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The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic
error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically,
only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements
provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this
an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver
(TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spher-
ical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto
the divertor. In order to account for heat transmission through poorly adhered surface layers on the
divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity di-
vided by the thickness of the layer, was introduced to the solution of heat conduction equation. This
coefficient is denoted as α and a range of values were tested in the model to ensure a reliable heat
flux calculation until a specific value of α led to the constant total deposited energy in the numerical
solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and
from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat
flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D
data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asym-
metry of peak heat flux and heat flux width are demonstrated. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4792595]

I. INTRODUCTION

The power handling capability of divertors is a crucial
problem for tokamaks. Understanding of the characteristics of
the heat flux divertor footprint is important for control of the
peak heat flux deposition, which is of primary importance for
the protection of divertor plates. The controlling physics for
divertor heat flux are complicated since we still do not have a
clear understanding of how the asymmetric power deposition
occurs and its relation to intrinsic error fields, turbulence fil-
aments, and the edge localized mode (ELM) which is a mag-
netohydrodynamic (MHD) instability occurring at the edge of
plasma and causes non-axisymmetric divertor heat flux depo-
sition. Infrared (IR) imaging diagnostics are useful tools for
investigation of the 2D temperature distribution and power de-
position onto the divertor surface. Heat flux analysis carried
out in tokamaks to date has focused on 1D radial distribu-
tion, typically obtained from a finite difference code solving
the heat conduction equation in 2D, i.e., in the direction of
radius (r) and tile depth (z), such as THEODOR.1–4 National
Spherical Torus Experiment (NSTX) has applied THEODOR
for 1D radial heat flux profiles over the past few years. How-
ever, 1D radial profiles are not sufficient to evaluate divertor
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power deposition in the presence of toroidal asymmetries. Re-
cently, a 3D heat conduction solver code, TACO,5 which uses
a 3D time-resolved Fourier transform method, has been suc-
cessfully implemented in the NSTX tokamak to acquire a 2D
divertor heat flux distribution from the divertor surface tem-
perature measured by infrared cameras. In addition, the code
has been improved by incorporating a heat transmission coef-
ficient, α, for the loosely held plasma-facing layer to reduce
the negative heat flux, which is often calculated as a result of
assuming that the surface is part of the substrate.4 Addition-
ally, the code utilizes a criterion of constant energy deposition
after the end of discharge in order to choose an optimal value
for α. In order to validate the results of calculated 2D diver-
tor heat flux distribution, we compared the TACO results with
those of THEODOR.

II. NSTX IR DIAGNOSTIC AND 2D HEAT
FLUX DISTRIBUTION

NSTX has an open divertor (see Figure 1), and the pri-
mary first wall material is fine grain (ATJ) graphite. Magnetic
field line radially expands at the divertor surface compared to
the mid-plane and the multiplication factor, the so-called flux
expansion, ranges from 5 to 30 and is typically higher than
10 for high elongation (κ , the shape parameter indicating how
much the poloidal cross-section is stretched vertically) and
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FIG. 1. (a) A photograph of NSTX lower divertor with the IR camera field
of view indicated as a red shadowed region and (b) Plasma equilibrium and
layout of the IR diagnostic.

triangularity (δ, the shape parameter for how close the cross-
section is to the triangular shape) discharges. A high speed
Santa Barbara Focal Plane IR camera (SBF161) was used to
monitor the lower divertor thermal emission,6 from which the
surface heat flux was computed with a heat conduction model.
The field of view of the IR camera can be changed to view the
desired portion of the lower divertor with an adjustable mir-
ror, as shown in Fig. 1. The detector of the IR camera was op-
erated in the long wavelength IR (8–10μm) bandwidth with
128 × 128 pixels for the full frame, which gives a 5.8 mm
spatial resolution on the divertor floor. The frame rate can be
changed with different window size, from 1.6 kHz for the full
frame and 6.3 kHz for 96 × 32 pixels. The IR camera views
the divertor from the top of the machine, and can acquire a
partial 2D divertor surface temperature distribution as shown
in Fig. 1.

The original version of TACO inverts the measured 2D
surface temperature to the heat flux distribution;5 this version
was developed at the COMPASS-D tokamak and was recently
reused in MAST.7 The tile front surface facing the plasma is
defined as z = 0 and the rear surface is set to be at z = δ, where
δ is the tile thickness. For the NSTX outer target tiles, the
thickness is 2.8 cm, while it is 5.1 cm for the inner tiles. Heat
flux profiles presented in this paper are all for the outer strike

point at the outer divertor tiles, as shown in Figure 1. Room
temperature (T = To) is defined as the rear surface condition.

In numerical tests using the finite difference method to
estimate the temperature rise by a constant heat load on the
front tile face of up to 5 MW/m2, it is found that the rear tile
surface temperature shows almost no change after 1 s. It is
therefore a good approximation to set δ = 2.8 cm since a typ-
ical NSTX discharge only lasts ∼1 s. This also justifies not
considering materials on which the ATJ graphite tiles are fas-
tened in the heat conduction equation. The thermal parameters
used in the present version of TACO for the work in this paper
are temperature dependent, compared to the constant thermal
parameters used in the original version. Also, NSTX divertor
target tiles are inertially cooled.

The partial differential equation to be solved is then the
heat conduction equation in Cartesian coordinates:

∂T

∂t
= χ

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
, (1)

where T is the temperature and χ is the thermal diffusivity,
m2/s in the SI unit, χ = k/cρ (k is the thermal conductivity in
W/m K, c is the heat capacity, and ρ is the density of the tile
material). TACO solves this equation using the Fourier trans-
form in both the x and y directions and the Laplace transform
in the time domain, along with the boundary conditions for
the front and rear tile surfaces. The derivation of full solution
to this equation is given in Ref. 5 and we present it in Ap-
pendix A with some minor corrections and refinements, given
that this reference is not generally available to the public.

The calculated heat flux often results in large negative
values, particularly after transient events such as ELMs or
strike point sweeping. The negative heat flux is not physi-
cally reasonable since there is no source of cooling present
at the divertor surface in NSTX. This is because the solu-
tion to Eq. (1) in the original version of TACO does not
consider the presence of thin, poorly adhered hydrocarbon
layers that form naturally on the divertor surface. This sur-
face layer can produce higher emission than is expected from
the bulk tile temperature and therefore leads to incorrect solu-
tion to the heat conduction equation. Figure 2 shows a 2D heat
flux distribution just following an ELM peak as calculated by
TACO from the measured surface temperature distribution in
Fig. 2(a), without considering the effects of surface layers.
Regions of negative heat flux can be seen in Fig. 2(b) in the
private flux region of the divertor after the ELM peak. In order
to address the effect of thin surface layer, the heat transmis-
sion coefficient of the layer is defined as α = klayer/d, i.e., as
the surface layer thermal conductivity divided by the thick-
ness of the layer,4 and is introduced in the procedure of solv-
ing the heat conduction equation. The use of α then allows us
to take account of the effect of surface emission of the thin
layer even though klayer and d cannot be precisely estimated.
This technique was first implemented in THEODOR4 and is
now applied to TACO for the 3D heat flux calculation. The
surface heat flux Qs = Qxy includes an assumption of zero
heat capacity of the surface layer.8 Therefore, the incoming
heat flux from the plasma, the heat flux in the surface layer,
and the heat flux into the tile bulk material are equal. The re-
lationship between the surface temperature, T, and the bulk
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FIG. 2. (a) 2D temperature distribution after an ELM, (b) 2D divertor heat flux distribution calculated from (a) using the original version of TACO (no
consideration of thin surface layer effect), and (c) 1D heat flux profile along the red radial line indicated in (b).

temperature of the ATJ graphite, Tbulk, therefore yields

Q = α(T − Tbulk). (2)

Note that Tbulk is the temperature used for the top surface of
the tile in contact with the surface layer, so that, with the α

parameter incorporated, we obtain a new solution to Eq. (1).
The derivation of this solution is described in Appendix B.
Another improvement we made compared to the original ver-
sion of the code is that the thermal parameters are now tem-
perature dependent to ensure a more accurate calculation.

We compare the results from TACO and THEODOR for
the same toroidal angle in NSTX in order to benchmark the
calculation. Figure 3 shows the comparison between TACO
and THEODOR using α = 60 000 W m−2 K−1 for an ELMy
discharge with Ip = 800 kA and PNBI = 4 MW. It also had a
similar magnetic configuration shown in Fig. 1(b). The radial
line chosen to obtain 1D profile from the 2D TACO data is
the same for the THEODOR calculation. The temporal evo-
lution of peak heat flux values from TACO and THEODOR
(Fig. 3(a)) is nearly identical during the inter-ELM period.

FIG. 3. Comparison of the result between TACO and THEODOR for the
same radial line and 60 000 (W m−2 K−1) α value; (a) Comparison of tempo-
ral evolution of peak heat flux and (b) Comparison of radial heat flux profiles
at an ELM peak.

While the peak heat flux value from TACO is slightly higher
than that of THEODOR during the ELMs. Heat flux radial
profiles from TACO and THEODOR in Fig. 3(b) show very
similar results between the two codes.

Note that TACO provides a 2D heat flux distribution,
from which the 1D radial heat flux profile in Fig. 3 was ex-
tracted. Figure 4 shows such an example with the same set of
surface temperature data as in Fig. 2 and using an α value of
60 000 (W m−2 K−1). The negative heat flux in Fig. 2 has al-
most disappeared in the newly calculated result and the max-
imum heat flux during the ELM is reduced to ∼3 MW/m2,
∼25% less than that in Fig. 2.

III. ANALYSIS

The use of an α value has a particularly significant impact
on the transient (e.g., ELM) peak heat flux; therefore it will re-
sult in the largest measurement error if we arbitrarily choose
the α value.2 For instance, in the MAST tokamak, plotting the
areal integrated energy received at the divertor during the full
length of the discharge against several α values produces a se-
ries of curves which can be compared with the total deposited
energy calculated by Langmuir probe data. An optimal value
for α was found at the knee of the curve.9 Because the neg-
ative heat flux is calculated after transient events without α,
the calculated deposited power will be smaller after an ELM
than before it. In Ref. 9 the authors consider the deposited
power before and after ELM to be equal and choose the α

value according this condition.8 In this paper, a simple crite-
rion was applied for the choice of α: the total energy deposited

FIG. 4. The 2D heat flux distribution with 60 000 (W m−2 K−1) α value.
Some of the tile gaps are indicated with arrows.
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FIG. 5. Energy deposition calculated from the data by the IR camera, with
different α values during and after the discharge.

in the divertor is obtained by integrating the power deposition
in time, for which the power deposition was calculated from
the 2D heat flux distribution from the TACO data. This takes
full account of the measured 2D toroidal portion of the heat
flux and would be more accurate than the simple toroidal in-
tegration of 1D heat flux profile from THEODOR. Temporal
behavior of the estimated energy deposition after the end of
discharge (i.e., when the heat deposited on the surface by the
plasma is removed) is different for different α values with the
end of discharge defined by the point of zero plasma current.
Figure 5 shows the relationship between the energy deposi-
tion and the α value. It is found that the deposited energy
decreases with time after the end of discharge with higher
α values, e.g., 1 000 000 or 200 000 (W m−2 K−1), which may
have been caused by an overestimation of Tbulk. The higher
the α value, the faster the deposited energy decreases. With a
lower α value, e.g., 40 000 or 20 000 W m−2 K−1, the energy
deposition after the end of discharge increases because of the
underestimated Tbulk. The lower the α value is, the faster the
deposited energy increases. However, since there is no power
going to the divertor after the end of discharge, the deposited
energy should be constant after the discharge. As shown in
Fig. 5, α = 60 000 (W m−2 K−1) was chosen to keep the
energy deposition constant after the end of discharge. This
criterion can be also used in THEODOR or other finite differ-
ence heat conduction code using α to simulate the thin surface
layer.

The obtained 2D heat flux distribution can be used in
the study of various divertor heat flux physics. An exam-
ple is the investigation of striated heat flux distribution in
the 2D plane, caused by the ELM filaments, as shown in
Fig. 6. 2D IR images have been used to study toroidally asym-
metric heat deposition patterns during ELMs in other devices
such as ASDEX-Upgrade,10 but the actual 2D heat flux dis-
tribution has never been used for data analysis. In NSTX the
magnetic flux expansion can be quite large; this is beneficial
for the study of heat deposition from the ELM filaments be-
cause of the improved relative spatial resolution for each he-
lical stripes compared to the low flux expansion case. Diver-
tor heat flux studies traditionally focus on the 1D heat flux

FIG. 6. Striated heat flux distribution at the divertor surface, (a) 2D heat flux
distribution on the divertor surface with individual striations (from the ELM
filaments) visible and (b) A 1D heat flux distribution along the red radial line
indicated in (a).

distribution with a peak value at the strike point position.
However, when ELM filaments exist they naturally carry hot
and dense plasma particles to the divertor surface producing
multiple local peaks in the heat flux profile at locations other
than the strike point, as shown in Fig. 6. From Fig. 6(a), ap-
proximately 4–5 distinct toroidal striations can be identified
within the given radial range. The 1D heat flux profile derived
from Fig. 6(a) for the radial line indicated is given in Fig. 6(b).
Fine structures in the heat flux at the divertor surface are re-
flected in the 2D profile such as the tile gaps and local peaks.

Another example of the use of 2D heat flux data is the
quantitative analysis of the toroidal degree of asymmetry11

(we denote it as εDA) of the peak heat flux, qpeak, and heat
flux width, λq. We first obtain qpeak, i.e., at the strike point,
of 1D heat flux profile at each toroidal angle, and then take
an average over the values for all toroidal angles. This then
represents the “mean peak heat flux” for the whole 2D plane
observed by the IR camera (q̄peak). As for the definition of λq,
λq = P/(2πRpeakqpeak), we use the integrated divertor power
P (obtained directly from the 2D heat flux data, i.e., heat flux
times area, with the fraction of area by the 2D IR camera cov-
erage taken into account, all for the outer lower divertor for
the data presented in this paper) and Rpeak is the radial loca-
tion of qpeak at each toroidal location. This yields a toroidal
array of λq, from which a “mean heat flux width” can be also
obtained (λ̄g) by taking an average over all λq values. The
toroidal εDA of qpeak and λq represents the whole 2D plane ob-
served by the IR camera as a function of time and is defined as
εDA(qpeak) = σqpeak/q̄peak and εDA(λq) = σλq/λ̄q . Here, σ is
the standard deviation of qpeak and λq over data in the toroidal
array and this is normalized, respectively, by mean values of
qpeak and λq to produce εDA at each time slice. In the case of
ELMs, the helical heat deposition produces additional scatter
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FIG. 7. (a) Temporal evolution of measured mean peak heat flux (q̄peak)
during a type-I ELMy H-mode, (b) Toroidal degree of asymmetry for qpeak,
εDA (qpeak), (c) Toroidal εDA (λq) as a function of q̄peak , and (d) Relation
between εDA (λq) and εDA (qpeak). Data for each of the 1/3 of the ELM cycle
have been colored green, sky blue, and gold, respectively.

of data around mean values to the background scatter level
and it raises εDA for both qpeak and λq.

Figure 7 shows the result for a type-I ELMy H-mode,
color-coded during the ELM cycle, across several ELMs. It
is found that both εDA (qpeak) and εDA (λq) are largest at the
ELM peak times and εDA (qpeak) can be as high as ∼1.4 while
εDA (λq) can reach up to ∼0.5 for the dataset examined in
Figure 7. Both εDA values increase with increasing qpeak and
therefore the degree of asymmetric heat deposition is high-
est at the ELM peak times, while it becomes lower toward
the later stage of the inter-ELM period (see Figures 7(b) and
7(c)). This dependence of the degree of asymmetric heat de-
position on the ELM cycle is also related to the absolute
value of peak heat flux. That is, higher peak heat flux leads
to stronger degree of asymmetric qpeak and λq. It is also found
from Fig. 7(d) that the correlation between εDA (qpeak) and
εDA (λq) is the strongest at the ELM peak times and becomes
weaker later in the ELM cycle.

IV. DISCUSSION

The fast IR data for the data analysis in this paper did
not have coverage of inner strike point, so the choice of α pa-
rameter based on the energy balance described in Sec. III (see
Figure 5) is only for the outer target. In fact, the character-
istics of surface layer could vary spatially (e.g., from tile to
tile and particularly between the inner and outer targets8), so
that the use of a single α value would not perfectly fit for all
divertor surfaces. The determined α value from the method
employed in this paper represents the average over this possi-
ble spatial variation within the camera’s field of view (FoV).
Given that our data are all for the outer target, we presume
the variation would be less than the case of the difference

between inner and outer targets. Ideally, we would need a
treatment with spatially varying α parameter but at present
this average approach appears reasonable. We have not ob-
served in the present data analysis a significant impact of
spatially varying surface layers, e.g., local hot spots, on the
asymmetry data presented in this study. For example, data for
εDA (qpeak) as a function of qpeak for many ELM peak times
with different location of strike points show a consistent sin-
gle trend.

Comparison of energy deposition from the IR mea-
surement with that from calorimetry data such as the tile
embedded thermocouples8 would have been very useful to
cross-check the validity of the α selection method employed
in this paper. However, NSTX thermocouple data were only
taken with 1 min time resolution, which is not fast enough to
obtain the decay length of tile temperature after the end of the
discharge.

Another standard way of checking the energy balance of
measured heat flux is to compare the ELM energy loss from
the IR measurement (�WELM,IR) to that from the diamag-
netic plasma stored energy (�WELM, dia). The integral power
obtained from the 2D heat flux profile is integrated in time
to produce the deposited energy onto the divertor tiles. One
problem for the dataset presented in this paper is that there is
no IR measurement for the inner divertor, which significantly
limits our ability to do the energy balance study. Nonethe-
less, Figure 8 shows the comparison of the outer divertor data
with the fast diamagnetic data. Here, we used α = 40 000
(W m−2 K−1) to get constant energy deposition after the dis-
charge. It is seen that the majority of the data are distributed
between 1/4�WELM,dia and 1/2�WELM,dia. The ratio of ELM
energy loss measured by the IR data (sum of inner and outer
data) to that from the fast diamagnetic data is reported to be
0.4–0.7 in JET.8 Also, the ELM energy loss on the inner di-
vertor is reported similar to or slightly higher than that on
the outer divertor.8 If we assume that energy deposition is
similarly split between the inner and outer, the measured IR
ELM energy loss accounts for approximately 50%–100% of
the ELM energy loss measured by the fast diamagnetic data.
Of course there is no guarantee that the in/out energy split

FIG. 8. Comparison of ELM energy deposition onto the outer divertor tar-
get, from the IR camera measurement to the ELM energy loss from the fast
diamagnetic measurement. These data points use α = 40 000 W m−2 K−1.
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in NSTX should be the same as in JET, but the present IR
dataset appears to account for approximately right fraction of
the ELM energy loss, with the use of α parameter determined
by the method described in the 1st paragraph of Sec. III.

V. SUMMARY AND CONCLUSIONS

A 3D heat conduction code, TACO, has been success-
fully implemented in NSTX to allow for the calculation of 2D
heat flux distribution on the plasma-facing surface with a heat
transmission coefficient, the so-called α parameter. A method
for selecting the optimal α value was chosen to keep the en-
ergy deposition constant after the end of discharge and reduce
the occurrence of negative heat fluxes, thus obtaining a more
accurate heat flux result compared to the original version of
TACO. In order to benchmark the calculated 2D divertor heat
flux, the result from TACO was compared with one from a 2D
heat conduction code THEODOR for the radial heat flux data
at the same toroidal angle. It was shown that the peak heat
fluxes were almost the same as the THEODOR values dur-
ing inter-ELM periods, and slightly higher during the ELMs.
Compared to the conventional 1D heat flux data, the 2D data
provide an excellent means to investigate non-axisymmetric
divertor heat flux physics such as striated heat flux patterns
and the toroidal degree of asymmetry of qpeak and λq at the
divertor surface, for example, caused by ELMs.
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APPENDIX A: DERIVATION OF HEAT FLUX SOLUTION
IN TACO

The heat conduction equation to be solved is a partial def-
erential equation (PDE) in Cartesian coordinate for the diver-
tor tile:

∂T

∂t
= χ

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
, (A1)

where T is the temperature and χ is the thermal diffusivity,
m2/s in the SI unit.

Using the Fourier transform in both the x and y directions
yields,

∂Txy

∂z
= χ

(
∂2Txy

∂z2
− (

k2
x + k2

y

)
Txy

)
, (A2)

where the subscript xy indicates the transformed tempera-
ture and kx and ky are the transform variables. The remaining
PDE can be reduced to a simple ordinary differential equation
(ODE) by performing a Laplace transform with respect to t.
With p as the Laplace transform variable, we obtain

∂2Txy

∂z2
− (

p/χ + k2
xy

)
Txy = 0, (A3)

where k2
xy = k2

x + k2
y .

This has a solution in exponentials:

Txy = A exp
(√

(p/χ +k2
xy

)
z
) +B exp

(−
√(

p/χ + k2
xy

)
z
)
.

(A4)
In order to obtain constants A and B, we consider boundary
conditions for the front (z = 0) and rear (z = δ) face of the
tile,

T xy(z = δ) = 0 for rear surface,

Qxy = −k
∂T xy

∂z
|z=0 for front surface,

where Qxy is the Laplace and Fourier transformed heat flux Q
and k is the thermal conductivity (W/m K).

Using this boundary condition, Eq. (A4) becomes

Txy = Qxy

k

√(
p/χ + k2

xy

) exp
(√(

p/χ + k2
xy

)
(δ − z)

) − exp
( −

√(
p/χ + k2

xy

)
(δ − z)

)
exp

(√(
p/χ + k2

xy

)
δ
) + exp

( −
√(

p/χ + k2
xy

)
δ
) . (A5)

In order to obtain the surface heat flux, we set z = 0 in
Eq. (A5),

Txy = Qxy

tanh
(√(

p/χ + k2
xy

)
δ
)

k

√(
p/χ + k2

xy

) . (A6)

The convolution theorem for Laplace transforms yields the
relation

Txy =
∫ t

0
Qxy(t − τ )L−1

⎛
⎝ tanh

(√(
p/χ + k2

xy

)
δ
)

k

√(
p/χ + k2

xy

)
⎞
⎠ dτ.

(A7)
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Now we use the infinite series,

tanh(w)

w
= 2

∞∑
m=1

1
π2

4 (2m − 1)2 + w2
. (A8)

So,

L−1

⎛
⎝ tanh

(√(
p/χ + k2

xy

)
δ
)

k

√(
p/χ + k2

xy

)
⎞
⎠ = 2χ

δ
L−1

( ∞∑
m=1

1
χπ2

4δ2 (2m − 1)2 + χk2
xy + p

)
. (A9)

Inverse Laplace transform can be easily performed to obtain

L−1

⎛
⎝ tanh

(√(
p/χ + k2

xy

)
δ
)

k

√(
p/χ + k2

xy

)
⎞
⎠ = 2χ

δ

∞∑
m=1

exp

(
−

(
χπ2

4δ2
(2m − 1)2 + χk2

xy

)
τ

)
. (A10)

And we get,

Txy = 2χ

δk

∫ t

0
Qxy(t − τ )

∞∑
m=1

exp

(
−

(
χπ2

4δ2
(2m − 1)2 + χk2

xy

)
τ

)
dτ. (A11)

Let us assume that the heat flux spatial distribution is constant during each time step; �τ is the time step between IR frames.
Qxy((j − l)�τ ) represents heat flux from tj − l − 1 to tj − l, where tj − l = (j − l)�τ . Then Eq. (A11) can be rewritten as

Txy = 2χ

δk

j−1∑
l=0

Qxy(tj−l)

tl+1∫
tl

( ∞∑
m=1

exp

(
−

(
χπ2

4δ2
(2m − 1)2 + χk2

xy

)
τ

))
dτ

= 2χ

δk

j−1∑
l=0

Qxy(tj−l)
∞∑

m=1

exp
(
−

(
χπ2

4δ2 (2m − 1)2 + χk2
xy

)
tl

)
− exp

(
−

(
χπ2

4δ2 (2m − 1)2 + χk2
xy

)
tl+1

)
χπ2

4δ2 (2m − 1)2 + χk2
xy

= 2χ

δk

j−1∑
l=0

Qxy(tj−l)
∞∑

m=1

exp
(
−

(
χπ2

4δ2 (2m − 1)2 + χk2
xy

)
l�τ

) (
1 − exp

(
−

(
χπ2

4δ2 (2m − 1)2 + χk2
xy

)
�τ

))
χπ2

4δ2 (2m − 1)2 + χk2
xy

. (A12)

Defining βm = (χπ2

4δ2 (2m − 1)2 + χk2
xy)�τ gives

Txy(tj ) = 2χ�τ

δk

j−1∑
l=0

Q(tj−l)
∞∑

m=1

exp(−lβm)(1 − exp(−βm))

βm

.

(A13)
We define Cl here,

Cl =
∞∑

m=1

exp(−lβm)(1 − exp(−βm))

βm

. (A14)

Then Eq. (A13) can be rewritten

Txy(tj ) = 2χ�τ

δk

j−1∑
l=0

Q(tj−l)Cl. (A15)

We rewrite this equation as follows:

Qxy(tj ) = kδ

2χ�τ

Txy(tj )

Co

−
j−1∑
l=0

Qxy(tj−�)
Cl

C0
.

Considering the non-zero initial temperature, we get the final
form of Qxy(tj),

Qxy(tj ) = kδ

2χ�τ

(Txy(tj ) − Txy(t0))

Co

−
j−1∑
l=1

Qxy(tj−�)
Cl

C0
.

(A16)
The solution for Q(t) is then obtained by performing the in-
verse Fourier transform.

APPENDIX B: DERIVATION OF HEAT FLUX SOLUTION
WITH SURFACE HEAT TRANSMISSION
COEFFICIENT, α

In the presence of thin surface layer on top of the tile, its
poor thermal contact with the tile causes artificially high IR
emission, particularly when there is transient heat flux such
as by ELMs. This high emission can be interpreted as a high
surface temperature and misleads the heat flux computation.
One way to deal with this situation is to assume that there is an
excess temperature at the surface proportional to the incident
heat flux:4

T − Tbulk = Q/α, (B1)
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where T is the surface temperature, Tbulk is the tempera-
ture at the top surface of the tile in contact with the surface
layer, α is the heat transmission coefficient (in W/m2 K).
If there is no surface layer, α → ∞ and Tbulk → T. From
Eq. (B2), the Fourier transformed bulk temperature can be
written as Txy, bulk = Txy − Qxy/α. Taking this into Eq. (A16)
yields,

Qxy(tj ) =
⎛
⎝Txy(tj ) − Txy(t0)

Co

−
j−1∑
�=1

Qxy(tj−�)
C�

C0

)/(
1 + kδ

2χ�τC0α

)
. (B2)

The solution for Q(t) is then obtained again by inverse Fourier
transforming Qxy(t).
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