap current, and momentum conservation are

described in this section. Here, axisymmetric configuration

is used to compare POCA with neoclassical theories and

simulations.

A. Convergence

Convergence of POCA is tested by varying the test par-

ticle number. Total number of test particles is the only vari-

able in this benchmarking, while the background plasma

conditions and initial energy of test particles are fixed.

Figure 2 shows time history of toroidal flow velocity, which

is one example of the neoclassical transport property calcu-

lated by POCA. It is clearly observed that the flow velocity

reaches an asymptotic value in several collision times

regardless of the number of test particles. However, the noise

significantly decreases as the number of particles increases.

This confirms a good convergence feature of POCA when

sufficient test particles are used.

B. Diffusion

Diffusions calculated by POCA are benchmarked with

ORBIT code,24 which is well known guiding-center code.

Figure 3 shows time history of Dw2
n, which is a square of dis-

placement of normalized toroidal flux, in the various colli-

sion frequencies. Test particles of 5000 	 N 	 20 000 are

initially distributed in the home flux surface to ensure that

they are confined in the plasma region for sufficient collision

times. Therefore, Dw2
n in Figure 3 is an average over N par-

ticles. It is observed that the test particles fill a small area at

first, which is approximately the banana width, then diffuse

in the radial direction as discussed in Ref. 25. Good agree-

ments are found between POCA and ORBIT in the various col-

lision frequencies, which indicate POCA describes the

guiding-center motion accurately.

For more quantitative comparison, we define a diffusion

coefficient of guiding-center as

D ¼ dðDw2
nÞ

dt
: (20)

The diffusion coefficient by POCA and ORBIT is equivalent to

the time derivative of square of particle’s displacement,

which is the slope of Dw2
n after filling the banana width in

Figure 3. The diffusion coefficients by POCA also agree

very well with ORBIT in the wide range of collision frequen-

cies as shown in Figure 4.

Theoretically predicted Pfirsch-Schl€uter, plateau, and

banana regimes are observed from Figure 4. Theory predicts

FIG. 2. Time history of toroidal mean velocity with changing the number of

test particles. The flow velocity reaches an asymptotic value in several colli-

sion times, and it shows better convergence and less noises as the test parti-

cle number increases.

FIG. 3. Time history of particle displacement Dw2
n by POCA (solid) com-

pared with ORBIT (dashed) in the various collision frequencies.

FIG. 4. Calculated diffusion coefficients by POCA (solid) compared to ORBIT

(dashed) as a function of collision frequency. The diffusion coefficient

defined by a slope of Dw2
n shows very good agreement with ORBIT in the

wide range of collision frequencies.
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the plateau regime exists at �3=2 	 �R0q=vth 	 1,26 where R0

is the major radius and vth is the thermal speed. Since this

benchmarking case considers a high aspect-ratio plasma with

� � 0:1 and �3=2 � 0:03, the plateau regime should exist at

400 	 � 	 104. As indicated in Figure 4, each regime is

identified by both POCA and ORBIT consistently with the

theory prediction.

C. Bootstrap current

Another benchmarking is performed for ion bootstrap

current calculation. The bootstrap current is defined by

jb ¼
jk
B

� �
B0; (21)

with jk ¼ qu. The brackets hi denote the flux surface aver-

age. Figure 5 shows a scaling of the bootstrap current by

POCA as a function of collisionality. The collisionality is

defined by �� ¼ �qR0=�
3=2vth, where � is the inverse aspect-

ratio.

Hinton and Rosenbluth27 found a dependence of the

bootstrap current on collisionality in the high aspect-ratio

limit as

jb /
1

1þ ffiffiffiffiffi
��
p þ a��

; (22)

with a¼ 0.54. The result from another df code16 indicates a

similar dependence of the bootstrap current on collisionality,

but a¼ 1.44 from the simulation. Scaling of the bootstrap

current agrees well with the predictions from the theory as

shown in Figure 5.

D. Momentum conservation

Conservation of the toroidal momentum is critical to sep-

arate the non-axisymmetric effect from the axisymmetric one

in transport, since it suppresses particle transport induced

by collisions and drifts in the axisymmetric configuration.

Therefore, the non-ambipolar transport driven by the non-

axisymmetric perturbations can be distinguished from the

transport driven in the axisymmetry through conserving the

toroidal momentum. The easiest way to test the momentum

conservation is to check a particle flux across the flux surface

in the axisymmetry.28,29

The radial particle flux C is calculated by

C ¼
ð
~vd � ~rwdf d3v

� �
; (23)

where vd is the drift velocity. The radial particle flux should

vanish when it is driven only by like-particle collisions in the

axisymmetry since an inward particle flux is generated to

conserve the momentum. Figure 6 shows time history of

the particle flux in the axisymmetric configuration using the

modified momentum conserving operator compared to the

non-conserving Lorentz operator. The particle flux using

the momentum conserving operator vanishes in several colli-

sion times, while a finite flux remains when using the non-

conserving operator even in the axisymmetry. Thus, it is

confirmed that the modified pitch-angle scattering collision

operator used in POCA conserves the toroidal momentum as

it should.

IV. NON-AMBIPOLAR TRANSPORT

Axisymmetric magnetic surfaces can be deformed by

non-axisymmetric magnetic perturbations. Non-ambipolar

transport driven by the non-axisymmetric perturbations is

important since a very small perturbation can significantly

change the conventional neoclassical transport. In this sec-

tion, the non-ambipolar particle transport is calculated in a

perturbed tokamak, and effects of the magnetic perturbations

on transport are discussed.

POCA is developed to easily handle non-axisymmetric

magnetic field information. For instance, POCA can read

axisymmetric equilibrium from ESC and EFIT, and non-

axisymmetric perturbation information from IPEC and

FIG. 5. Scaling of normalized bootstrap current as a function of collisional-

ity. Plotted bootstrap currents are normalized to the bootstrap current at the

low collisionality where 	10�3. POCA calculation shows a good agreement

with a theoretical prediction (dashed) and a scaling from another df code

(dashed-dotted).

FIG. 6. Time history of radial particle flux using the modified momentum

conserving collision operator (solid) and the original Lorentz operator

(dashed). The particle flux vanishes when using the momentum conserving

collision operator as expected by theory, while a finite flux remains when

using the non-conserving operator even in the axisymmetric configuration.
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analytic model. Then, the axisymmetric equilibrium field

and the non-axisymmetric perturbations are combined to

give the total non-axisymmetric magnetic fields as

Bðw; h /Þ ¼ B2Dðw; hÞ 1þ
X
mn

dmn cos ðmh� n/Þ
" #

; (24)

where dmn is the strength of the perturbation by a ðm; nÞ
mode.

In order to separate a resonant effect from a non-resonant

one, an analytic non-axisymmetric perturbation model,

Bðw; h/Þ ¼ B2Dðw; hÞ½1þ dmn cos ðmh� n/Þ� (25)

was superimposed to the axisymmetric equilibrium field

where q0 ¼ 1:05 and qa ¼ 2:8. ESC equilibrium solver30 is

used to create the axisymmetric equilibrium B2Dðw; hÞ using

a prescribed pressure and safety factor profile. The analytic

non-axisymmetric perturbation model applies a single mode

which resonates at q ¼ m=n rational surface, thus m=n ¼
2=1 mode resonates at q ¼ 2 flux surface in this model. Non-

ambipolar particle flux around q ¼ 2 flux surface on the

model perturbation was calculated by scanning poloidal

mode number m from �6 to 10 and fixing toroidal mode

number as n ¼ 1. Various collision frequencies from 20 to

2000 are selected where 0:012 	 �� 	 1:2. The normalized

non-axisymmetric magnetic perturbation strength (dmn) is

selected to be 0.02 and 0.05. They are stronger than in con-

ventional experiments but useful to show a clear non-

axisymmetric effect on the non-ambipolar transport.

Calculation results indicate that the resonant perturba-

tion significantly enhances the non-ambipolar particle flux as

shown in Figure 7. The non-resonant perturbations also

enhance the particle flux; however, their effects are generally

weaker than the resonant one. It is also clear from Figure 7

that the stronger perturbation leads to stronger non-

ambiploar transport for both resonant and non-resonant

modes. The enhanced non-ambipolar particle flux is directly

correlated to the magnetic braking driven by NTV since the

non-ambipolar flux is proportional to the NTV torque.31 The

non-ambipolar transport and the resulting NTV transport

provide an additional channel for toroidal momentum trans-

port in tokamaks. Experimentally, the modification of toroi-

dal rotation by the magnetic perturbations is called the

magnetic braking. Therefore, significant enhancements of

the non-ambipolar particle flux by the resonant perturbation

clearly indicate a strong resonant nature of magnetic braking,

which is typically considered as non-resonant. This trend can

be enhanced by plasma response to the magnetic perturba-

tions, which mostly amplifies the resonant modes.

Figure 8 shows the particle flux in the resonant perturba-

tions as a function of collisionality. It is observed that the par-

ticle flux increases, reaches a maximum at �� � 0:1, and then

slowly decreases as the collisionality increases. Such a trend

is consistent with non-ambipolar transport theory and model-

ing,7,32 which might be associated with a bifurcation of the

superbanana-plateau and 1=� regimes. We note that the non-

ambipolar transport is very sensitive to a radial electric field.

When the electric field exists, the non-ambipolar transport

can be complex and enhanced by resonances among the

electric field, magnetic precession and/or the bounce fre-

quency. Effects of the radial electric field on the transport is

beyond the scope of this study, but will be potentially investi-

gated in the future.

V. NEOCLASSICAL TOROIDAL VISCOSITY

POCA can directly calculate the NTV torque. In general,

the NTV torque is expressed as he/ � $ � Pi with an aniso-

tropic pressure tensor, P and the toroidal covariant basis,

FIG. 7. Non-ambipolar particle flux by ð�6 	 m 	 10; n ¼ 1Þ perturbations

around q ¼ 2 flux surface for (a) dmn ¼ 0:02 and (b) dmn ¼ 0:05. Peak parti-

cle fluxes by ðm ¼ 2Þ resonant perturbation clearly indicate resonant nature

of magnetic braking, which is typically considered as non-resonant.

FIG. 8. Non-ambipolar particle fluxes induced by m=n ¼ 2=1 resonant per-

turbation as a function of collsionality. Peaks are found around �� � 0:1
similarly with theory prediction.
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e/ ¼ @x=@/. Since the Jacobian of Boozer coordinates is

proportional to B�2, the NTV torque can be expressed in

Boozer coordinates as33

he/ � $ � Pi ¼
1

2

@dP

@/

� �
¼ dP

B

@B

@/

� �
; (26)

where the anisotropic pressure dP is defined by

dP ¼
ð

d3v
1

2
mv2
? þ mv2

k

� �
df ; (27)

and hi denotes the flux surface average. The NTV torque can

be calculated with the df Monte Carlo method throughout

calculating the anisotropic pressures and utilizing the spec-

trum of magnetic perturbations.34 When expressing the non-

axisymmetric magnetic perturbations with Fourier series as

dB

B0

¼
X
mn

dmnðwÞ cos ðmh� n/Þ; (28)

the NTV torque can be estimated by the following equa-

tion:33–35

he/ � $ � Pi ¼ B0

X
mn

ndmn
dP

B
sinðmh� n/Þ

� �
: (29)

Thus, the NTV torque in POCA is a sum of toroidal torques

driven by each ðm; nÞ Fourier component of the magnetic

perturbations.

The NTV torque calculation by POCA is compared with

a generalized combined NTV theory derived from a bounce-

averaged drift-kinetic equation12 as well as 1=� theory.10

Circular plasma in the large aspect-ratio is assumed where

R ¼ 10 m, a ¼ 2:5 m, and B0 ¼ 10 T are chosen for the com-

parison. A single mode magnetic perturbation is applied,

which is expressed as

dB

B0

¼ �w2
n cosð7h� 3/Þ; (30)

where wn is the normalized poloidal flux and � is fixed to be

0:02. The perturbation strength dB=B0 is a function of radial

coordinates so that dB=B0 is order of 10�4 at the core and

10�2 at the edge, which is consistent with a typical NTV

experiment.

The kinetic profiles of temperature, density, and safety

factor prescribed to construct an axisymmetric equilibrium

by ESC are shown in Figure 9. The safety factor profile is

modeled by qðqÞ ¼ 1:2þ 9:8q2, where q is a square root of

normalized toroidal flux. Therefore, m=n ¼ 7=3 mode reso-

nates at q ¼ 7=3 surface around wn � 0:5 as indicated by a

vertical line in Figure 9. This benchmarking case is identical

to the FORTEC-3D benchmarking with the same theory in

Ref. 32 except that the deuterium species is considered in

this paper. Density profile is prescribed as nðqÞ ¼ n0ðn1

þ n2 expð�n3qn4ÞÞ with n1 ¼ 0:1, n2 ¼ 0:9, n3 ¼ 5:0, and

n4 ¼ 4:0. The density at the magnetic axis, n0, is varied from

2:5
 1017 to 2:5
 1019 while fixing the temperature profile

with T0 ¼ 0:5 keV. Thus, collisionality is 10�2 < �� < 101

depending on the radial positions for each n0. Note that n0 is

changed for collisionality scan but the density profile shape

is the same for every collisionality. The electric potential is

currently neglected, thus E
 B rotation is assumed to be

zero in this study. The plasmas in this analysis are close to

the 1=� regime depending on the magnetic precession.

We checked dB2 scaling of NTV, as it is one of funda-

mental features predicted by NTV theory. The NTV torque

by POCA is scaled by the perturbation strength, � when

n0 ¼ 1:0
 1019. Figure 10 shows the NTV dependence on

the perturbation strength at the resonant surface (wn ¼ 0:5)

and at the non-resonant surfaces (wn ¼ 0:35; 0:65). The scal-

ing clearly indicates that the NTV follows the dB2 depend-

ence at both resonant and non-resonant flux surfaces, which

is consistent with the theory prediction.12,36

Then, we compare NTV torque profiles by POCA with

existing analytic theories. First, POCA is compared to a

combined analytic formula12 in the various collisionalities in

Figure 11. Good agreements are found in the overall trend of

FIG. 9. Kinetic profiles of temperature, density, and safety factor used for

benchmarking of the NTV torque. Density profile with n0 ¼ 1:0
 1019 is

drawn. n0 is changed for collisionality scan, but the profile shape is the same

for every collisionality. Vertical line indicates a resonant flux surface at

q ¼ 7=3.

FIG. 10. Dependence of NTV torque on the magnetic perturbation strength.

The dB2 dependence predicted by theory is found by POCA at the resonant

and non-resonant flux surfaces.
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profiles, and the amplitudes agree reasonably well within a

factor of 2 depending on collisionality. Note that Maxwellian

energy distribution is selected for the test particle energy dis-

tribution, thereby high energy particle effects in the Maxwel-

lian tails are taken into account in the POCA calculations.

Peak NTV torques nearby resonant flux surface indicates a

clear resonant nature of the magnetic braking driven by NTV

transport regardless of collisionality. Biggest discrepancy is

found in the low collisionality case where the collision fre-

quency is less than 30, but very good agreements are found

in the high collisionality cases. Discrepancies depending on

the collisionality can be explained by different collision

models used in the combined theory and POCA. As previ-

ously described, POCA uses the pitch-angle scattering colli-

sion operator conserving momentum, while the combined

analytic theory uses Krook collision operator which is less

accurate in the low collision frequency. This consistently

explains the improved agreements in the high collisionality,

where the Krook model becomes accurate.

Second, we compare the NTV profiles with Shaing’s

1=� theory.10 The 1=� theory uses a pitch-angle scattering

collision model but is approximated by separating regimes

with collisionality. NTV profiles by POCA, combined for-

mula, and 1=� formula in the low and high collisionalities

are presented in Figure 12. The 1=� formula predicts stron-

ger resonance and weaker non-resonance of NTV in the low

collisionality. On the other hand, POCA and the combined

formula predict milder resonance and broader NTV profiles

than the 1=� formula. In the high collisionality, POCA and

the combined formula approach 1=� formula, and a good

agreement is found among them at the resonant flux surface.

This implies all models consistently describe the resonant

feature of the NTV transport. However, discrepancies still

remain at the non-resonant flux surfaces even in the high col-

lisionality. This might be caused by the regime separation of

the 1=� formula. Technically, regimes are always overlap-

ping even at a single flux surface due to different pitch-angle

and energy of particles. Since the combined formula and

POCA take into account the Maxwellian energy distribution

without separating regimes, the collisionality varies depend-

ing on the energy distribution, and the regimes overlap at the

flux surface unlike the 1=� theory. This may explain the dis-

agreements, especially at the edge where the collision

frequency is lower than the core by up to 30% in this bench-

marking case.

Note that the Maxwellian energy distribution predicts

larger NTV torques than monoenergetic one as shown in

Figure 12. The high energy particles in the Maxwellian tails

strongly impact on NTV transport, especially at the non-

resonant flux surfaces, and their effects are relatively small

in the resonant perturbations. In the high collisionality, col-

lisional effects are found to become more dominant than

the high energy particle effects both in the resonant and

non-resonant magnetic perturbations.

Throughout the various benchmarking tests, it is shown

POCA reflects an essential physics of the NTV transport

such as dB2 dependence and the resonant peak, consistently

with the theories. In addition, more realistic physics models

and numerical conveniences embedded in POCA are benefi-

cial for the NTV analysis in the future.

VI. SUMMARY

A new df particle orbit code, POCA has been developed

to calculate the neoclassical transport in perturbed tokamaks.

POCA employs a df Monte Carlo method with the modified

Lorentz collision operator conserving the toroidal momentum.

FIG. 11. Comparison of the NTV torque between POCA (symbol) and the

combined theory (solid line). Peak NTV torques are clearly observed around

the resonant surface at wn ¼ 0:5 regardless of collisionality. NTV torques

are rapidly reduced at the non-resonant surfaces. The shapes of NTV profiles

show good agreements with the theory, but there are discrepancies in ampli-

tudes depending on collisionality, in particular, in the low collisionality

regime.

FIG. 12. Comparison of the NTV torque by POCA using Maxwellian and

monoenergetic energy distribution with the combined and 1=� theory in the

(a) low and (b) high collisionalities. POCA and the combined formula

approach 1=� formula as the collisionality increases.
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Neoclassical transport properties such as diffusion and

bootstrap current were successfully benchmarked in the

axisymmetric configuration. Non-axisymmetric neoclassical

transports such as non-ambipolar particle flux and NTV torque

were calculated and compared with the theories using an ana-

lytic non-axisymmetric perturbation model. POCA demon-

strated the clear resonant nature of the non-ambipolar

transport, NTV, and thus magnetic braking. The successful

benchmarking results support that POCA can be applicable to

experimental and theoretical studies on the non-ambipolar

transport in perturbed tokamaks, thanks to its accuracy and

computational benefits.
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