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This Letter presents the first numerical verification for the bounce-harmonic (BH) resonance phe-

nomena of the neoclassical transport in a tokamak perturbed by nonaxisymmetric magnetic fields. The BH

resonances were predicted by analytic theories of neoclassical toroidal viscosity (NTV), as the parallel

and perpendicular drift motions can be resonant and result in a great enhancement of the radial momentum

transport. A new drift-kinetic �f guiding-center particle code, POCA, clearly verified that the perpen-

dicular drift motions can reduce the transport by phase-mixing, but in the BH resonances the motions can

form closed orbits and particles radially drift out fast. The POCA calculations on resulting NTV torque are

largely consistent with analytic calculations, and show that the BH resonances can easily dominate the

NTV torque when a plasma rotates in the perturbed tokamak and therefore, is a critical physics for

predicting the rotation and stability in the International Thermonuclear Experimental Reactor.
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Tokamaks are highly sensitive to nonaxisymmetric mag-
netic fields, which can be generated by intrinsic error
fields, magnetohydrodynamic activities, and/or externally
applied magnetic perturbations. It has been well known
that even a small magnetic perturbation of order of
j�B=Bj � 10�4 can dramatically modify tokamak trans-
port and thereby various macroscopic stabilities such as
locked modes, edge localized modes, and resistive wall
modes [1–4].

One of the important effects caused by the nonaxisym-
metric magnetic perturbations is the modification of the
radial transport of toroidal momentum. This has been
called neoclassical toroidal viscosity (NTV), as the toroi-
dal rotation can be largely damped or changed with the
toroidal symmetry-breaking magnetic perturbations. The
toroidal rotation changes associated with the NTV have
been well accepted in theory [5–7], and also widely
observed in experiments with magnetic perturbations in
various devices such as NSTX [8–10] and DIII-D [11,12].
The toroidal rotation is an important parameter to deter-
mine the tokamak stability, from the macroscopic to the
microscopic scale, and thus, scientific interests on the NTV
and the control of the toroidal rotation through the NTV
have been rapidly increased.

The NTV physics is featured by complicated parametric
dependencies. The collisionality is one of critical parame-
ters, as is well known by the 1=� regime [13] in the
relatively high collisionality and the ��

ffiffiffi
�

p
regime [14]

with the very low collisionality. The ~E� ~B precession drift

is another dominant parameter [15], as the very low ~E� ~B
precession rate !E can lead to the superbanana plateau
regime [16]. Analytic treatments have been quite success-
ful in capturing the essential physics in these regimes, but
in practice, the connection among different regimes is

required to make a prediction in tokamaks, which are
almost always composed of multiple regimes across the
volume [17,18].
There is an important missing component, however, in

the connection between each analytic treatment for each
regime, the bounce-harmonic (BH) resonance. The BH
resonance was predicted first by Linsker and Boozer [19]
andMynick [20] and reformulated by Park [17] as essential
physics to determine the NTV transport unless !E is
extremely low, but has never been verified by experiments
or numerical simulations so far. The BH resonances occur
when the parallel bounce motions are resonant with the

perpendicular ~E� ~Bmotions. That is, when the precession
rate !E is comparable to the bounce frequency !b, the
particles can return back to the same turning point after a
few or a number of toroidal rotations, i.e., ‘!b � n!E

where ‘ is the digit representing the bouncing class of
particles [17] and n is the toroidal mode number of per-
turbations. Since there are almost always a small number
of particles that satisfy the ‘!b � n!E condition in a
Maxwellian distribution, the BH resonances change the
NTV prediction. Also note that it is the only mechanism
to enhance the NTV transport in the high !E.
The physics of the BH resonances was rather clear by

theory, but the simplified collisionality to connect all the
regimes including the BH resonances requires a serious
numerical verification using the realistic collisional opera-
tor. Modification of particle orbit and transport by non-
axisymmetric fields are essential in NTV physics; thus,
particle simulation has the benefit of studying the BH
resonance as well as fundamental NTV physics. Indeed,
this simulation gives a new finding of orbit evolutions of
charged particles confined in magnetic field by electric
field and its resonance with parallel and perpendicular
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motion of particles. This Letter shows a new type of
bounce orbit created by BH resonances and provides the
first successful verification of the BH resonances in NTV
using a new drift-kinetic �f guiding-center particle code.

The new code, POCA (Particle Orbit Code for
Anisotropic pressures), has been successfully developed
and shows various essential NTV features, such as the
quadratic �B dependency, the 1=� and ��

ffiffiffi
�

p
behaviors

including the superbanana plateau, qualitatively and quan-
titatively in the zero !E limit [21]. As will be briefly
introduced later, the POCA simulation precisely follows
the guiding-center orbits without approximations such
as the regime separation, the limitation on trapped particles,
the zero-banana-orbit width, the large-aspect-ratio approxi-
mation, or the simplified collisionality. The highlight of the

extended POCA simulations that include ~E� ~B is the clear
verification of the BH resonances by periodically closed
orbits, which can be understood as modified banana orbits

effectively without the ~E� ~B precession drift.
Figure 1 shows typical examples for a modified banana

orbit of a particle by the fast ~E� ~B drift motion (Red),

compared to the original banana motion without ~E� ~B
(Blue). Figure 1(a) is for ð‘; nÞ ¼ ð1; 1Þ with � ¼ 0:25 and
Fig. 1(b) is for ð‘; nÞ ¼ ð1; 3Þ with � ¼ 0:5, where � is the
inverse aspect ratio. Here, the magnetic drift motion will be
ignored for a moment for simplification. Both orbits are
effectively not moving through periods, although one case

(Red) includes the fast ~E� ~B precession. One can see from
the Red trajectories in Fig. 1 that the toroidal motion is fast
when the particle moves up from the lower to the upper
turning point and is slow when the particle moves down,

since the parallel bounce motion and perpendicular ~E� ~B
drift can be added or subtracted for the toroidal motion. In
both cases, the particle can radially drift out fast with a
nonaxisymmetric perturbation, due to the absence of
phase-mixing effects. When a magnetic perturbation is
applied, a particle can drift off the magnetic surface since
the action J ¼ H

Mvkdl can no longer be conserved within
the surface. The radial drift can be random, but will be
rapidly increased to one direction when orbits are nearly
closed.
The increase of the radial drift by closed orbits is clearly

illustrated in Fig. 2, where particle trajectories at near-zero
precession, off resonances, and near resonance are shown
for the same time interval. Here, collisions are not intro-
duced for better graphical illustration, and a magnetic
perturbation ðm; nÞ ¼ ð7; 3Þ with the poloidal mode num-
berm is applied to produce the radial drift in the absence of
collisions. The large radial drift can be seen by the !E � 0
case in Fig. 2, as orbits are nearly closed without the
precession, often called the superbanana plateau resonance
[16]. As !E is increased (3!E <!b), one can see the
decrease of the radial drift, which is due to the random
phase mixing. When !E approaches the first BH resonant
frequency (3!E �!b), the radial drift increases since the
phase mixing is not effective with closed orbits. If !E is
further increased (3!E >!b), the drift decreases since the
phase mixing takes effects again. Note here that the radial
drifts are enhanced actually by nearly closed orbits, not by

FIG. 1 (color online). 3D particle trajectories of the closed
orbit with ~E� ~B (Red) compared to the original banana orbit
without ~E� ~B (Blue) in the nonaxisymmetric configurations for
(a) ð‘; nÞ ¼ ð1; 1Þ and (b) ð‘; nÞ ¼ ð1; 3Þ. The closed orbit of the
‘-class particle toroidally circulates ‘ cycles for n bounces as
shown.

FIG. 2 (color online). Projections of particle orbits on the
poloidal cross section at near-zero, off-resonant, and near-
resonant precessions. Particles radially drift fast at the near-
zero precession (superbanana plateau—Black) and at the
near-resonant precession (BH resonance—Red), while the drifts
are decreased at the off-resonant precessions (Blue, Green) due
to the random phase mixing.
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perfectly closed orbits, as the slight toroidal reposition of
orbits is needed for orbit evolutions through different jBj.
However, there is no distinction for the effects in the
presence of collisions, which can move the closed orbits
to different toroidal positions as the slight off-resonant
~E� ~B does.
Another important aspect in the BH resonances is the

modification of the resonant magnetic perturbation. It is
often believed that the NTV is driven by nonresonant
magnetic perturbation, but the NTV transport is the largest
when the magnetic perturbation satisfies the resonant con-
dition m� nq ¼ 0 with safety factor q, as described in
detail by Kim et al. [21]. The resonant condition actually
means that the wave front of the magnetic perturbation is
the same as the helical pitch of the equilibrium magnetic
field, or equivalently the path of the bounce orbits without

the ~E� ~B precession, the blue trajectories in Fig. 1. When

the bounce orbits are modified by the ~E� ~B precession, the
wave front of the resonant perturbation should also be
shifted to follow the path of the modified bounce orbits,
the red trajectories in Fig. 1. This is predicted by theory
with the condition m� nq� ‘ ¼ 0. Magnetic perturba-
tions in Figs. 1 and 2 are actually chosen to meet the shifted
resonant condition. For Fig. 1(a), the ðm; nÞ ¼ ð3; 1Þ per-
turbation is applied on the q ¼ 4 surface, and for Figs. 1(b)
and 2, the ðm; nÞ ¼ ð7; 3Þ perturbation is applied on the
q ¼ 8=3 surface to produce the ‘ ¼ 1 BH resonances. If a
nonresonant perturbation is applied, for instance ðm; nÞ ¼
ð8; 3Þ to a q ¼ 8=3 surface, each of three periods will
experience different perturbations, and thus, the resonant
enhancement can be largely decreased even though the
orbits will repeat after three periods.

The described nature has been previously predicted by
analytic theory, but the study with the POCA code verifies
the existence and essential feature of the BH resonances.
The theory can be summarized by an analytic NTV for-
mula, which is given as

�’ ¼ �1=2pffiffiffi
2

p
�3=2R0

Z 1

0
dxR1‘

Z 1

0
d�2�2

w‘ ½!’ �!nc�; (1)

where

�2
w‘ ¼

X
nmm0

�2
nmm0

F�1=2
nm‘ F�1=2

nm0‘
4Kð�Þ ;

R1‘ ¼ 1

2

n2
h
1þ

�
‘
2

�
2
i

�
2� xe

�x

ð‘!b � n!E � n!BÞ2 þ
nh
1þ

�
‘
2

�
2
i

�
2�

o
2
x�3

;

with p the pressure and R0 the major radius. Here, normal-
ized variables x � E=T and �2�½E��B0ð1��Þ�=
2�B0� are used with kinetic energy E, temperature T,
and magnetic moment �. Given a magnetic field model

B ¼ B0ð1� � cos#Þ þ B0

P
nm�nme

iðm#�n’Þ with B0 the
toroidal magnetic field at the magnetic axis,

�2
nmm0 �Reð�nmÞReð�nm0 Þþ Imð�nmÞImð�nm0 Þ, Fy

nmlð�Þ¼R#t

�#t
d#½�2�sin2ð#=2Þ�y cos½�nm‘ð#Þ� with �nm‘ �

ðm� nq� ‘Þ# and #t ¼ 2 arcsinð�Þ, and K is the com-
plete elliptic integral of the first kind. The resonant pre-
cession condition is represented by ð‘!b � n!E � n!BÞ2
in the denominator of R1‘ in the first integral, and the
resonant field condition can be found by the fact that �2

w‘

in the second integral is the largest whenm� nq� ‘ ¼ 0.
The last term represents the effect of neoclassical offset
rotation !nc [11]. See Ref. [17] for more details. This
combined NTV theory presently gives the NTV torque
by the BH resonances uniquely, so the formula was used
for a quantitative comparison of BH resonant frequency
and NTV with the POCA simulation.
The POCA solves a set of Hamiltonian orbit equations

for the toroidal flux c , the poloidal angle #, the toroidal
angle ’, and the parallel gyroradius �k ¼ Mvk=qB
[21,22]. It tracks the guiding-center orbit motion by solv-
ing the equations of motion in Boozer coordinates. Then,
POCA calculates the neoclassical transport from the Fokker-

Planck equation with �fMonte Carlo method [23]. Noting

the distribution function f can be approximated as f ¼
fM þ �f ¼ fM expðf̂Þ � fMð1þ f̂Þ in the fusion plasmas
with fM the local Maxwellian, �f the perturbed distribu-

tion function, and f̂ the deviation from Maxwellian, the
Fokker Planck equation is written as

d lnfM
dt

þ df̂

dt
¼ Cm; (2)

where Cm ¼ C=f and C is the collision operator. Eq. (2) is
rewritten as

df̂

dt
¼ � ~v � ~rc

@ lnfM
@c

þ Cm; (3)

and f̂ is obtained from following equation,

�f̂ ¼ ��c
@ lnfM
@c

þ 2�
u

v
	�t� �c

e

T

d�

dc
; (4)

with � the collision frequency, u the parallel flow velocity,
	 the pitch angle, and e the electric charge. A modified
pitch-angle scattering collision operator is employed using
a Monte Carlo equivalent of the pitch-angle collision op-
erator [24] which updates 	 by pitch-angle scattering, and
a momentum correction term [23,25] is added to the col-
lision operator for conserving the toroidal momentum. The
first term in the right hand side of Eq. (4) represents �f
driven by particle drift motions, and the second term by the
toroidal momentum conservation. The third term repre-
sents the effect of electric potential �, which is directly

related to ~E� ~B rotation and the electric precession by
radial electric field Er ¼ �d�=dr. Finally, the POCA
code estimates the NTV torque by calculating the
perturbed pressures and utilizing the magnetic field
spectrums as �’ ¼ he’ � r � Pi ¼ h�P=B � @B=@’i with
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e’ ¼ @x=@’ [26]. �P is the perturbed pressure defined by

�P ¼ R
d3vðMv2

?=2þMv2
kÞ�f, and brackets denote the

flux surface average. In this Letter, we apply an analytic
nonaxisymmetric field perturbation expressed as �B=B0 ¼
�mnðc nÞ cosðm# � n’Þ with c n the normalized poloidal
flux, then the NTV torque is calculated by

�’ ¼ B0n�mn

�
�P

B
sinðm# � n’Þ

�
: (5)

For quantitative comparison of the NTV torque, an
example is set by a single harmonic perturbation with
�mn ¼ 0:02c 2

n and ðm; nÞ ¼ ð7; 3Þ to a model plasma in
Ref. [21], where Ti;0 ¼ 500 eV, B0 ¼ 10 T, R0 ¼ 10 m,

a ¼ 2:5 m, q0 ¼ 1:2, qedge ¼ 11:0, and �	 � 1:0. The

NTV torque is calculated by scanning the electric preces-
sion frequency. According to the combined NTV theory,
the BH resonances should occur at !E �!b=3 for n ¼ 3
perturbations and ‘ ¼ 1 class particles, where Er �
�7 kV=m for the model plasma. Figure 3 shows the

NTV torques as a function of radial electric field Er at
q ¼ 6=3 and q ¼ 8=3 surfaces, where ‘ ¼ 1 class particles
satisfy the resonant field condition m� nq� ‘ ¼ 0 with
the applied perturbations.
In Fig. 3, both POCA and theory calculations indicate

clear NTV peaks enhanced by the BH resonances. The

resonant ~E� ~B frequency for the peak NTV by the
POCA simulation is consistent with the theory prediction,
indicating the importance of BH resonances. The ampli-
tudes of NTV agree within a factor of 2 or 3. The NTV
peaks appear broad, since !b and !E are continuous
functions of plasma parameters and there is a small fraction
of resonant particles of ‘ > 1. It is notable that the
enhanced NTV can be even stronger than the theoretically
predicted value. It may be largely due to finite-orbit-width
and passing particle effects, which are excluded in the
combined theory. These effects are obviously more impor-

tant when the ~E� ~B rotation is stronger, as the POCA
simulation largely improved the prediction on NTV in the
magnetic braking experiments for NSTX with fast preces-
sion and large orbit width [27]. Note that the BH reso-
nances can occur at every flux surface since the
nonaxisymmetric magnetic perturbations are composed
of a multiharmonic Fourier series, of which a certain
component can meet the resonant field condition at the
surface. Also, there is always a fraction of particles with
low energy and bounce frequency in a Maxwellian distri-
bution. These particles can resonate even with the low
~E� ~B precession, and thus, enhance the NTV.
In summary, this POCA simulation verifies the bounce-

harmonic resonance and its crucial role in NTV physics. It
is clearly shown that the electric precession modifies a
banana orbit to a new type of closed orbit, and significantly
enhances the particle transport by preventing the phase
mixing when the precession frequency becomes resonant.
As a result, the bounce-harmonic resonances can greatly
enhance the NTV torque. This Letter shows that the bounce
harmonic resonance is the critical physics driving NTV in

the finite ~E� ~B rotation, and thus, should be understood
for reliable prediction of particle transport and NTV in the
present tokamaks and International Thermonuclear
Experimental Reactor.
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