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In this work, the development of model-based feedback control that stabilizes an unstable

equilibrium is obtained for the Modified Hasegawa-Wakatani (MHW) equations, a classic model in

plasma turbulence. First, a balanced truncation (a model reduction technique that has proven

successful in flow control design problems) is applied to obtain a low dimensional model of the

linearized MHW equation. Then, a model-based feedback controller is designed for the reduced

order model using linear quadratic regulators. Finally, a linear quadratic Gaussian controller which

is more resistant to disturbances is deduced. The controller is applied on the non-reduced,

nonlinear MHW equations to stabilize the equilibrium and suppress the transition to drift-wave

induced turbulence. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4796190]

I. INTRODUCTION

For several decades, toroidal devices have been used to

confine plasmas for the purpose of studying nuclear fusion.

During this time, a large number of complex dynamic behav-

iors have been uncovered in toroidal plasmas, including but

not limited to magnetohydrodynamic instability, kinetic

instability, and microturbulence.

The consequences of these resulting fluctuations

include: non-uniformities, increased transport, and possibly

even macroscopic break up. Therefore, eliminating these

instabilities and fluctuations by using feedback control

tools1–6 has been a topic of considerable interest. Various

theoretical and experimental tools have been developed and

applied to plasma devices in order to stabilize unstable

modes and reduce transport.7–12

The Hasegawa-Wakatani13,14 (HW) system, which cou-

ples plasma density and electrostatic potential through an

approximation to the physics of parallel electron motion, is a

simple model that describes resistive drift wave turbulence.

It was first developed to investigate anomalous edge trans-

port due to collisional drift waves.15

Due to nonlinearity, drift waves can self-consistently

generate zonal flows, which in turn play a key role in the reg-

ulation of the drift-wave turbulence and anomalous transport.

Traditionally, the mechanism was argued to be the shearing

apart of the drift-wave eddies.16,17 More recently, another

turbulence dissipation mechanism has been proposed involv-

ing coupling of the unstable drift waves to damped eigenmo-

des.18 This coupling can be catalyzed by the zonal flows.19

The HW model contains both of these mechanisms.

Several models have been used to study the coupling of

drift waves turbulence and zonal flow, including a predator/

prey model proposed by Diamond et al.20 a 4-dimensional

model derived by Chen et al.,21 or a 10-dimensional model

derived by Kolesnikov and Krommes.22 In this paper, the

Modified Hasegawa-Wakatani Model (MHW) is used by

Numata et al.23 for turbulence analysis.

Parallel electron motion is important for generating, stabi-

lizing, and destabilizing the zonal flow. That is handled natu-

rally in the 3D HW model. However, for computational

tractability, it is useful to study a 2D model, as various authors

have done.23,24 Originally, people just replaced the parallel dis-

sipation operator �Dkr2
k with a constant (thereby essentially

assuming the presence of a single, dominant, nonzero parallel

wave number kk). However, that approximation is incorrect for

zonal flows, for which kk ¼ 0. Therefore, in the MHW model,

the parallel term is taken to vanish for the zonal modes.24

To study stabilization of drift wave fluctuations, a linear

forcing is introduced into the governing equations as a con-

trol actuator and its effect is analyzed both theoretically and

numerically.

Before describing the control design for the model, a

simplified reduced-order model is built by performing a bal-

anced truncation25 that retains certain modes. The retained

modes are the most important ones in the following step,

which is the controller design.

This paper goal is to stabilize the unstable modes of this

simple MHW model, assuming that their number is computa-

tionally small. In reality, more complex dynamics can occur

where these unstable modes are numerous, resulting in in-

tractable chaotic dynamics. There is an abundant literature

on chaos control in general dynamical systems,26–29 but

those studies are exclusively focused on controlling chaos

through small variations in the system parameters on which

the nature of the dynamics depends extensively. The feed-

back is used only to detect the chaotic dynamics; then on the

basis of that information sensitive system parameters are var-

ied until the system makes a transition to a regular dynamical

state. This methodology could be attractive for theoretical

studies or small laboratory experiments, where feedback

power is not an issue. However, for fusion plasmas, changes

to parameters such as the plasma pressure gradient are very

energy intensive and impractical.a)igoumiri@princeton.edu
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In contrast, in this paper, linear feedback plays the key

role and is applied directly on the system in order to control

it. It is found to have a complete stabilizing effect assuming

that the controller is applied at the right time (details will be

discussed further).

The remainder of this paper is organized as follows. In

Sec. II, the MHW model is introduced for coupling drift

wave turbulence and zonal flow, its linearization and its con-

trolled developed version (as a state-space realization) are

both derived. In Sec. III, the model reduction methodology

and its background is discussed, the different tools of control

design are presented in Sec. IV, the simulation setup is given

in Sec. V, then the results of application of both Secs. III and

IV on the MHW model are shown in Sec. VI. Finally, sum-

mary and conclusions are presented in Sec. VII.

II. MODIFIED HASEGAWA-WAKATANI MODEL

As stated in Numata et al.,23 the original HW model

does not contain zonal flows when restricted to 2D. This

leads to consideration of the MHW model.

It describes the nonlinear dynamics of dissipative drift

wave turbulence coupled with zonal flow. It consists of two

partial differential equations describing the nonlinear evolu-

tion of the ion vorticity f and density fluctuations n.

A mean density gradient dn0ðxÞ=dx is assumed in

the direction of �x. A constant equilibrium magnetic field

B ¼ B0rz is assumed. The equations are

@f
@t
þ u; ff g ¼ að~u � ~nÞ � lD2f; (1a)

@n

@t
þ u; nf g ¼ að~u � ~nÞ � j

@u
@y
� lD2n; (1b)

where zonal and nonzonal components of a variable f are

defined as

zonal : hf i � 1

Ly

ð
f dy; (2a)

nonzonal : ~f � f � hf i; (2b)

where Ly is the periodicity length in y. u is defined as the

electrostatic potential with f ¼ Du;D ¼ @2=@x2 þ @2=@y2 is

the 2D Laplacian, fa; bg � ð@a=@xÞð@b=@yÞ � ð@a=@yÞ
ð@b=@xÞ is the Poisson bracket, l is the dissipation coeffi-

cient, the background density n0 is assumed to have a fixed

exponential profile, so that the background density gradient

j � ð@=@xÞln n0 is assumed constant, and a is the adiabatic-

ity operator. In this 2D setting, a and l, and j are considered

to be time- and space-invariant constants. Periodic boundary

conditions are used. See Sec. V A for more details.

A. Linearized modified Hasegawa-Wakatani model
around zero

For simplicity, the unstable equilibrium point of Eq. (1)

is chosen as (/0 ¼ 0; f0 ¼ 0; n0 ¼ 0). The linearization

about this equilibrium is

@f
@t
¼ að~u � ~nÞ � lD2f; (3a)

@n

@t
¼ að~u � ~nÞ � j

@u
@y
� lD2n: (3b)

The equations are rewritten in a matrix notation as

d

dt

�
f

n

�
¼ A

�
f

n

�

¼
aD�1 � lD2 �a

aD�1 � j
@

@y
D�1 �a� lD2

0
@

1
A f

n

!
: (4)

B. Controlled modified Hasegawa-Wakatani model

The controlled version of the MHW equation is built by

considering an additional external electrostatic potential as

the control input in the model. It can be realized experimen-

tally by introducing an electrode (a probe) inside the toka-

mak.30,31 The total electrostatic potential is written as

utotal ¼ uint þ uext; (5)

where uint is the internal potential, uext ¼ Uu is the external

potential added as the control input, u is a scalar, and U is a

given column vector that specifies the external field’s spatial

distribution.

This external potential is then injected into three of the

equations that constitute a basis for the derivation of the

MHW equations: the ion continuity, electron continuity, and

electron parallel momentum equations as follows. The ion

continuity equation becomes

@t ~ni
G þ V�@yðuint þ uextÞ þ ðvEint þ vEextÞ � r? ~ni

G ¼ 0;

(6)

where ~nG
i denotes the internal ion gyrocenter density fluctua-

tions, the electron continuity equation becomes

@t ~ne ¼ �V�@yðuint þ uextÞ � ðvEint þ vEextÞ � r ~ne �rjjujje;
(7)

the electron parallel momentum becomes

ujje ¼ Drjjðuint þ uext � ~neÞ; (8)

where V� is the diamagnetic velocity, vE is the E� B veloc-

ity, ~ne is the electron density fluctuations, and r? ¼
@=@xþ @=@y and rjj ¼ @=@z are, respectively, the gradients

perpendicular and parallel to the magnetic field B. Finally,

consider the gyrokinetic Poisson equation, which is usually

taken to be the statement of charge quasineutrality

~ni ¼ ~ne: (9)

Here, ni is the particle (not gyrocenter) density fluctuation.

One has ~ni ¼ ~nG
i þ ~npol

i , where npol
i is the ion polarization

density. In the cold-ion limit, ~npol
i ¼ q2

sr2
?u. Here, it is

appropriate to just use uint. This can be argued in several
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ways. First, it is not hard to see that if one tries to use

uint þ uext, the system is not controllable because it will

reduce to a simple change of variables, and therefore no per-

turbation or forcing will be introduced. Second, an external

potential should be cancelled by external charges. Those

external charges are not described here. Indeed, the physics

of a probe (or array of probes) inserted into a plasma is

entirely nontrivial. It is merely assumed that the external

potential can be adjusted at will; the plasma physics associ-

ated with the response of the plasma to the probe is not con-

sidered. Then, this procedure (using just the internal

potential in Poisson’s equation) is completely analogous to

the standard test-particle calculation that is done in elemen-

tary plasma kinetic theory. That is, we will use

~ni
G ¼ ~ne � q2

sr2
?uint: (10)

After manipulation, the controlled linearized Modified

Hasegawa-Wakatani equations are deduced

@

@t
f ¼ að~u � ~nÞ þ a~uext � lD2f; (11a)

@

@t
n ¼ að~u � ~nÞ þ a~uext � j

@u
@y
� j

@uext

@y
� lD2n: (11b)

It can then be rewritten as seen in Sec. II A, Eq. (4), as

@

@t

�
f
n

�
¼ A

�
f
n

�
þ Bu; (12)

where

B ¼
�

a~U
a~U � j@yU

�
: (13)

III. MODEL REDUCTION OF LINEAR TIME-INVARIANT
SYSTEMS

In the area of model-based feedback control of fluid

flow, substantial developments have taken place in the last

decade, for instance, Cattafesta et al.32,33 and Sipp et al.34

In many applications, the focus is on how to apply actuation

in order to maintain the flow around a steady state or an

orbit of interest, for instance to delay the transition to

turbulence.

Model-based linear control theory provides efficient

tools for the analysis and design of feedback controllers,

such as Linear-Quadratic Regulators (LQR) and Linear-

Quadratic-Gaussian (LQG). However, a significant challenge

is that models for flow control problems are often very high

dimensional Oð105�9Þ, so large that it becomes computation-

ally infeasible to apply linear control techniques. To address

this issue, model reduction, in which a low-order approxima-

tion model is obtained, is widely employed.

In this section, various techniques for constructing

reduced-order models are briefly reviewed before concentrat-

ing on one method in particular, the balanced truncation,

which will be used for the control design.

A. Overview of model reduction techniques

Among many model reduction techniques, such as sin-

gular perturbation or Hankel norm reduction methods, the

projection-based method, which involves projection of a

model onto a set of modes, is a widely used approach. These

may be global eigenmodes of a linearized operator,35 modes

determined by proper orthogonal decomposition (POD) of a

set of data,36 and variants of POD, such as including shift

modes.37 In particular, an efficient projection-based method

for linear control systems is balanced truncation.25

Compared to most other methods, including POD, balanced

truncation has key advantages, such as a priori error bounds

and guaranteed stability of the reduced-order model if the

original high-order system is stable.

While this method is computationally intractable for

systems with very large state spaces (�105), recently an

algorithm for computing approximate balanced truncation

from snapshots of linearized and adjoint simulations has

been developed38 and successfully applied to a variety of

high-dimensional flow control problems39–41 (with state

dimension up to 107).

In this method, sometimes called balanced POD

(BPOD), one obtains two sets of modes (primary and

adjoint) that are bi-orthogonal, and uses those for projection

of the governing equations. BPOD typically produces mod-

els that are far more accurate and efficient than standard

POD models, in the sense that the number of modes needed

to capture the dynamics in BPOD is much less than that in

POD. Detailed comparisons have been given by Rowley38

and Ilak and Rowley.39

One of the difficulties that BPOD users can face occurs

when they deal with experimental data: the main restriction

is that balanced POD requires snapshots of impulse-response

data from an adjoint system, which is not available for

experiments. To address this issue, another technique exists,

called the eigensystem realization algorithm (ERA).42 For

linear systems, ERA theoretically produces exactly the same

reduced-order models as balanced POD, with no need of an

adjoint system, and at an order of magnitude lower computa-

tional cost.

For simplicity, the numerical problem considered in this

paper will have a small dimension state space, so the exact

balanced truncation can reasonably be applied without wor-

rying about the computational tractability.

B. Balanced truncation of stable systems

A stable linear time-invariant state-space system is

described as follows:

_x ¼ Axþ Bu;

y ¼ Cx;
(14)

where x 2 Rn is the high-dimensional state (for instance, the

state variables at all grid points of the simulation), u 2 Rp is

a vector of inputs (for instance, actuators or disturbances),

and y 2 Rq is a vector of outputs (for instance, sensor meas-

urements, or other measurable quantities as linear functions

of the state).
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For such a system, the concepts of controllability and

observability can be defined, which are quantified by a pair

of symmetric, positive-semidefinite matrices

Wc ¼
ð1

0

eAtBB†eA†tdt; (15a)

Wo ¼
ð1

0

eA†tC†CeAtdt; (15b)

called controllability and observability Gramians, where

daggers denote adjoint operators.

The controllability Gramian Wc provides a measure of

the influence of input history on the current state (i.e., to

what degree each state is excited by inputs), and the observ-

ability Gramian Wo measures the influence of an initial state

on future outputs with zero control input (i.e., to what degree

each state excites future outputs). The larger eigenvalues of

the controllability (observability) Gramian correspond to the

more controllable (observable) states.

A balanced truncation involves first a coordinate trans-

formation T, called the balancing transformation, which

simultaneously diagonalizes these matrices. That is, under a

change of coordinates x¼Tz, the transformed Gramians

become

T�1WcðT�1Þ† ¼ T†WoT ¼ R; (16)

where R ¼ diagðr1;…; rnÞ. The diagonal entries are called

Hankel singular values and are customarily ordered so that

r1 � � � � � rn � 0.

A reduced-order model may then be obtained by truncat-

ing the states that are least controllable and observable. That

is, if T ¼ ½ T1 T2 	 and x ¼ Tz ¼ T1z1 þ T2z2, then a

reduced-order model is obtained by setting z2 ¼ 0, yielding a

model of the form

_z1 ¼ Arz1 þ Bru;

y ¼ Crz1:
(17)

The resulting reduced-order balanced model retains the

most controllable and observable states and is therefore suit-

able for capturing the input-output dynamics of the original

system.

Quantitatively, the balanced truncation procedure guar-

antees an a priori upper bound of error between the original

system and the reduced-order model. If GðsÞ ¼
CðsI � AÞ�1B denotes the transfer function of the system

(14), and GrðsÞ denotes the corresponding transfer function

of the approximation Eq. (17), then

jjG� Grjj1 < 2
Xn

k¼rþ1

rr: (18)

In addition, any reduced-order model Gr with r states

satisfies

jjG� Grjj1 > rrþ1; (19)

where rrþ1 is the first neglected Hankel singular value of G.

This is a fundamental limitation for any reduced-order

model. The two inequalities (18) and (19) provide a priori

error bounds which will be used in Sec. VI.

C. Balanced truncation of unstable systems

Balanced truncation has been extended to linear, unsta-

ble systems40,43 by decomposing the system into a stable

subsystem and an unstable subsystem.

Consider the state-space system defined in Eq. (14). If it

is unstable, the system can be decoupled into an ns-dimen-

sional stable subsystem and an nu-dimensional unstable sub-

system. Then, the balanced truncation may be applied on the

stable subsystem. The number of unstable eigenvalues is typ-

ically small (if it is not, then the control task is especially dif-

ficult), so this approach is usually computationally feasible.

Consider R ¼ ½Ru Rs 	 being the matrix of right eigen-

vectors (where the columns of R are eigenvectors) and L

¼
�

Lu

Ls

�
being the left eigenvectors (where rows of L are

eigenvectors). The state x can be expanded as

x ¼ xu þ xs; (20)

where xu 2 Rn is in the unstable eigenspace (image of Ru, a

subspace of dimension nu) and xs 2 Rn is in the stable eigen-

space (image of Rs). The projection onto the stable subspace

is then

Ps ¼ I � RuLu; (21)

where Ru and Lu 2 Rn�nu are matrices of right and left unsta-

ble eigenvectors that have been normalized such that LuRu

¼ Inu
(and of course, LuRs ¼ 0). Thus, xs ¼ Psx.

The reduced-order model is calculated on the stable sub-

space, so a balancing transformation T ¼ ½ T1 T2 	 is found,

xs can then be written

xs ¼ T1z1 þ T2z2; (22)

where T1 has r columns, corresponding to the modes kept (so

z1 2 Rr), and T2 has n–r columns, corresponding to

neglected modes (so z2 2 Rn�r). Define also

T�1 ¼ S ¼
�

S1

S2

�
; (23)

so that P1 ¼ T1S1 is the projection onto the image of T1, an

r-dimensional subspace of Rn.

The state in the reduced-order model is then

xr ¼
�

Lux
z1

�
¼
�

Lu

S1Ps

�
x: (24)

In this notation, the approximation to the full state is then

½Ru T1 	xr ¼ RuLuxþ T1S1Psx ¼ xu þ P1xs: (25)

That is, the unstable part of the state is captured exactly, and

the stable part is the projection onto the r balancing modes.

Note that, in order to compute xr, only the right and left

unstable eigenvectors Ru and Lu need to be computed, not
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the stable eigenvectors. This is thus computationally tracta-

ble even when the state dimension n is very large, as long as

the number of unstable eigenvalues is small.

IV. FEEDBACK CONTROL DESIGN USING REDUCED
ORDER MODELS

Once the reduced-order model is obtained and validated,

standard techniques from linear control theory can be applied

in order to design controllers for the low-dimensional sys-

tem. These controllers are designed on the reduced models,

then applied to the full-dimensional linearized model, and

finally tested on to the original nonlinear model to determine

if the controller can suppress disturbances in the neighbor-

hood of the unstable equilibrium.

A. Full-state feedback control design

A standard linear control technique is used in order to

obtain stabilizing controllers: a linear state feedback u ¼
�Krxr is used such that the eigenvalues of Ar � BrKr are in

the left half of the complex plane. The gain Kr is chosen to

minimize the quadratic cost function

J½xr; u	 ¼
ð1

0

ðx†
r Qxr þ u†RuÞdt; (26)

where Q and R are positive weights computed as follows. Q
is chosen such that the first term in the integrand above rep-

resents a weighted norm of the output y ¼ Crxr, thus

Q ¼ q � C†
r Cr, where q is a adequately chosen weight (sca-

lar). Since u is a scalar (there is only one actuator), the

weight R is a scalar too, and so may be taken to be 1 without

loss of generality.

Once this controller Kr is designed, it is implemented on

both the full linear and nonlinear system. The control imple-

mentation steps are sketched in Fig. 1: first compute the

reduced-order state xr, using the expression xr ¼ Wx where

W ¼
�

Lu

S1Ps

�
and T1 (the transformation matrix), then the

control input is given by u ¼ �Krxr.

B. Observer-based feedback control design

In most engineering applications, the state of the full

system is unknown, and thus a full-state feedback controller

that updates the control input based on the current state is

not directly applicable. Instead, one typically uses an

observer-based feedback controller to update the feedback

control inputs based on the sensor measurements (outputs).

As before, using the reduced-order model, an observer is

designed using a quadratic estimator known as the Kalman

filter. This method is optimal if the errors in representing the

state xr and the measurements y are stochastic Gaussian proc-

esses. Such errors typically arise from inaccuracies in the

model, external disturbances, and sensor noise. The method

gives us an estimate x̂r of the state xr that is optimal in the

sense that it minimizes the mean of the squared error; for

more details, see Skogestad and Postlethwaite.44

The disturbances w comes from the model truncation

and ignoring the nonlinear terms in the reduced-order model

(linearization). The sensor noise v (error in measurements)

comes from the output projection (the output is the projec-

tion of the approximated state onto the finite balanced trun-

cation modes deduced previously).

The reduced-order model dynamics with process and

sensor noise included is defined as follows:

_xr ¼ Arxr þ Bruþ w;

y ¼ Crxr þ v:
(27)

Again, both disturbances and sensor noise are Gaussian proc-

esses whose variances are

Q ¼ Eðww†Þ; w ¼ Pbalf ðxÞ � PbalAx; (28a)

R ¼ Eðvv†Þ; v ¼ y� CPbalx; (28b)

where E(.) is the expected value, Pbalð:Þ is the projection

onto the Balancing modes, and Pbal ¼ T1S1. The resulting es-

timator has the form

_̂xr ¼ Arx̂r � Bru� Lðy� Crx̂rÞ; ŷ ¼ Crxr; (29)

where ŷ is the estimated output and L is the observer gain.

The estimator is then used along with the full state feedback

controller designed previously to determine the control

input; a schematic is shown in Fig. 2.

V. SIMULATION SETUP

A. Numerical parameters

The nonlinear and linearized Hasegawa-Wakatani equa-

tions are solved in a two-dimensional slab geometry with

doubly periodic boundary conditions for simplicity.

The grid size used is 16� 16 with the computational do-

main given by ½0; Lx	 � ½0; Ly	 and Lx ¼ Ly ¼ 22, where

lengths are normalized by qs, the ion sound Larmor radius

FIG. 1. Schematic of the implementation of the full-state feedback control

in the full linear (top) and full non linear (bottom) simulations. The entire

state is first projected onto the unstable eigenvectors and the stable subspace

of the balanced modes in order to compute the reduced-order state xr. The

state is then multiplied by the gain K, computed based on the reduced-order

model using LQR to obtain the control input u ¼ �KrWx.
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with qs � vsix�1
ci where vsi �

ffiffiffiffiffiffiffiffiffiffiffi
Te=m

p
is the ion sound veloc-

ity in the cold ion limit and Te is the electron temperature.

The time, ion vorticity, and density fluctuation also have

been normalized as follows:

xcit 7!t; eu=Te 7!u; n=n0 7!n; x=qs 7!x: (30)

B. Input and output

The system is actuated by a localized external electro-

static potential in the center of the slab. Its shape is given in

Fig. 3. From Eq. (13), the initial condition used for each of

the ion vorticity and density fluctuation simulations can be

deduced. It is then shown in Fig. 4.

The control objective is to prevent drift wave turbulence

by stabilizing the unstable steady states of this model by

using the unique actuator defined in Fig. 3, and designing a

robust controller. An example of a pair of unstable eigenvec-

tors is shown in Fig. 5.

Table I summarizes the three numerical cases studied in

Sec. VI. Both a and l values are fixed, the density gradient j
is varied for each case, which gives us 3 different cases of

right half plane (RHP) (unstable) eigenvalues in the system.

VI. RESULTS

The balanced truncation technique is applied to the

MHW equations. In particular, a reduced-order model of the

system is obtained, actuated by a localized external electro-

static potential in the center of the slab.

Using this reduced-order model, feedback controllers

that stabilize its unstable steady states are developed; first, a

full-state feedback controller is designed, then improved by

developing a more realistic and practical observer-based

controller that uses fewer measurements of the model to

reconstruct the entire ion vorticity and density fields.

The goal is to show that these well-known flow control

techniques can be applied to this simplified plasma physics

model, so that new methods for equilibria stabilization can be

obtained, and savings of computational time and memory can

FIG. 2. Schematic of the implementation of the observer-based feedback

control in the linear (top) and nonlinear (bottom) simulations. The control

input u and the sensor measurements y are used as inputs to the observer,

which reconstruct the reduced-order state x̂r . This state is then multiplied by

the gain Kr to obtain the control input u. Both the controller and the observer

gain Kr and L are computed based on the reduced-order model.

FIG. 3. Actuator localized at the middle of the square plate and modeled as

a distribution of the external potential uext that is added to the system. It is

determined by the function f ðrÞ ¼ 2ð1� r2=c2Þexpð�r2=c2Þ, where r2 ¼
ðx� Lx=2Þ2 þ ðy� Ly=2Þ2 and c ¼ 5 is a given parameter.

FIG. 4. (Left) The ion vorticity f and (right) density fluctuations n of the

B-matrix defined in Eq. (14). These two quantities are going to be the initial con-

ditions of the nonlinear, full linear, and reduced model of the MHW equations.

FIG. 5. Representation of the two unstable eigenvectors of the linearized

equations. The left part represents its real part, the right its imaginary part.
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be achieved. Those are very important especially in this do-

main, where computational requirements are typically large.

A. The nonlinear MHW equations

The study begins by simulating the nonlinear MHW

equations, in order to understand the fluctuations that are

attempted to be stabilized. The dynamics of coupled drift

waves and zonal flows is found.

Figure 6 shows the transition of both ion vorticity and

density fluctuation from a horizontally uniform state (drift

waves) to an almost vertically uniform state (zonal flow); the

sequence then repeats.

Figure 7 shows the same information about the density

but focused on one point in the center of the grid, but for

longer times, so the coupling between drift waves and zonal

flow can be clearly seen in terms of amplitude of one point

of density fluctuation, but also in terms of the whole kinetic

energy distribution.

Having insights into the physics and understanding the

coupling of drift waves and zonal flow can help to better

design the controller. This idea will be discussed in Sec. VII.

The aim of this paper is not to explain the complex cou-

pling between drift waves and zonal flow; the nonlinear sim-

ulation is only used to obtain a big picture of the phenomena

in a particular case (here case 1 of Table I), it will help to

compare the model before and after applying the controller,

and see whether a stabilization of these oscillations is possi-

ble near the unstable equilibrium.

B. Reduced-order models and validation

Once the balanced truncation is applied, the error

between the original and the reduced-order model is calcu-

lated, and compared to its bounds (which were discussed in

Sec. III B), and to errors from POD and BPOD models (two

other model reduction techniques seen in Sec. III A). The

results are represented in Fig. 8. As expected, the balanced

truncation method is the one that gives the best approxima-

tion (least error) to the original model.

After validation, Table II shows for the three studied

cases, the new reduced dimensions obtained, once the bal-

anced truncation is applied. These dimensions have signifi-

cantly decreased.

C. Full-state feedback control

After designing a reduced-order model as described in

Sec. VI B, a full-state feedback controller is then designed,

TABLE I. Summary of the 3 systems that will be reduced then stabilized

with only one actuator: for fixed a and l, only j is varied and obtain 3 differ-

ent cases with 2, 4, or 8 right half plane (unstable) eigenvalues.

Case RHP poles j a l

1 2 0.20 0.1 0.2

2 4 0.25 0.1 0.2

3 8 0.28 0.1 0.2

FIG. 6. Ion vorticity and density fluctuation (in color) of the full non linear

MHW equations at three successive times with the B-matrix as the initial

condition.

FIG. 7. The output correspond to the density fluctuation that occurs in the

center of the square geometry with no control applied on the system.
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in which it is assumed that vorticity and density can be meas-

ured everywhere.

The controller is built as in Sec. IV, using a LQR with

Q ¼ q � C†
r Cr, and implementing it in the full linear system,

as well as the full nonlinear system as shown in Fig. 1.

By choosing q 
 10 for the first case study in Table I,

the LQR is able to move the right half plane eigenvalues to

the left without destabilizing the already stable left half plane

ones. q is chosen by numerically experimenting with differ-

ent values, and then for each value, deduce the LQR control-

ler and visualize the modified eigenvalues of the Ar � BrKr

matrix. Thus, q is chosen to be the best value that puts the

right half plane eigenvalues of both the reduced and full lin-

ear models as far to the left as possible without destabilizing

the other modes.

Figure 9 compares the density fluctuation in the center

of the slab predicted by the reduced, full linear and non lin-

ear models with inputs taken from the first case study defined

in Tables I and II.

At times t < 0, the nonlinear system evolves freely with-

out any control applied on it, the coupling effect is then

observed while the reduced and full linear models exhibit

just exponentially growing amplitudes that are not shown

here. At time t¼ 0, the controller is turned on and immedi-

ately for time t > 0, the controller damps the oscillations for

all three systems, and their controlled dynamics become very

close to each other. Therefore, the unstable steady state can

be stabilized. More importantly, the reduced-order model

predicts the outputs accurately when compared to the full lin-

ear or nonlinear system.

Figure 10 compares the density fluctuation in the center

of the slab at two different controlling times with inputs

taken from the second case study defined in Tables I and II.

The nonlinear system evolves freely, and then at time

t¼ 2000, the controller is turned on (the output response is

represented in red), the controller immediately damps the

oscillations. But when the controller is turned on at time

t¼ 2300 (the output: density in the center, is represented in

blue), the controller is not able to damp the oscillations and

stabilize the system due to the fact that it went too far from

the attraction basin of the equilibrium point.

In order to see that, Fig. 11 (top) shows the distance

from the equilibrium for the 2 cases: the one inside the basin

of attraction of the equilibrium point (control time at

t¼ 2000) and the one outside the basin of attraction of the

equilibrium point (control time at t¼ 2300). It can be seen

that for the first case, the distance from the zero point tends

to converge to zero, whereas in the second case, this distance

keeps oscillating and diverges.

Figures 11 (middle and bottom) show the projection of

the state on the 7th and 8th modes of the balanced truncation

reduced-order model for two different time intervals indi-

cated by the grey areas of the top figure and noted (B) and

(C), respectively. These two time intervals are chosen to

illustrate when the solution is the closest and furthest of the

equilibrium point respectively.

FIG. 8. Error jjG� Gred jj1=jjGjj1 for balanced truncation (�), balanced

POD (�), POD (�), and upper and lower bound for the model reduction

scheme.

TABLE II. Summary of the 3 new reduced systems. r is the dimension of

the stable reduced subsystem.

Case r Reduced dim. of state

1 4 5127!6

2 6 5127!10

3 12 5127!20

FIG. 9. Full Linear model with 2 eigenvalues in the RHP.

FIG. 10. Full Linear model with 4 eigenvalues in the RHP.
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In (B), the stable solution is converging to the equilib-

rium point at (0,0) whereas the unstable solution is initially

approaching and then diverging from (0,0). In (C), the stable

solution is still converging to (0,0) whereas the unstable so-

lution is following a complex path, sometimes being appa-

rently close to the equilibrium point, but the projection on

different modes would reveal that the distance is much

larger.

For the controllable case, Fig. 12 shows a comparison of

the reduced-order, full linear and nonlinear centered output

of the system. Once again the oscillations are damped and

stabilized and the dynamics of all three systems are approxi-

mately similar. This demonstrates that the reduced-order

model is accurately predicting the full dynamics.

Finally, as the parameter j increases to 0.28, two more

pairs of eigenvalues cross into the right-half plane (simulta-

neously). One of these pairs turns out to be uncontrollable,

as can be verified by the Popov-Belevitch-Hautus (PBH)

test,44 so it is not possible to stabilize the equilibrium with

this choice of actuation (shown in Fig. 4).

D. Observer-based feedback control

In practice, the full-state feedback control of the system

is not directly useful, since it is not possible to measure the

entire ion vorticity and density fluctuation fields. Therefore,

considering a more practical approach; the reduced order

models obtained from Sec. VI B are used to design dynamic

observers based on density fluctuation measurements at a

small number of sensor locations.

A 6 (respectively 10) modes reduced order model with 2

(respectively 4) and 4 (respectively 6) modes describing the

dynamics on the unstable and stable subspaces, respectively,

is used to design the Kalman Filter for producing an optimal

estimate of the density fluctuation and ion vorticity fields

based on Gaussian approximations of error terms (28a) and

(28b). This estimate is then used along with reduced order

model controller to determine the control input as shown in

Fig. 2. The results of this observer-based controller, which is

also called a compensator, are shown for different sensors

locations, in Figs. 14 and 15.

Two cases of measurements are considered here

• measurement of the whole density field, thus the C matrix

defined in Eq. (14) can be written as

C ¼ ½ 0 I 	; (31)

• measurement of only four points of the density field as

shown in Fig. 13, thus the C matrix can be written as

C ¼

0 � � � 1 � � �
� � � 1 � � �

� � � 1 � � �
� � � 1 � � � 0

2
664

3
775:
(32)

Even though these sensors may not be realizable in applica-

tions, they serve as a reasonable testing ground for the

models.

FIG. 11. Full Linear model with 4 eigenvalues in the RHP: phase space plot.

FIG. 12. Full Linear model with 4 eigenvalues in the RHP: inside basin of

attraction case.
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Only the second case study results, which contains 4 RHP

eigenvalues are shown here, as it contains some interesting

constraints on special controlling times when it came about

designing the Full state feedback. The measurements will be

done one time only of the density field, the other time, 4

points of density only.

Figure 14 shows a comparison of the outputs from the

reduced-order, full linear, and nonlinear models when only

the density field is measured. The oscillations are still

damped and stabilized and the responses agree well, indicat-

ing that the reduced-order linear model is a good approxima-

tion to the full nonlinear system.

Figure 15 shows us a comparison of the outputs from

the reduced-order, full linear, and nonlinear models when

only 4 density points are measured. The oscillations are

damped and stabilized quicker for the linear models than the

nonlinear model where it wiggles a little more and increases

before converging to the equilibrium point. The dynamics of

the 3 systems are approximately similar until a certain point

(a transition behavior of the nonlinear system) but at the end,

the controller will be able to control the nonlinear system

with only 1 actuator and 4 sensors.

The compensator again stabilizes the unstable equilib-

rium point and furthermore the observer reconstructs the

reduced order model states accurately. Initially, the observer

has no information about the states (the initial state estimate

is x̂ ¼ 0), but it quickly converges to and follows the actual

states.

Finally to test the robustness of the resulting controller,

a Nyquist44 plot of the loop gain of the input sensitivity func-

tion (input loop transfer function) is drawn for each unstable

case (2 or 4 right half plane eigenvalues), which corresponds

to Figs. (16) and (17), respectively. These plots show the

loop transfer function for different outputs considered: meas-

uring density and vorticity (full-state), measuring the full

density field, and measuring density at four spatial locations.

The gain (GM) and phase margins (PM) can be deduced

from the plots and are given in Table III. It indicates the

amount by which the actual dynamics can differ from the

model (either in gain or phase), before the closed-loop sys-

tem loses stability. The cases with only 4 sensors have very

small stability margins, indicating that the model needs to be

very accurate in order for the controllers to stabilize the

equilibrium.

More details about the tools and theory behind it can be

found in Astrom and Murray.45

FIG. 14. Output feedback: 4 RHP poles/Full density sensed.

FIG. 15. Output feedback: 4 RHP poles/4 density points sensed only.

FIG. 16. Nyquist diagram of the loop gain of the input sensitivity function

for the unstable case with two right half plane eigenvalues.

FIG. 13. Sensors location.
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VII. SUMMARY AND DISCUSSION

The numerical methods for developing a reduced-order

model of the input-output dynamics of linear unstable sys-

tems are briefly presented in this paper. It is assumed for

simplicity that the dimension of the unstable eigenspace is

small and the corresponding global modes can be numeri-

cally computed. Building the reduced order model treats the

unstable subspace exactly, and truncates from the stable sub-

space only.

These techniques have been frequently used in the fluid

control community. The aim of this work has been to intro-

duce and extend these methods to the plasma physics com-

munity. Stabilizing controllers based on the reduced-order

linear models were developed and applied on unstable state

and it was showed that when it works, the models obtained

agreed well with the actual simulations. These linear control-

lers applied to the full nonlinear simulations were fairly suc-

cessful at suppressing the drift wave turbulence.

A 10 modes reduced-order observer which reconstructed

the density and vorticity fields accurately was designed along

with an optimal controller and was able to suppress the drift

wave turbulence and stabilize the two fields in the neighbor-

hood of the equilibrium point.

Even if the actuator and sensors considered here are not

practically realizable, the methodology presented can be

extended to a more practical actuation. If given a different

equilibrium point than zero, using and amplifying the zonal

flow as an actuation would be a smart choice because of its sta-

bilizing effects; once actuated, the zonal flow can reduce the

drift wave turbulence as seen in Figs. 6 and 7. This actuation

may be a more physical particular way of actuating the plasma

slab for this special case where it has an attenuation effect.

Also, adding more actuators and improving their design

will provide better control. Here, the whole study was done

with only one actuator and in some cases, the stabilization of

the whole density and vorticity fields was possible with this

unique actuator.

Furthermore, the choice of sensor locations was not opti-

mal either for the given actuator, and different choices for

sensor measurements could lead to improved performance.

Finally, a motivation for the choice of this model prob-

lem was to show all the possibilities of these control design

techniques for a simple model. In the future, for more realis-

tic tokamak models, it may help to make the entire stabiliza-

tion procedure more automated and rigorous.
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