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Most Alfv�enic activity in the frequency range between toroidal Alfv�en eigenmodes and roughly

one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl.

Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to �1.2 MHz, are modes propagating

counter to the neutral beam ions. These have been modeled as Compressional and Global Alfv�en

Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with

the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-

propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the

company of a low frequency, n¼ 1 kink-like mode. In this paper, we present measurements of the

spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those

measurements to a simple model of CAE and present a predator-prey type model of the curious

non-linear coupling of the hfCAE and the low frequency kink-like mode. VC 2013 AIP Publishing LLC
[http://dx.doi.org/10.1063/1.4801663]

I. INTRODUCTION

The National Spherical Torus eXperiment (NSTX) is

a medium size (major radius� 0.85 m, minor radius

� 0.65 m), low aspect ratio tokamak capable of toroidal

fields up to 5.6 kG and plasma currents up to 1.4 MA.1 The

plasma can be heated with up to 6 MW of deuterium neutral

beams, which are injected with energies from �60 keV up to

90 keV. At these energies, the beam ion velocities are several

times the Alfv�en velocity over the typical ranges of plasma

density and magnetic field. The super-Alfv�enic fast ion pop-

ulation routinely excites a broad spectrum of MHD and

Alfv�enic mode activity. The instabilities that are the focus of

this paper are co-propagating (propagating in the same direc-

tion as the beam ion injection) Compressional Alfven

eigenmodes (CAEs) seen in beam heated H-mode plasmas at

frequencies above the ctr-propagating Global Alfv�en

eigenmodes (GAE) and CAE, between roughly 1.2 MHz and

2.5 MHz (Fig. 1(a)).

Figure 1 shows spectrograms of a Mirnov coil signal cov-

ering three frequency bands, each with its own assortment of

modes as identified in the figures. In the highest frequency

band, Fig. 1(a) is an example of the multiple co-propagating

CAE to be discussed here.2,3 For convenience, these co-

propagating CAE will be referred to as "high frequency CAE"

or hfCAE to differentiate from the lower frequency, counter-

propagating CAE and GAE. The ion cyclotron frequency on

the outboard midplane is 2.17 MHz. The intermediate fre-

quency band (Fig. 1(b)) is populated largely by what are

believed to be counter-propagating CAE and GAE. These

modes exhibit a broad range of behaviors, including bursting,

frequency chirping, avalanching of GAE, and continuous

mode activity.4–9 The drive for these modes is through the

resonance condition x¼xciþ k||Vb||, where x, xci> 0 and

k||Vb||< 0, and Vb|| is the beam ion parallel velocity. In the

low frequency band are Toroidal Alfv�en Eigenmodes (TAE),

reversed-shear Alfv�en Eigenmodes (rsAE), and a variety of

kink and fishbone-like modes (Fig. 1(c)). Similar modes, from

TAE up to the co-propagating hfCAE, have also been seen in

the beam heated, low aspect ratio MAST10–13 and the first

observations of the broad spectrum of Alfv�enic activity were

made on START.13,14 Experimental and theoretical efforts are

underway to characterize these various modes, understand the

mechanisms for excitation of the modes, how apparently dis-

parate modes interact, and how these modes affect the fast ion

population.15–29

The hfCAE typically consist of a cluster of up to seven

or eight modes, spaced of order 100 kHz apart and with to-

roidal mode numbers increasing sequentially with increasing

frequency. Typically, the toroidal mode numbers are in the

range from n� 6 to n� 14. The mode frequency spacing,

and other characteristics discussed below, will be shown to

be consistent with a simple dispersion relation for CAE. The

presence of these modes is highly correlated with a low fre-

quency kink-like mode which often appears at the end of the

current ramp-up phase as the q-profile is relaxing. It is postu-

lated that the low frequency kink mode modifies the fast ion

distribution, populating the region of fast ion phase space

resonant with the hfCAE.30 However, as will be seen, there

is also some evidence for a more direct interaction.

Figures 2 and 3 show some details of the equilibrium

plasma in which these modes are seen. In Fig. 2(a), the

plasma current reaches the target flattop value of 0.8 MA at

about 0.2 s. Neutral beam heating starts early in the current

ramp phase to heat the plasma, assist current ramp-up with

beam driven current, and to trigger an early H-mode
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transition (at � 0.1 s, green bar). The neutron rate, Fig. 2(b),

provides a constraint, through TRANSP modeling, on the

beam-ion beta.

The radial profiles of the electron density, rotation fre-

quency, and q-profile at the time of the hfCAE activity are

shown in Fig. 3. The very flat density profile, Fig. 3(a), is

common in the early period of H-modes on NSTX, and pre-

cludes internal measurement of the mode profiles with the re-

flectometer array. The modes of interest here, the hfCAE,

have so far only been seen in H-mode plasmas with flat or

even hollow density profiles. The rotation profile, Fig. 3(b),

shows relatively slow toroidal rotation. In the region of peak

simulated CAE amplitude (blue region) around R¼ 1.3 m,

the rotation frequency is about 6 kHz. The kink frequency is

similar to the core rotation frequency of �8–10 kHz. As this

is near the end of the current ramping phase, the current pro-

file is still hollow.

The magnetic fluctuations are measured with Mirnov

coils. The Mirnov coil array provides good relative phase

and amplitude measurements to frequencies greater than 2

MHz. The phase measurements from a toroidal array are

used to derive the toroidal mode number n. A limited poloi-

dal array provides some information on the poloidal structure

in the outboard-midplane region. The phase and amplitude

measurements, including coils measuring toroidal magnetic

FIG. 2. (a) Plasma current and beam power evolution in time, peak beam

power was 6 MW. (b) Neutron rate in time.

FIG. 3. (a) Flat density profile typical of early phase of NSTX H-modes.

(b) Rotation profile reaching �10 kHz on axis, and (c) typical reversed-shear

q-profile as reconstructed from MSE data.

FIG. 1. Spectrograms of magnetic fluctuations; (a) co-propagating, high fre-

quency CAE, (b) ctr-propagating CAE and GAE, (c) rsAE, TAE, and kink-

like modes.
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fluctuations, are further used to show the shear vs. compres-

sional polarization of the magnetic fluctuations at the plasma

edge.

In this paper, we report largely on the experimental

characteristics of the class of modes with frequencies typi-

cally between �1.2 MHz and �2.4 MHz, or up to approxi-

mately the deuterium ion cyclotron frequency, seen in beam

heated H-mode plasmas. In Sec. II of this paper, experimen-

tally determined characteristics of the hfCAE will be pre-

sented, including toroidal mode numbers and some limited

information on the poloidal structure. In Sec. III, the mode

structure and dispersion relation will be compared to a sim-

ple model of CAE. In Sec. IV, an interesting (and unex-

plained) coupling between the CAE burst frequency and the

kink frequency will be demonstrated, and Sec. V will sum-

marize and discuss the observations.

II. CHARACTERISTICS OF THE hfCAE

The spectrogram in Fig. 4 shows the hfCAE in greater

detail. Five strong frequency bands, with at least two more

weak bands, one at higher frequency, the other at lower fre-

quency, are seen in Fig. 4(a). Each frequency band consists

of at least two modes with significant amplitude (Fig. 4(b)).

This example, with the more complicated double peak in

each band, was chosen to provide the opportunity for a more

extensive comparison with theoretical predictions. Analysis

of the two peaks in each frequency band in Fig. 4 find that

there is a double sequence of ascending mode numbers (col-

ored blue and red here) as indicated in Fig. 4(b), with the

modes in each of the sequences having different, unique

characteristics. Subsequently, we will refer to them as the

“blue” and “red” sequences, with the blue sequence having

larger amplitude on the Mirnov coils.

In the following analysis, we will focus on the two

strongest bands in the spectrum shown in Fig. 4(b). The

modes include the n¼ 11 and n¼ 12 peaks highlighted in

blue at 1.508 MHz and 1.619 MHz, respectively; the corre-

sponding peaks from the “red” band are at 1.522 MHz and

1.638 MHz with, respectively, toroidal mode numbers n¼ 10

and n¼ 11. The modes are propagating in the co-direction,

that is, co-parallel to the plasma current and the beam injec-

tion. The polarization (shear vs. compressional) analysis and

some information on the poloidal structure of the modes are

shown in Figs. 5 (“blue” sequence) and 6 (“red” sequence).

The poloidal variation of the amplitude of the magnetic fluc-

tuations shown in Fig. 5(b) and the phase step in Fig. 5(a)

suggest that the lower frequency (blue) sequence has a stand-

ing wave structure with a midplane node, consistent, as will

be seen, with models of the CAE. The data shown in Figs.

6(a) and 6(b) for the “red” sequence are more consistent with

a combination of a standing wave with an antinode on the

midplane combined with a poloidally propagating wave of

about half the amplitude, as indicated by the fitted curves in

Fig. 6. This interpretation, although consistent with the data,

is by no means definitive. The poloidal array spans a fairly

narrow range of poloidal angle and consists of only four

coils.

The polarization data are shown in Figs. 5(c) and 6(c) as

a composite Lissajous diagram for each of the modes. The

Lissajous figures are constructed using the poloidal and to-

roidal magnetic fluctuation amplitudes, together with the rel-

ative phase shift between the poloidal and toroidal

FIG. 4. Detail of spectrogram in Fig. 1, showing detail of high frequency,

co-propagating CAE cluster. Toroidal mode numbers are indicated.

FIG. 5. Poloidal structure and polarization of the

1.51 MHz (solid circles) and 1.62 MHz modes (solid

squares); (a) relative phase compared to phase of

standing wave for both modes, (b) normalized am-

plitude compared to amplitude of standing wave,

solid lines are fits to the data assuming a standing

wave, (c) Lissajous figure showing mixed shear and

compressional polarization for both modes.
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components of the magnetic fluctuation. The polarization of

the magnetic fluctuations distinguishes between shear or

compressional waves, however, the measurement with the

Mirnov coils only provides the polarization near the plasma

edge; the polarization of modes varies with plasma radius in

simulations.28,29 The blue, lower frequency series (and

indeed, the most commonly seen hfCAE), consistently shows

an elliptical polarization, although still predominantly com-

pressional. The higher frequency series (red), in this case

and others, is consistently more purely compressional, evi-

denced by the narrower ellipse oriented roughly parallel to

the equilibrium magnetic field.

Unlike the counter-propagating CAE and GAE, the

hfCAE must satisfy a simpler resonance condition,

x� k||Vb|| (as x<xci). The hfCAE typically have larger k||

than the lower frequency GAE and CAE, but the resonance

condition points to a region of fast ion phase space lightly

populated in classical beam deposition and slowing down

calculations. In Fig. 7, the resonance condition for the

hfCAE are overlaid on the (unperturbed) fast ion distribution

as calculated in the TRANSP code.

III. MODEL OF hfCAE BASED ON SIMPLE
DISPERSION RELATION

The modes in the frequency range between 1.2 MHz and

2 MHz have been identified as CAE based largely on com-

parison of the spectrum with the dispersion relation for CAE.

In this section, the observed mode spectrum, toroidal mode

numbers, and some limited data on poloidal structure will be

compared with solutions of a simplified Alfv�en wave disper-

sion relation. The frequency dependence on toroidal mode

number is relatively easily compared as the toroidal wave-

length is accurately measured. The experimental data on the

poloidal mode structure are limited, but sufficient to identify

the modes as either up-down symmetric or anti-symmetric,

as described earlier. It has not been possible to compare in-

ternal measurements of the mode profiles with theoretical

predictions, as invariably this band of modes is only present

when the density is either nearly flat or even hollow (inside

the pedestal), precluding measurements of mode structure

with the reflectometer.

The dispersion relation for Alfv�en waves is isotropic at

low frequency, x�xci, that is, waves propagating parallel

or perpendicular to the magnetic field follow the same

dispersion relation, making the finding of eigenmodes (albeit

with a very simplified dispersion relation) relatively

easy5,17,22,31 The nominal axisymmetry of tokamaks allows a

clean separation of the toroidal variable with the introduction

of the toroidal mode number, n. Beginning with the basic

Alfv�en wave dispersion relation,

V2
Alfv�enr2E ¼ @2

@t2
E; (1)

and separating the toroidal and perpendicular parts in cylin-

drical geometry (R,z,u),

FIG. 6. Poloidal structure and polarization of the

1.52 MHz (solid circles, partially obscured by

squares) and 1.64 MHz modes (solid squares); (a)

relative phase, (b) normalized amplitude for same

two modes, solid lines are fits to the data assuming a

mix of standing and propagating waves, (c)

Lissajous figures showing compressional polariza-

tion for both modes.

FIG. 7. Fast ion distribution calculated by TRANSP at the midradius, near

peak in calculated hfCAE mode amplitude.
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V2
Alfv�en r2

? �
n2

R2

� �
E ¼ �x2E; (2)

yields a 2-D wave equation with a potential well

r2
?Eþ Vðx;R; zÞE ¼ 0; (3)

Vðx;R; zÞ ¼ x2

V2
Alfv�en

� n2

R2
: (4)

In practice, we are looking for the lowest frequency solu-

tions, thus the well term will be negative where the Alfv�en

velocity is high and the waves will be evanescent. Thus, this

perpendicular part of the wave equation describes standing

waves trapped in a 2-D potential well.

The perpendicular part of the dispersion relation is not

so easily separated, although approximate solutions have

been found.17,31 Here, we describe solutions by solving the

perpendicular, two dimensional equation numerically. The

solutions to the 2-D wave equation can easily be found by

converting Eq. (3) to a diffusion equation through the addi-

tion of a “dummy” term,

r2
?Eþ Vðx;R; zÞE ¼ @

@s
E: (5)

Here, the potential well, V(x,R,z), functions as a source term

in the diffusion equation.

The numerical calculation starts with an initial guess for

the eigenfunction, and the diffusion equation is iterated until

the r.h.s. term is effectively zero, thus satisfying the original

dispersion relation. At each step, the mode frequency,

imbedded in the potential term, is adjusted to minimize the

r.h.s., and then the shape of the eigenfunction is adjusted. In

practice, the frequency converges quickly, the eigenfunction

shape more slowly. At each step, the boundary conditions

are enforced (zero amplitude at the “wall”) with amplitude

rescaled to avoid “zero” solution. This approach works well

for finding the lowest order poloidal eigen-state, which we

label by m¼ 0.5 (m is the number of standing poloidal wave-

lengths in the eigen-state) shown in Fig. 8(a). Higher order,

orthogonal, solutions are found by eliminating the lower

order eigen-state components from the solution at each step.

The solutions for a given toroidal mode number alter-

nate between up-down symmetric (even) and up-down anti-

symmetric (odd) solutions, corresponding to trapped waves

with half-integer wavelengths (m¼ 0.5, 1.5, 2.5, …) and full

integer (m¼ 1, 2, 3, …) wavelengths in the poloidal direc-

tion. Simulations of the n¼ 11, m¼ 0.5, 1.0, and 1.5 modes

are shown in Fig. 8. For these simulations, the boundary con-

dition, indicated by the blue curves in Fig. 8, for the eigen-

mode calculation approximates the locations of the passive

plates and the vacuum vessel. The Mirnov coil positions and

approximate size are indicated in Figs. 8(a)–8(c) by the

green rectangles. The experimental poloidal profile of mag-

netic fluctuations is compared to the simulated magnetic

fluctuation profile for the m¼ 1.0 simulation in Fig. 9. The

midplane vertical (poloidal) wavelength appears somewhat

shorter than the experimental wavelength.

The frequency spacing of the poloidal eigen-states

(m and mþ 0.5) is comparable to the frequency spacing of

FIG. 8. Approximate eigenmodes for the

first three poloidal eigen-states with n¼ 11.

(a) The lowest order n¼ 11 poloidal eigen-

state, (b) the second order n¼ 11 poloidal

eigen-state, and (c) the third order n¼ 11

poloidal eigen-state.

FIG. 9. Comparison of simulated (black line) and experimental (green bars)

magnetic fluctuations at the wall for the mode shown in Fig. 8(b).
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toroidal harmonics (n and nþ 1). Thus, overlapping fre-

quency sequences, alternating between even and odd poloi-

dal structure as seen in the experiment, are consistent with

the simulations. The frequencies of the m¼ 1 modes from

n¼ 9 to n¼ 13 range from 1.27 MHz for the n¼ 9 mode up

to 1.62 MHz for the n¼ 13 mode. The experimental frequen-

cies range from 1.28 MHz up to 1.73 MHz, but including a

Doppler correction, using a plasma rotation frequency of

�6 kHz (see Fig. 3), reduces the frequency range from

1.23 MHz to 1.66 MHz, in pretty good agreement with the

theoretical calculation (Fig. 10, blue curve). The Doppler-

corrected experimental frequencies for the even modes (red

sequence) also agree fairly well with the eigenfrequencies

for the m¼ 1.5 poloidal eigen-states (Fig. 10, red curve),

although the poloidal measurements suggested at least a par-

tially propagating, rather than standing, wave.

Comparison of the experimental mode spectrum, charac-

teristics of the mode structure (up-down even or odd mode

structure) agrees reasonably well with a simple theoretical

calculation of mode frequencies and structure. The theoreti-

cal calculations of the n¼ 9 through n¼ 13 modes for the

odd poloidal modes find good agreement with the experi-

mental mode frequencies. The double sequence of modes

with even and odd modes is in qualitative agreement with

the theoretical modeling.

IV. BURSTING OF hfCAE

The hfCAE are not “constant” amplitude waves, but

appear as a sequence of bursts with a burst frequency in the

range of a few kHz. This can be seen in Fig. 11, particularly

in the time interval from �0.2 s to 0.205 s where particularly

large, long period bursts are seen. A spectrogram of the abso-

lute value of the magnetic fluctuations in the CAE frequency

range shows the burst frequency more clearly (Fig. 11(a)).

Fig. 11(b) shows the rms magnetic fluctuation level calcu-

lated over the frequency range from 1.2 MHz to 2.0 MHz for

the data shown in Fig. 4. The dashed red curve shows the fre-

quency evolution of the n¼ 1 kink-like mode. The dominant

(natural) burst frequency is at frequencies less than 5 kHz,

however, there is significant modulation of the hfCAE burst

frequency at the kink mode frequency.

Some features of the bursting and modulation of the

burst frequency by the n¼ 1 kink can be seen more clearly

in a second example shown in Fig. 12. This is a more typical

case where each frequency band is a single mode, rather than

the double sequence of modes as discussed in Sec. II. The

hfCAE onset in Fig. 12 follows shortly the appearance of an

n¼ 1 kink-like mode, just as for the example in Fig. 11. In

Fig. 12(a) is the spectrogram showing the n¼ 1 kink and its

second harmonic. Fig. 12(b) shows a spectrogram covering

the frequency range of the hfCAE where the contour lines

are color-coded to indicate the dominant toroidal mode num-

bers. The color code is indicated in the figure, with black

indicating toroidal mode number, n¼ 8, and red, green, blue,

cyan, and magenta n¼ 9 through 13, respectively.

Fig. 12(c) shows a spectrogram of the hfCAE amplitude.

Initially, the natural burst frequency is about 3.5 kHz and the

kink frequency is greater than 10 kHz. As the kink frequency

drops below �6 kHz after 0.235 s, the burst frequency is

locked to the kink frequency (dashed black line). The final

panel, Fig. 12(d), shows the evolution of the phase between

the n¼ 1 kink and the burst modulation at that frequency,

demonstrating that the frequencies are not just close, but are

strongly correlated. Before �0.235 s, the hfCAE bursts are

uncorrelated with the kink, but by 0.24 s they are strongly

correlated.

A superficially similar correlation between Toroidal

Alfv�en eigenmode bursts and a fishbone-like kink has been

reported.32,33 In that case, the TAE bursts were “entrained”

in the kink mode; that is multiple TAE formed a wave packet
FIG. 10. Comparison of simulated and Doppler-corrected experimental fre-

quencies for m¼ 1 modes (blue) and m¼ 1.5 (red).

FIG. 11. (a) Spectrogram of rms amplitude of hfCAE in frequency range

1.2 MHz to 2 MHz, (b) rms fluctuation amplitude in frequency range

1.2 MHz to 2 MHz used for spectrogram in (a).
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that propagated with the kink frequency, appearing as bursts

to local measurements (a form of three-wave coupling). The

hfCAE bursts, in contrast, are global, not toroidally local-

ized; that is, the bursts occur simultaneously on all coils in

the toroidal and poloidal arrays, thus are not a form of three

wave coupling. For example, in Fig. 13, the signals from

each of three coils separated toroidally by 120� are digitally

filtered over the range 1.4 MHz to 2 MHz. The signals are

overlaid with the kink oscillation obtained by again digital

filtering from 2 kHz to 30 kHz. It is seen that while there are

small differences in the shape of the bursts, the bursting is

global. In that respect, they are unlike the TAE bursts which

were trapped in the n¼ 1 kink wave and thus toroidally

localized, meaning the wave packets (bursts) propagate in

the toroidal direction.32,33 One interpretation of this observa-

tion is that the stability of the bursts is being modulated at

the n¼ 1 kink frequency, as explained below.

The spectrogram of the burst frequency (Fig. 12(c)) was

calculated from the rms fluctuation amplitude evolution

averaged over all of the hfCAE modes between 1.4 MHz and

2.0 MHz. Similar spectrograms may be constructed by filter-

ing to extract the evolution of each mode separately. Early it

is seen that the bursting of each of the modes, n¼ 9 through

n¼ 12, are strongly correlated, with bursts separated by qui-

escent periods (Fig. 14). Here, it appears that the n¼ 11

mode is triggered first, with the modes at higher and lower

frequency triggered later. The simplest explanation is that

the n¼ 11 mode is the least stable, and thus is triggered first

by the rising fast ion beta.

Later in time the bursting is not so distinct, with the

mode amplitude modulated, but persisting between bursts.

There is also weaker correlation of the bursts between

modes, with the n¼ 11 hfCAE most strongly modulated at

the kink frequency (Fig. 15).

V. PREDATOR-PREY MODEL OF BURSTING

The repetitive bursting of modes can be simulated with

a simple predator-prey model,34,35 as illustrated in Fig. 16.

In this model, the fast ion beta assumes the role of the

“prey,” increasing linearly with source rate in the absence of

mode induced losses. The mode amplitude plays the role of

“predator,” causing losses of fast ions. The linear drive for

the mode is assumed proportional to the fast ion pressure (or

more accurately, the number of fast ions resonant with the

mode). There is a threshold in fast ion beta, bc, set by the

natural damping rate for the mode, @A/@t�A [cd(B� 1)],

where A represents the mode amplitude, cd is the linear

damping rate and B¼ bf/bc or cdrive/cd. The fast ion beta is

assumed to evolve as @B/@t� S�A2B, with S being the

source rate of fast ions, and again, bf represents the number

of fast ions resonantly driving the mode. This predicts a lin-

ear rise in bf/bc, which is approximately correct given the

assumption that the equilibrium state (in absence of mode-

induced transport) has bf/bc� 1. Eventually, as the fast ion

FIG. 12. (a) Spectrogram showing first and second harmonic of n¼ 1 kink

mode, (b) spectrogram showing hfCAE burst correlated with kink, (c) spec-

trogram of envelope of hfCAE fluctuation amplitude, overlaid with kink

mode frequencies, (d) relative phase between n¼ 1 kind and hfCAE

envelope.

FIG. 13. Digitally filtered (1.4–2.0 MHz) signals from each of the three coils

separated toroidally by 120�. Each color corresponds to the signal from a

different toroidal position, indicated at the top of the figure. Black curves are

the kink, filter from 2 to 30 kHz.
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pressure increases, the drive for the mode (red curve)

exceeds the damping rate (blue curve) and the mode (black

curve) begins to grow exponentially. As the mode grows, it

redistributes fast ions, which eventually removes the drive,

and the mode amplitude decays. The fast ion beta begins to

recover and the cycle repeats. In the simulations described

here, the "loss rate" is assumed proportional to the square of

the mode amplitude, as for a diffusive loss.34 Here, loss

refers generally to the movement out of resonance with the

mode, in phase space, of fast ions. This model will predict a

“natural” burst frequency for the modes. We use a modified

predator-prey model where either the damping rate or the

drive (bf) is modulated at the kink rotation frequency. As is

shown below, a modulation of either drive or damping by as

little as 2% can cause locking of the burst frequency to the

modulation (kink) frequency when the modulation frequency

is close to the natural burst frequency.

The difference equations used in the modified predator-

prey code, using the parameters A, B, S, and cd as introduced

above, are

Anþ1 ¼ max½10�3;An þ cdAnðBn � TðtnÞÞdt�; (6)

Bnþ1 ¼ max½0;Bn þ ðS� BnA2
nÞdt�: (7)

Here, An represents the normalized mode amplitude and Bn

represents the normalized fast ion beta. The fast ion beta is

prohibited from being negative, and there is a (small) mini-

mum mode amplitude. Here, the threshold parameter,

T(tn)¼ 1þ d sin(xkinkt), allows modulation of the critical

beta at the kink frequency. Alternatively, the modulation can

be applied to the fast ion beta, Bn. The modulation of

the damping rate is postulated to be through a coupling of

the kink with a symmetry-breaking error field, however, the

mechanism by which this affects the damping or growth rate

of the CAE is unclear.

A spectrogram of the burst frequency is shown in Fig.

17 for a predator-prey simulation with parameters chosen to

give a “natural” burst frequency of �5 kHz, similar to the ex-

perimental burst frequency. A modulation of 2% is imposed

on the damping rate term, with the frequency swept from

10 kHz to 1 kHz over the course of the simulation (black

dashed line). Some characteristics of the experimental data

(Fig. 12(c)) are then reproduced here. First, when the modu-

lation frequency approaches the “natural” burst frequency,

the burst frequency increases to match and track the modula-

tion frequency. Prior to the frequency-capture time, the burst

FIG. 15. Filtered Mirnov signal (frequency range on left) showing each

hfCAE mode (mode numbers on right. Burst pattern for each mode different,

but all are correlated.

FIG. 16. Predator-prey model simulating coupling of kink to hfCAE.

FIG. 14. Filtered Mirnov signal (frequency range on left) showing each

hfCAE mode (mode numbers on right. Burst pattern for each mode is differ-

ent, but all are correlated.
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frequency is close to the natural frequency, but is perturbed

by higher order resonances with the modulation frequency.

This may occur to some extent in the experiment, or the ex-

perimental natural burst frequency may not be particularly

stable. Unlike the experiment, the frequency-capture fails

shortly after the modulation frequency drops below �80% of

the natural burst frequency, and the burst frequency reverts

to normal.

This exercise should be viewed as providing a demon-

stration that modulation of either the drive or damping rate

by only a few percent might be sufficient to explain the

frequency-capture observed in Figs. 11 and 12.

VI. DISCUSSION

Co-propagating CAE are often seen near the start of the

plasma current “flat top” phase. The modes are at higher fre-

quency than the more common counter-propagating global

and compressional Alfv�en eigenmodes. These hfCAE have

frequencies approaching the ion cyclotron frequency. They

have only been seen in H-mode plasmas and are very

strongly correlated with the presence of a low frequency

kink-like mode. Measurements of the magnetic field fluctua-

tion polarization find them dominantly compressional at the

plasma boundary, but their identification as CAE rests pri-

marily on comparison of the observed spectrum with the

simple CAE dispersion relation. The absolute frequency, the

frequency dependence on toroidal mode number and fre-

quency dependence on poloidal mode number, are in good

agreement with predictions.

The hfCAE, like most energetic particle driven modes

on NSTX, show periodic bursting. When the frequency of

the hfCAE bursts is close to the kink frequency, the bursts

can become phase-locked to the kink mode. The mechanism

for this coupling is not clear, however, simulations with a

predator-prey model find that a modulation of the hfCAE

damping rate by a few percent is sufficient to demonstrate

the phase-locking seen in the experiment.
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