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The effect of an anisotropic pressure of thermal particles on resistive wall mode stability in

tokamak fusion plasmas is derived through kinetic theory and assessed through calculation with the

MISK code [B. Hu et al., Phys. Plasmas 12, 0 57301 (2005)]. The fluid anisotropy is treated as a

small perturbation on the plasma equilibrium and modeled with a bi-Maxwellian distribution

function. A complete stability treatment without an assumption of high frequency mode rotation

leads to anisotropic kinetic terms in the dispersion relation in addition to anisotropy corrections to

the fluid terms. With the density and the average pressure kept constant, when thermal particles

have a higher temperature perpendicular to the magnetic field than parallel, the fluid pressure-driven

ballooning destabilization term is reduced. Additionally, the stabilizing kinetic effects of the trapped

thermal ions can be enhanced. Together these two effects can lead to a modest increase in resistive

wall mode stability. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901568]

I. INTRODUCTION

Tokamak fusion plasmas require a high ratio of plasma

stored energy to magnetic confining field energy (character-

ized by the quantity bN) in order to efficiently generate

energy. In order to reach these conditions without disruption

of the plasma current due to the growth of MHD kink-

ballooning instabilities, these modes must be stabilized. The

presence of a resistive wall around the plasma can slow the

growth of these modes down to the time scale of penetration

of the magnetic perturbations through the wall, converting

the mode into a resistive wall mode (RWM). However, the

RWM can also disrupt the plasma when bN is above the

so-called no-wall limit unless it is itself stabilized by passive

or active means.1

It has long been recognized that anisotropy of the

plasma pressure with respect to the direction of the magnetic

field can play a role in plasma stability. Consideration of

anisotropy goes back as far as Refs. 2 and 3, and some other

prominent examples include Refs. 4–6. One possible

approach is to consider the perturbed perpendicular and par-

allel pressures from Chew-Goldberger-Low (CGL)7 theory.

It will be demonstrated here, however, that using CGL

theory is akin to an assumption of high frequency modes,

which is not applicable to the RWM. Instead, kinetic theory,

in which the perturbed pressures are rigorously solved from

a perturbed distribution function, will be employed. Kinetic

theory, recently expanded to be relevant to low frequency

modes such as the RWM,8 has been successfully compared

to experimental instability9–12 in the National Spherical

Torus Experiment13 (NSTX) with calculations from the

MISK code.14 In particular, the importance of resonances

between the plasma rotation and the motions of thermal par-

ticles was elucidated. Here, we will expand the treatment of

those thermal particles to include anisotropy, such as might

arise when Maxwellian electrons are modified by electron

cyclotron resonance heating (ECRH)15 or ions by ion

cyclotron resonance heating (ICRH).16 Note that the effect

of anisotropy of energetic particles has also been consid-

ered,11,16–19 and indeed may be experimentally relevant and

important to plasma stability, but it is not the subject of the

present paper.

In Sec. II, we outline the Energy Principle approach to

RWM stability calculations with a perturbative approach. In

order to use such an approach, we must then demonstrate in

Sec. III that anisotropy of the pressure represents a small

perturbation on the equilibrium. In Sec. IV, an anisotropic

perturbed pressure tensor is used to determine a general

equation for the anisotropic corrections to the fluid dW term.

Equations for the kinetic effects depend on the distribution

function of the particles chosen; in Sec. V these are derived

for a specific case: a bi-Maxwellian distribution of thermal

particles. In Sec. VI, we return to the fluid anisotropic

correction specifically for the pressure-driven ballooning

destabilization term and incorporate this distribution func-

tion. Calculations with the MISK code are carried out using

these derived expressions in Sec. VII for an analytical

Solov’ev equilibrium to test the effect of thermal particle

anisotropy, and finally conclusions are drawn.

II. STABILITY CALCULATION THROUGH AN ENERGY
PRINCIPLE APPROACH

Pressure anisotropy leads to a modified Energy Principle

expression for the complex mode frequency, x, normalizeda)Electronic mail: jberkery@pppl.gov
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by the wall time constant sw, where x ¼ xr þ ic comprised

the growth rate, c, and real mode rotation frequency, xr

�ixsw ¼ �
dW1V þ dWF þ dWA þ dWK

dWb
V þ dWF þ dWA þ dWK

: (1)

Here, dW1V and dWb
V are the usual changes in vacuum poten-

tial energy without a wall and with an ideal wall, respec-

tively. dWF is the usual isotropic fluid term, while dWA is an

anisotropic fluid correction and dWK is the kinetic term,

which also must be modified by anisotropy. In Ref. 9, stabil-

ity diagrams were described, which show contours of con-

stant normalized growth rate on plots of ImðdWKÞ vs.

ReðdWKÞ. The anisotropy term modifies those diagrams

by adding �dWA to the offset a of the csw ¼ 0 curve

that defines the unstable region, as shown in the example in

Fig. 1.

Now, in order to solve for the dW terms, we use a

plasma force balance qðdv=dtÞ ¼ j� B� $ �P. This leads

to expressions for the plasma equilibrium, j� B ¼ $ �P,

when v is constant, and for the change in potential energy of

the plasma due to a small displacement n?

dW ¼ 1

2

ð
n*
? � j0 � ~B þ ~j � B0 � $ � ~P
h i

dV; (2)

when it is not. Here, x0 are equilibrium quantities, ~x are per-

turbed quantities, j is the plasma current, B is the magnetic

field, q is the density, v is the velocity, P is the pressure

tensor, and V is the plasma volume. In the perturbative

approach to stability calculations, it is assumed that the

RWM eigenfunction, n?, is unchanged by both the kinetic

effects that come in through ~P and, now, the anisotropy of

the equilibrium as well.

The well-known problem of closure of the set of equa-

tions now requires us to make specification for the equilib-

rium and perturbed pressures. First, however, we will

examine the effect of anisotropy on the plasma equilibrium

to assure the applicability of the perturbative approach to the

problem.

III. EQUILIBRIUM

Anisotropy of the plasma pressure can affect the

plasma equilibrium.20–30 In the present work, however, we

will use the isotropic equilibrium as a basis for stability

calculations. Therefore, we must now demonstrate that the

anisotropy is a small perturbation on the isotropic equilib-

rium if the degree of anisotropy is small, and discuss the

implications.

We will consider a pressure tensor with separate compo-

nents in the directions parallel and perpendicular to the

magnetic field

P ¼ pkb̂b̂ þ p?ðÎ � b̂b̂Þ; (3)

where Î is the identity tensor and b̂ ¼ B=B.

Let us now also define an anisotropy

parameter5,20,25,31–33

r ¼ 1þ
l0 p? � pkð Þ

B2
¼ 1þ 2l0p

B2

1

2

p? � pk
p

� � !
; (4)

which we note is unity when p? ¼ pk. Note that for a given

normalized pressure difference ðp? � pkÞ=p; jr� 1j is larger

for higher beta plasmas.

Then using Ampere’s law and the anisotropic pressure

tensor from Eq. (3), we have

1

l0

$� Bð Þ � B ¼ $ � ðpkb̂b̂ þ p? Î � b̂b̂ð ÞÞ: (5)

Now using the magnetic curvature, j ¼ b̂ � $b̂, and

$ � ðb̂b̂Þ ¼ b̂rk þ jþ b̂ð$ � b̂Þ; (6)

$ � ðÎ � b̂b̂Þ ¼ $? � j� b̂ð$ � b̂Þ; (7)

we have

�$
B2

2l0

þ jþ b̂ $ � b̂ð Þ
� �B2

l0

¼ $?p? þ b̂rkpk þ ðjþ b̂ð$ � b̂ÞÞðpk � p?Þ: (8)

In the perpendicular direction, the equilibrium is5,32

$? r
B2

2l0

þ pavg

 !
¼ rj

B2

l0

; (9)

where we have defined pavg ¼ ðpk þ p?Þ=2. In the isotropic

case, the equilibrium relation reduces to $? B2

2l0
þ p

� �
¼ j B2

l0
,

and Eq. (9) can be shown to be equal to the isotropic equilib-

rium in zeroth order, with a first order anisotropic correction

in the parameter r� 1. For more detail on the anisotropic

correction to the equilibrium and its impact on dW see

Appendix C. In the present paper, however, since pavg is

unchanged (a condition we will impose later), and r is not

much different from unity, we will use the perturbative

approach to the problem (using the isotropic equilibrium

unchanged).

FIG. 1. Example of a stability diagram, showing contours of csw ¼ 0 with

dW1 ¼ �1 and dWb ¼ 1 in arbitrary units, modified by anisotropy. Positive

dWA shifts the unstable region to the left, while negative dWA shifts it to the

right.
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IV. USE OF THE ANISOTROPIC PERTURBED
PRESSURE TENSOR FOR STABILITY CALCULATIONS

In order to obtain ~P for use in Eq. (2), we now linearize

Eq. (3), remembering that b̂ can also be perturbed.5 Therefore,

~P ¼ ~pkb̂b̂ þ ~p?ðÎ � b̂b̂Þ þ ðpk � p?ÞB�2ð~BBþ B~BÞ: (10)

At this point, the problem naturally separates into fluid

and kinetic approaches. In the fluid approach, the perturbed

pressures are given in terms of macroscopic quantities. There

are two common fluid approximations. The first is to assume

the equilibrium pressure and the perturbed pressure are iso-

tropic so, $ � ~P ¼ r~p, which results in a fluid compressibility

term, 1
2

Ð
cpj$ � n?j2dV. Then the adiabatic equation is used to

find ~p. In the second common fluid approach, two adiabatic

equations are used to find the two Chew-Golberger-Low

(CGL)7 perturbed pressures, ~p? and ~pk. This method, which is

applicable in the high frequency limit, is outlined in Appendix

A, and could result in the calculation of a dWCGL term.34,35

In the kinetic approach,5,36–39 ~p? and ~pk are defined by

using the perturbed distribution function ~f . First, we write

~P ¼
X

j

mj

ð
vv ~f j þ

@fj
@B

n? � $Bþ @fj
@U

n? � $U

� �
d3v; (11)

and then use for ~f j the solution of the linearized Vlasov

equation (ignoring perturbed potential and therefore electro-

static effects)

~f j ¼� n? � $fj þ imj x
@fj
@e
� n

@fj

@P/

� �
v � n? þ ~sjð Þ

�mj

B

@fj
@l

�ixn? � v? þ
l
mj

~Bk þ
vk
B

v? � ~B

� �
: (12)

Here, P/ is the toroidal canonical momentum, n is the toroi-

dal mode number, l is the magnetic moment, and j denotes

the type of particle that is being considered (ions or elec-

trons). The quantity ~sj represents the integral along the

unperturbed orbits and is essentially the term that gives rise

to kinetic effects in the problem (see, for example, Ref. 35).

Generally, it is assumed that the equilibrium pressure is iso-

tropic (pk ¼ p?), even in the kinetic approach. Here, we extend

that approach so that in Eq. (10) the final term (perturbation of

the direction of the magnetic field in an anisotropic equilibrium

pressure plasma5) is not zero, and @fj=@B is also not zero in Eq.

(11). After carrying through much algebra and neglecting finite

Larmor radius effects, we arrive at the expression

~P ¼ b̂b̂ �n? � $pk � $ � n? þ j � n?ð ÞB
@pk
@B

�

þ
X

j

mj

ð
v2
k imj x

@fj

@e
� n

@fj
@P/

� �
~sj

� 	
d3v

#

þ Î � b̂b̂ð Þ �n? � $p? � $ � n? þ j � n?ð ÞB @p?
@B

�

þ
X

j

mj

ð
1

2
v2
? imj x

@fj
@e
� n

@fj

@P/

� �
~sj

� 	
d3v

#

þ 1

B
b̂ ~B? þ ~B?b̂
� �

pk � p?ð Þ: (13)

Finally, this represents a form of the perturbed pressure ten-

sor that we can use to evaluate dW, from Eq. (2).

It is useful when doing so to separate out the various

modes of instability, for example, Eq. (39) in Ref. 40, Eq.

(58) in Ref. 5, or Eq. (11) in Refs. 41 and 42. Then the vari-

ous terms of the potential energy can be seen to be contribu-

tions from stabilizing shear Alfv�en waves, fast magneto-

acoustic (compressional Alfv�en) waves, and the two terms

that can drive instability by current driven kink or pressure

driven ballooning modes. Finally, using an alternative form

for j0 � ~B þ ~j � B0; n*
? � $ � b̂b̂ ¼ j � n*

?, and n*
? � $ � ðÎ �

b̂b̂Þ ¼ �ð$ � n*
? þ j � n*

?Þ from Eqs. (6) and (7), a fair bit of

algebraic manipulation, and splitting dW into isotropic fluid,

anisotropic fluid, and kinetic parts, we have

dWF ¼
1

2

ð � j
~B?j2

l0

�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
shearAlfv�en
ðmag: bendingÞ

B2

l0

j$ � n? þ 2n? � jj2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fast magneto–acoustic
ðmag: compressionÞ

þ jk n*
? � b̂

� �
� ~B?|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

current–driven
kink

0
BBB@

1
CCCA
þ 2 j � n*

?
� �

n? � $pavgð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pressure–driven

ballooning

8>>><
>>>:

9>>>=
>>>;dV;

(14)

dWA ¼
1

2

ð
r� 1ð Þ � j

~B?j2

l0

�

zfflfflfflfflfflffl}|fflfflfflfflfflffl{shearAlfv�en
ðmag: bendingÞ

B2

l0

j$ � n? þ 2n? � jj2
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fast magneto–acoustic

ðmag: compressionÞ

þjk n�? � b̂
� �

� ~B?

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{current–driven
kink

0
BBB@

1
CCCA� 2Bj$ � n? þ j � n?j2

@pavg

@B

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{pressure–driven
ballooning

9>>>>>=
>>>>>;

dV;

8>>>>>>><
>>>>>>>:

(15)

and

dWK ¼
1

2

X
j

ð ð
1

2
mjv

2 v2
?

v2
$ � n*

? þ
v2
?

v2
� 2

v2
k

v2

 !
j � n*

?

 !
imj x

@fj

@e
� n

@fj
@P/

� �
~sj

� 	
d3vdV: (16)
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Similar results have been previously derived in, for example,

Refs. 4, and 43–46. One can easily see that if the equilibrium

pressure is isotropic, dWA is zero. Anisotropy of the per-

turbed pressure ~P is implicit in dWK through its derivation

from Eq. (10). Anisotropy of the equilibrium pressure is now

included in two ways: dWA modification of the fluid term,

and inclusion of anisotropic pressure in dWK through the dis-

tribution function fj.
The above equation for dWF is solved by various numer-

ical codes (with pavg ¼ p, a flux function). For example, the

PEST code47 solves for dWF, in the form of Eq. (17) of Ref.

48, and uses the VACUUM code49 to solve for dWV . We wish

to keep the definition of dWF unchanged from its historical

form for isotropic plasmas. Therefore in the following, we

will consider pavg unchanged from the isotropic pressure, as

well as being a flux function. The correction due to anisot-

ropy will come entirely from the dWA term. The assumption

of pavg ¼ constant, however, means that the total pressure,

p ¼ 1
3

pk þ 2
3

p?, can change as scans in Tk=T? are performed,

which will impact the kinetic effects.

The last term of Eq. (15) represents a modification of

the pressure-driven ballooning destabilization term, which

we will call dWA2. This term has a different anisotropy cor-

rection than the others because of its explicit dependence on

the pressure. It will be separately, and rigorously, calculated

and discussed further in Sec. VI. Additionally, we note that

the r� 1 corrections to the shear Alfv�en, magnetic compres-

sion, and kink destabilization terms will necessarily be small

due to the restriction of r � 1 imposed by equilibrium con-

siderations in Sec. III.

The fluid terms (dWF þ dWA) should be self-adjoint and

therefore strictly real.50 In particular, dWA2 in Eq. (15) is

obviously real, as are the first two terms (the shear Alfv�en

and the magnetic compression terms) of dWA in Eq. (15) and

dWF in Eq. (14). When the equilibrium pressure is isotropic

(r¼ 1 and pavg ¼ p), one can show that the imaginary parts

of the last two terms of dWF (the kink and ballooning desta-

bilization terms) cancel. With anisotropy that property is no

longer obvious, but a lengthly manipulation can be used to

show that indeed dWF þ dWA is still self-adjoint (see

Appendix B).

Finally, to date, the kinetic term dWK has been generally

calculated for thermal particles with the distribution function

fj being for isotropic, Maxwellian particles. Here, we gener-

alize that treatment to include a bi-Maxwellian fj (which has,

incidentally, previously been used to describe energetic ions

heated by ICRH16,19).

V. KINETIC EFFECTS WITH ANISOTROPIC PRESSURE

An expression for dWK that shows explicitly the depend-

ence on the distribution function of the particles considered

can be derived from Eq. (16) (ignoring electrostatic effects)

and written11,17

dWK ¼
X

j

X1
l¼�1

2
ffiffiffi
2
p

p2

ð ð ð
jhHTjij2kj;l

fj

Tj

� 	
ŝ

m
3
2

j B
jvje1

2dedvdW:

(17)

Here, e is energy, v ¼ vk=v is the pitch angle, W is the

magnetic flux, H and ŝ are given by Eqs. (12) and (13) of

Ref. 51, and we have defined the frequency resonance frac-

tion, kj;l, as

kj;l ¼

Tj

fj
x� nxEð Þ

@fj
@e
� n

Zje

@fj

@W

� �
nhxj

Di þ lþ anqð Þxj
b � i�j

eff þ nxE � x
: (18)

Here, xE is the E�B frequency, hxDi is the bounce-

averaged precession drift frequency, l is the bounce har-

monic, a¼ 0 for trapped particles or a¼ 1 for circulating

particles, xb is the bounce frequency, and �eff is the effective

collision frequency. Note that the Tj=fj factor cancels out in

Eq. (17).

Clearly, the kinetic effects depend on the particle distri-

bution function through its derivatives with respect to W and

energy.11,17 We will see in Sec. VI that the derivative @fj=@v
enters into the fluid anisotropy term as well.

In order to be consistent with the assumption of differ-

ent pressures in the parallel and perpendicular directions,

one should use a bi-Maxwellian distribution, which has

pressure anisotropy due to different temperatures parallel

and perpendicular to the magnetic field, in dWK . The

Maxwellian distribution is really just a special case of

the more general bi-Maxwellian, with Tjk ¼ Tj?, so the

bi-Maxwellian form

f bM
j e;W; vð Þ ¼ nj

mj

2p

� �3
2 1

Tj?T
1
2

jk

e�ev2=Tjke�e 1�v2ð Þ=Tj? ; (19)

can be used in general. Here, j denotes the particle type that

is being considered (ions or electrons) and bM indicates bi-

Maxwellian, e is energy, v ¼ vk=v is the pitch angle, and W
is the magnetic flux. The density, njðWÞ, and the two temper-

atures, TjkðWÞ and Tj?ðWÞ, are each assumed to be flux func-

tions, so that the two pressures pk and p? are as well. The

pressures are given by pk ¼
P

j

Ð
mjv2

kfjd
3v ¼

P
j njTjk and

p? ¼
P

j

Ð
1
2

mjv2
?fjd

3v ¼
P

j njTj?. One can, of course,

recover the Maxwellian, isotropic solution when Tjk ¼ Tj?.

We can see from Eq. (19) that

@f bM
j

@e
¼ �

f bM
j

Tj

Tj

Tjk

� �
; (20)

and @fj=@W takes the form

@f bM
j

@W
¼ �

f bM
j

Tj
�Tj

nj

dnj

dW
� ev2 Tj

T2
jk
� 1

2

Tj

Tjk

 !
dTjk
dW

"

� e 1� v2
� � Tj

T2
j?
� Tj

Tj?

 !
dTj?
dW

3
5; (21)

Defining xj
�Tk ¼ �ð1=ZjeÞðdTjk=dWÞ, and xj

�T? ¼
�ð1=ZjeÞ ðdTj?=dWÞ, then from Eqs. (17) and (18) we find
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dWbM
K ¼

X
j

X1
l¼�1

ffiffiffi
p
p ð ð ð

nj
1

Tj?T
1
2

jk

 !
ŝ
B
jvje5

2e�ev2=Tjke�e 1�vð Þ2=Tj?dedvdW

� jhHTj=eij2
n

1

Zjenj

dnj

dW
þ ev2 1

Tjk
� 1

2

� �
1

Tjk

� �
xj
�Tk þ e 1� v2

� � 1

Tj?
� 1

� �
1

Tj?

� �
xj
�T? þ

1

Tjk

� �
xE

 !
� 1

Tjk

� �
x

nhxj
Diþ lxj

b� i�j
eff þ nxE�x

2
664

3
775
:

(22)

One can see that when Tjk ¼ Tj? ¼ Tj, this equation reduces

to the usual form for Maxwellian particles, since the expo-

nential terms together become e�e=Tj , and the x�T terms

become ðe=Tj � 3
2
Þx�T .

Additionally one could, if desired, derive an expression

for the kinetic term under the CGL perturbed pressure

assumptions by taking the limit of x!1, although this is

no longer applicable to the RWM. One can show that under

this high frequency limit, the CGL perturbed pressures are

recovered (see Appendix A).

VI. ANISOTROPIC MODIFICATION OF THE
PRESSURE-DRIVEN BALLOONING DESTABILIZATION
TERM

Let us now return specifically to the final term in Eq.

(15) which is like an anisotropic modification to the

pressure-driven ballooning destabilization term. Though this

is a fluid term, and is strictly real, it can be evaluated in a

similar way to the above method for dWK

dWA2 ¼
ð ð

mjv
2
k þ

1

2
mjv

2
?

� �
l
2

@fj

@l
d3vj$ � n? þ j � n?j2dV

(23)

¼
ffiffiffi
2
p

p2

m
3
2

j

ð ð ð
1� v4
� �

�@fj

@v

� �
j$ � n? þ j � n?j2

ŝ
B

e
3
2dedvdW:

(24)

For isotropic particles dWA2 is zero because @fj=@v ¼ 0.

In the bi-Maxwellian case @fj=@v 6¼ 0, but rather,

@f bM
j

@v
¼ �f bM

j 2ejvjð Þ 1

Tjk
� 1

Tj?

� �
; (25)

so

dWbM
A2 ¼ �

ffiffiffi
p
p ð ð ð

nj
1

Tj?T
1
2

jk

1

Tjk

� 1

Tj?

 !
j$ � n? þ j � n?j2

� v4 � 1
� �

jvje�
ev2

Tjke
�e 1�v2ð Þ

Tj? e
5
2dedvdW: (26)

The dWA2 term does not involve a frequency resonance

fraction with various energy dependent terms in the same

way that dWK does. Therefore, we can simply perform the

energy integration, using:52
Ð1

0
e

5
2e�aede ¼ ð15=8Þ

ffiffiffi
p
p

a�
7
2, for

a> 0. Then we have

dWbM
A2 ¼

15p
8

ð ð
nj

1�
Tjk
Tj?

Tj?T
3
2

jk

j$ � n? þ j � n?j2 1� v4
� �

jvj

� v2

Tjk
þ 1� v2

Tj?

" #�7
2

dvdW: (27)

Another consequence of the lack of a frequency

resonance fraction is that, unlike the kinetic term, the anisot-

ropy term makes no distinction between ions and electrons if

ni � ne and Ti � Te.

VII. CALCULATIONS USING THE MISK CODE

The fluid, anisotropy, and kinetic dW terms will be cal-

culated numerically in four steps. First, dWV and dWF are

calculated by the PEST code (as long as we assume that

pavg ¼ p) in the standard way.47 Here, we first find the mar-

ginally stable RWM eigenfunction and then use it to find

dWF from Eq. (14) and dW1V by setting the wall position to

infinity and dWb
V by specifying a physical wall position.

Second, the r� 1 terms of dWA can be calculated through a

modification of MISK which separates out the various stabi-

lizing and destabilizing terms, and multiplies the three rele-

vant terms by l0ðp? � pkÞ=B2 inside the volume integral of

Eq. (15).

Finally, in steps three and four, the MISK code is used

to calculate dWK and dWA2 according to the methods out-

lined in Secs. V and VI. MISK has been used previously for

various machines to calculate kinetic effects on stability of

Maxwellian thermal particles9–11,14,51,53–56 as well as for iso-

tropic or simple anisotropic distributions of trapped energetic

particles.11,53–55 Here, it is expanded to include the aniso-

tropic bi-Maxwellian distribution for thermal particles, the

r� 1 fluid corrections, and the dWA2 correction to the

pressure-driven ballooning destabilization term.

A. Solov’ev analytical equilibrium

For the present study, we wish to determine the effect of

changing Tk=T? of thermal particles on RWM stability gen-

erally. In principle, this could be a W dependent quantity, but

for simplicity we will use constant ratios across the entire

radial profile. This is an artificial situation, not based on

experimental reality, but it will give insight into the general

effect of thermal particle anisotropy. To that end, we will

use an analytical Solov’ev equilibrium solution to the Grad-

Shafranov equation57,58 and scan Tk=T? while keeping the

density and the average pressure constant (i.e., Tk and T? are
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changed such that T ¼ 1
2

Tk þ 1
2

T? stays constant). We will

use an equilibrium that was also used in Refs. 59 and 60.

This equilibrium is meant to represent a generic, but realis-

tic, example of a tokamak plasma. The equilibrium is

shaped, has a conformal wall at 1.1 times the minor radius

(see Fig. 2), contains the q¼ 2 and 3 rational surfaces within

the plasma, and has a qedge ¼ 3:263 (see Fig. 3(a)). It is

specified by the parameters elongation: j ¼ 1:6; q0 ¼ 1:9,

inverse aspect ratio: �a ¼ a=R0 ¼ 0:33; R0 ¼ 1 m, and

B0 ¼ 1 T in Eqs. (3)–(5) of Ref. 59. Additionally, collisions

are neglected, and the profiles of density, n ¼ n0ð1� 07WnÞ,
temperature, T ¼ T0ð1�WnÞ=ð1� 0:7WnÞ, and E�B
frequency, xE ¼ xE0ð1�WnÞ, are the same as in Ref. 59.

The normalized profiles of density (which doesn’t change),

temperature, and pressure are shown in Fig. 3 for the

isotropic case as well as an example anisotropic case with

Tk=T? ¼ 1:5.

B. Trends of distribution function derivatives with
anisotropy

Before delving into code calculations, one can gain

insight on the dependencies of the fluid and kinetic effects

on anisotropy by examining the trends of the derivatives of

the bi-Maxwellian distribution function on Tk=T?. From Eq.

(24), it is clear that dWA2 depends upon �@f bM=@v, while

from Eq. (18) dWK depends upon �@f bM=@e (multiplied by

xE) and �@f bM=@W. These three derivatives can be easily

analytically calculated at a given e, v, and W, especially for

the Solov’ev equilibrium with prescribed density and tem-

perature profiles. In Fig. 4 we show these three derivatives,

normalized by the Maxwellian distribution function f M,

for e ¼ T (the isotropic temperature), v ¼ 1=
ffiffiffi
2
p

(for conven-

ience, so that v2 ¼ 1� v2 in Eqs. (19) and (21)), and

W ¼ 0:65 (again for convenience, as it is where the brack-

eted term in the Maxwellian equivalent of Eq. (21) is

equal to T=2). The isotropic values of

ð�1=f Þð@f=@vÞ; ð�1=f Þð@f=@eÞ, and ð�1=f Þð@f=@WÞ are 0,

0.5, and 1.0, respectively, at this point in parameter space.

First, the kinetic effects depend upon the e and W deriva-

tives. Here, �@f=@e is larger than the isotropic case for

Tjk=Tj? < 1 and smaller for Tjk=Tj? > 1, while the relation-

ship of �@f=@W is less clear, at least at this point in parame-

ter space for this equilibrium. The kinetic terms therefore

FIG. 3. Profiles of (a) safety factor, (b) density, (c) temperature, and (d)

pressure for the isotropic Solov’ev equilibrium as well as an example aniso-

tropic case with Tk=T? ¼ 1:5.

FIG. 2. The Solov’ev analytical equilibrium, showing flux surfaces at the

edge (blue) and Wn ¼ 0:65 (red), and a conformal wall having rw=a ¼ 1:10

(black).

FIG. 4. Derivatives of the bi-Maxwellian distribution function vs. v, e, and

W, normalized by the negative of the Maxwellian distribution, for the

Solov’ev case at e ¼ T; v ¼ 1
ffiffiffi
2
p

, and W ¼ 0:65.
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will have complex dependencies on anisotropy, depending

on xE and other factors, but here simplistically we might

expect larger kinetic effects at lower Tjk=Tj?.

Next, let us examine the fluid ballooning correction,

which depends on �@f=@v. In Fig. 4, this quantity is positive

for Tk=T? < 1 and negative for Tjk=Tj? > 1. Then one can

see from Eq. (24) (and (27)) that since jvj � 1; dWbM
A2 is posi-

tive (and therefore stabilizing), when Tk=T? < 1 and nega-

tive (destabilizing) when Tjk=Tj? > 1. It is perhaps

somewhat unintuitive, but here the fluid ballooning instabil-

ity drive is enhanced by increasing parallel pressure, not per-

pendicular pressure. This result has been previously found

under certain assumptions of the poloidal variation of p? and

therefore of pressure weighting in the unfavorable curvature

regions,43,44,61,62 although not in others63 (see Ref. 61 for a

discussion of this topic). In our case, everything is consid-

ered a flux function, and pavg is held constant. Therefore the

fluid effect of anisotropy on the pressure-driven term is not

through changes to the last term of Eq. (14), but rather

through the last term of Eq. (15). In this way, we are isolat-

ing the effect of anisotropy to explore its dependencies. One

can see that the negative, destabilizing ballooning drive is

enhanced by positive @pavg=@B coupled with the RWM

displacement quantity, and reduced by negative @pavg=@B.

Enhanced parallel pressure leads to positive @pavg=@B
(one can show that @pk=@B ¼ ðpk � p?Þ=B,20,24,26 and that

@p?=@BÞ takes its sign from ð1� p?=pkÞ.

C. Fluid terms

We note that the corrections to the shear Alfv�en, fast

magneto-acoustic, and kink terms cannot be larger than

dWA=dWF ¼ r0 � 1, where r0 is the value on axis. This is

because we have considered Tk=T? to be a constant, and pull-

ing the factor 1� r0 out of the integral leaves only a factor

of B2
0=B2 inside. This factor serves to weight the contribution

from the low field regions more heavily, but when integrated

over the volume it doesn’t have a very large effect. Since the

on-axis b (b0 ¼ 2l0p0=B2
0) is �10:7% for this Solov’ev case,

it can be shown that the corrections to the shear Alfv�en, fast

magneto-acoustic, and kink terms are <63% for the range

0:5 < Tk=T? < 1:5. The fact that r0 is close to 1 (�63%)

justifies the use of the isotropic equilibrium as discussed in

Sec. III (with the caveat discussed in Appendix C).

Figure 5 shows ðdWF þ dWbM
A Þ=dWF for the various

components of the fluid term, vs. Tk=T?. Each component is

normalized by its own dWF, not the total. Not surprisingly,

the correction to the pressure-driven ballooning destabiliza-

tion term is considerably larger than r0 � 1. Here, higher

perpendicular pressure (lower Tk=T?) leads to an enhance-

ment of the bending and kinking effects, but a smaller

ballooning effect (as expected from Sec. VII B). Higher

parallel pressure (higher Tk=T?) leads to an increased

ballooning effect, but the increase is not as strong as the

decrease at low Tk=T?. The dWA2 term is half from ions and

half from electrons, and additionally we have found it to be

dominated by trapped particles over circulating particles.

Note that Fig. 5 shows normalized quantities. In abso-

lute terms (normalized by �dW1 ¼ �dW1V � dWF), the

isotropic contributions to dWF=ð�dW1Þ from shear Alfv�en,

fast magneto-acoustic, kink, and ballooning were 2.79,

0.007,�4.10, and �0.717, respectively. Therefore, while the

changes to the shear Alfv�en, fast magneto-acoustic, and kink

terms are essentially the same in a relative sense, the fast

magneto-acoustic term is quite small in this case, and there-

fore unimportant. Also the shear Alfv�en term is stabilizing

(positive), while the kink term is destabilizing (negative).

Therefore the corrections to these two terms partially offset

each other. Finally, even though the correction to the bal-

looning term was considerably larger in a relative sense, in

this case the ballooning term is actually only about 25% as

large as the shear Alfv�en term and 17% as large as the kink

term. The total percentage change in dWF þ dWA from the

isotropic case is also shown in Fig. 5, which reflects all the

relative weightings of the terms. The changes essentially

cancel in this case for Tk=T? > 1, while leading to a small

decrease for Tk=T? < 1.

D. Kinetic effects

The kinetic effects for thermal particles are also calcu-

lated, with Eq. (16), resulting in both real and imaginary

parts. Figure 6 shows these contributions, normalized by

their isotropic cases, plotted vs. Tk=T?. Three particle types,

trapped ions and electrons and circulating ions, are shown

separately (the contribution from circulating electrons is usu-

ally very small9). Generally, increased positive ReðdWKÞ is

stabilizing, while increased jImðdWKÞj is always stabilizing

(see Fig. 1).

When energy is shifted from parallel to perpendicular

motion (Tk=T? < 1), we can see that the stabilizing restoring

force provided by the trapped ions and represented by the

real part of dWK increases slightly, but the stabilizing reso-

nance interaction between the mode and the trapped ions

(ImðdWKÞ) decreases, and vice versa when the parallel

energy is increased (Tk=T? > 1). For electrons, the destabi-
lizing force (negative ReðdWK)) behaves similarly to the

trapped ion term, while the change in the resonance is more

complex. It should be noted, however, that the electron term

is already smaller than the trapped ion term in magnitude

and would be considerably more so if collisions had been

FIG. 5. ðdWF þ dWAÞ=dWF vs. scaled Tk=T? for the Solov’ev equilibrium.

Each component is normalized by its own isotropic contribution to dWF, not

the total.
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considered.53 For circulating ions (which also have smaller

magnitude than thermal ions), smaller parallel energy leads

to a decrease in their destabilizing effects (real and imagi-

nary parts), while larger parallel energy increases their

effect. Finally, it should be recalled that the assumption of

constant pavg has caused the total pressure to change, which

affects the kinetic calculation shown here. In this case, the

total pressure has increased by �11% at the low end of the

range of Tk=T? and decreased by �7% at the high end.

Finally, Fig. 7 shows the breakdown of the trapped ion

term from Fig. 6(a), normalized by �dW1, into the l¼ 0

bounce harmonic (precession resonance) and the l 6¼ 0 har-

monics (bounce resonances) and their radial dependences,

for Tk=T? ¼ 0:5, 1.0, and 1.5. In this particular case with its

analytic profiles there are no singularities at the rational

surfaces, so they are integrated across in this work. In cases

with singularities, special treatment is necessary.59

E. Growth rate

Using Eq. (1), we can finally bring these various effects

together by calculating the predicted growth rate of the

RWM and plotting it vs. Tk=T? in Fig. 8(a). First, without

considering kinetic effects, we can see the effect of the fluid

anisotropy corrections on the fluid growth rate (shown in

red). Once again, we see that lower Tk=T? is stabilizing and

higher Tk=T? is destabilizing, which follows from Fig. 5.

When kinetic effects are included, but not the anisotropic

fluid effects, the plasma becomes more stable (csw

� 0:43! 0:375 in the isotropic case). Then, as indicated by

the green curve, lower Tk=T? is stabilizing, while higher

Tk=T? is destabilizing. This follows from Fig. 6 with the

change to the real part of the trapped thermal ion term being

dominant. When the kinetic and fluid corrections are both

applied (blue), the effect is even more enhanced at low

FIG. 7. ReðdðdWK=ð�dW1ÞÞ=dWÞ vs. W for a) l¼ 0 trapped thermal ions

and b) l 6¼ 0 trapped thermal ions for Tk=T? ¼ 0:5, 1.0, and 1.5.
FIG. 6. a) Real and b) imaginary components of dWK normalized by the cor-

responding isotropic dWK components vs. scaled Tk=T? for the Solov’ev

equilibrium. The effect of anisotropy of three particles types, trapped ions

and electrons and circulating ions, are shown.

FIG. 8. The effect of anisotropy of thermal particles on the RWM growth rate

for a) the nominal Solov’ev equilibrium, and b) the modified Solov’ev equilib-

rium with ea ¼ 0:45. The growth rate normalized to the wall current decay

time is given by csw ¼ �ReððdW1v þ xÞ=ðdWb
v þ xÞÞ. Shown is the isotropic

fluid growth rate (x ¼ dWF, red dashed) and the fluid anisotropic modification

to it (x ¼ dWF þ dWA, red solid). Also shown is the isotropic kinetic growth

rate (x ¼ dWF þ dWK , blue dashed) and two modifications to it: including

only the anisotropic kinetic term (x ¼ dWF þ dWK , green solid) or including

both the fluid and kinetic corrections (x ¼ dWF þ dWA þ dWK , blue solid).
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Tk=T?. This indicates that the fluid dWA correction, though

small (Fig. 5), can have an impact on the predicted growth

rate. Finally, in Fig. 8(b), the resulting growth rates for a

modified Solov’ev equilibrium are also presented. In this

case, ea has been increased to 0.45, which increases the as-

pect ratio, qedge, and pressure (here we have correspondingly

let the temperature increase while maintaining the same den-

sity). One can see that in this case the trends are all the same,

though enhanced by the higher pressure. Note that the range

of csw plotted is the same in both frames, but the modified

case is closer to marginal stability and the anisotropy effects

are enough to change the growth rate from slightly unstable

to slightly stable at low Tk=T?.

Overall the biggest effect on RWM stability from anisot-

ropy of the thermal particles will be in plasmas with high

beta (where r is larger), a large pressure-driven ballooning

instability drive, and with T? larger than Tk. In this case a

reduction of the ballooning destabilization term can be

expected, as well as an enhancement of the stabilizing

kinetic effects of the trapped thermal ions.

VIII. CONCLUSIONS AND PHYSICAL IMPLICATIONS

We have derived the effect of anisotropy of the plasma

pressure on the resistive wall mode stability energy principle.

The fluid anisotropy has been treated as a small perturbation

on the plasma equilibrium, which allows a relatively simple

treatment of the problem. Fluid treatment with CGL pres-

sures is akin to consideration of the high frequency mode

rotation limit. More complete treatment leads to kinetic

terms in addition to anisotropy corrections to the fluid terms.

Specifically, the shear Alfv�en, fast magneto-acoustic, and

kink fluid terms are relatively simply modified by a factor of

r. Because of the equilibrium considerations in the perturba-

tive approach, these corrections are necessarily small in our

treatment. The kinetic effects depend upon @f=@e and

@f=@W, while the anisotropy correction to the fluid pressure-

driven ballooning term depends upon @f=@v. We

have derived expressions for these terms for a perturbed

bi-Maxwellian distribution function for thermal particles.

For thermal particles with larger perpendicular energy

than parallel the ballooning destabilization term is reduced,

while for Tk > T? it is enhanced. This leads to a reduction

of the fluid growth rate of the RWM for Tk=T? < 1 and an

increase for Tk=T? > 1. The stabilizing kinetic effects of

the trapped thermal ions can also be enhanced for

Tk=T? < 1, leading to a further increase in the RWM

kinetic stability.

Finally, in the analysis presented here (for an analytical

Solov’ev equilibrium) Tk=T? was assumed to be uniformly

changed over the whole plasma volume for both collisionless

ions and electrons while maintaining Tk þ T? ¼ constant,

and had to be relatively significantly different from unity to

see a large effect. Such a scenario would be difficult to

achieve in experimental reality. In this light, the effect of re-

alistic thermal particle anisotropy on RWM stability is likely

to be modest. Extension of this relevant physics to energetic

ions heated by ICRH and to less global modes, such as the

internal kink mode, is possible, however.
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APPENDIX A: DERIVATION OF CGL PERTURBED
FLUID PRESSURES USING THE HIGH FREQUENCY
LIMIT OF THE PERTURBED BI-MAXWELLIAN
DISTRIBUTION FUNCTION

The perturbed fluid pressures, ~p? and ~pk can be derived

by using double-polytropic laws62,64,65 as replacements

for the adiabatic equation: dðpkBck�1q�ck Þ=dt ¼ 0, and

dðp?B1�c?q�1Þ=dt ¼ 0. The CGL double-adiabatic equa-

tions,31,35,36,66,67 which are derived from the first and second

adiabatic invariants68 under the assumption of negligible

heat flux69,70 have ck ¼ 3 and c? ¼ 2. Here, we will demon-

strate that in fact the CGL ~p? and ~pk expressions can also be

recovered from Eq. (11) (neglecting the electrostatic contri-

bution) using a bi-Maxwellian equilibrium distribution func-

tion and our form of ~f j from Eq. (12), with the assumption of

fast mode rotation.

Let us now examine ~f j in the limit of large x (which

in reality pertains to high frequency modes, not the
RWM). Then we can take a gyro-average (h�i) of fj and in

Eq. (12), xð@fj=@eÞ 	 nð@fj=@P/Þ; hv? � n?i ¼ 0; hv? � ~Bi
¼ 0 and

h~sji ¼
ðt

�1
v � dn?

dt0
�

~Z
mj

 !
dt0

* +
� hHTji

imjx
; (A1)

so that

~f
x!1
j ¼ � n? � $fj þ

@fj

@e
ðhHTji

� Zje ~U þ n? � $U0

� �
Þ � l

~Bk
B

@fj

@l
: (A2)

Now,

~f
x!1
j þ @fj

@B
n? � $B ¼ �n? � $fj þ

@fj
@e
hHTji � ~Z
� �

� l
B

@fj

@l
~Bk þ n? � $B

� �
(A3)

¼ �n? � $fj þmj
@fj

@e
1

2
v2
?$ � n?

�

þ1

2
v2
?j � n? � v2

kj � n?
�
þ l

@fj
@l

j � n? þ$ � n?ð Þ; (A4)

where in the last line we have used Eq. (6) of Ref. 14 for hHi
and ~Bk ¼ �Bð$ � n? þ j � n?Þ � n? � $B.

From Eq. (19) for the bi-Maxwellian distribution

@fj=@e ¼ �fj=Tjk, and @fj=@l ¼ �fjB
1

Tj?
� 1

Tjk

� �
. Now mak-

ing these substitutions we find that
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~f
x!1
j þ @fj

@B
n? � $B

¼ �n? � $fj � fjmj
1

Tjk
�v2
kj � n?

� ��

þ 1

Tj?

1

2
v2
?j � n? þ

1

2
v2
?$ � n?

� �	
: (A5)

We then define the quantities R1, R2, and R3 as in Ref. 71

R1 ¼
X

j

mj

ð
v4
kfjd

3v ¼
3p2
k

q
; (A6)

R2 ¼
1

2

X
j

mj

ð
v2
kv

2
?fjd

3v ¼
pkp?

q
; (A7)

R3 ¼
1

2

X
j

mj

ð
v4
?fjd

3v ¼ 4p2
?

q
: (A8)

Now from Eq. (11)

~pk ¼
X

j

mj

ð
v2
k

~f
x!1
j þ @fj

@B
n? � $B

� �
d3v (A9)

¼ �n? � $pk þ
mj

Tjk
R1j � n? �

mj

Tj?
R2 j � n? þ $ � n?ð Þ

(A10)

¼ �n? � $pk � pk$ � n? þ 2pkj � n?; (A11)

and

~p? ¼
X

j

1

2
mj

ð
v2
?

~f
x!1
j þ @fj

@B
n? � $B

� �
d3v (A12)

¼ �n? � $p? þ
mj

Tjk
R2j � n? �

mj

2Tj?
R3 j � n? þ $ � n?ð Þ

(A13)

¼ �n? � $p? � 2p?$ � n? � p?j � n?: (A14)

Note that these ~p could then be used in Eq. (2) to find a

dWCGL,34,35 but this would only be applicable in the high fre-

quency limit.

APPENDIX B: SELF-ADJOINTNESS OF THE
ANISOTROPIC FLUID dW

In order to show that dWF þ dWA is self-adjoint, we

must look at both the ballooning term from Eq. (14), and the

kink term from Eqs. (14) and (15) together. Beginning with

the kink term we write

dWkink
FþA ¼

1

2

ð
rjk
2B

n*
? � B

� �
� ~B? þ n*

? � B
� �

� ~B?

� �
dV;

(B1)

¼ 1

2

ð
rjk
2B

n*
? � B

� �
� $� n? � Bð Þ þ n*

? � B
� �

� ~B?

� �
dV;

(B2)

¼ 1

2

ð
rjk
2B

$ � n? � n*
? � B

� �
B

� �
þ n? � Bð Þ � $

�
� n*

? � B
� �

þ n*
? � B

� �
� ~B?ÞdV; (B3)

¼ 1

2

ð
$ �

rjk
2B

n? � n*
? � B

� �
B

� ��

� n? � n*
? � B

� �
B � $

rjk
2B

� �

þ
rjk
2B

n? � Bð Þ � ~B
�
? þ n*

? � B
� �

� ~B?

� ��
dV: (B4)

The first term integrates to zero over the volume. The last

terms together are self-adjoint. Defining n? ¼ nWêW þ nvêv,

with êW ¼ $W=j$Wj and êv ¼ b̂ � $W=j$Wj, and rewrit-

ing, we have

dWkink
FþA ¼

1

2

ð
rjk
2B

n? �Bð Þ � ~B�? þ n*
? �B

� �
� ~B?

� ��

� nWn*
v � nvn

*
W

� �
B$ �

rjk
2

b̂

� �
ÞdV: (B5)

Now let us return to the ballooning term and write

dWballooning
FþA ¼

ð
jWn*

W þ jvn
*
v

� �
� n? � $W

@pavg

@W
þ n? � $B

@pavg

@B

� �
dV (B6)

¼
ð

nWn*
WjW þ nWn*

vjv

� �
j$Wj @pavg

@W
þ êW � $B

@pavg

@B

� ��

þ nvn
*
vjv þ nvn

*
WjW

� �
êv � $B

@pavg

@B

� ��
dV: ðB7Þ

Then let us momentarily consider

$� b̂ � $pavg ¼ $� b̂ � $W
@pavg

@W
þ $� b̂ � $BW

@pavg

@B
;

(B8)

¼ $� b̂ � $W
@pavg

@W
þ $� b̂ � $W

@B

@W
@pavg

@B

þ $� b̂ � b̂ð Þ b̂ � $Bð Þ @pavg

@B

þ $� b̂ � êv

� �
êv � $B
� � @pavg

@B
; (B9)

¼ � jvj$Wj @pavg

@W
� jv êW � $Bð Þ @pavg

@B

þ
jk
B

b̂ � $Bð Þ @pavg

@B
þ jW êv � $B

� � @pavg

@B
; (B10)

so that now

dWballooning
FþA ¼

ð
jnWj2jW j$Wj@pavg

@W
þ êW �$B

@pavg

@B

� ��

þjnvj2jv êv �$B
@pavg

@B

� �

þnWn*
v

jk
B

b̂ �$Bð Þ@pavg

@B
�$� b̂ �$pavg

� ��
dV:

(B11)
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From the equilibrium considered in Sec. III, one can show that the last term can be replaced so that

dWballooning
FþA ¼

ð
jnWj2jW j$Wj @pavg

@W
þ êW � $B

@pavg

@B

� �
þ jnvj2jv êv � $B

@pavg

@B

� �
þnWn*

vB$ �
rjk
2

b̂

� � !
dV: (B12)

Then one can see that the following is self-adjoint

dWkink
FþA þ dWballooning

FþA ¼ 1

2

ð
rjk
2B

n? � Bð Þ � ~B
�
? þ n*

? � B
� �

� ~B?

� �
þ nWn*

v þ nvn
*
W

� �
B$ �

rjk
2

b̂

� ��

þ 2jnWj2jW j$Wj @pavg

@W
þ êW � $B

@pavg

@B

� �
þ 2jnvj2jv êv � $B

@pavg

@B

� ��
dV: (B13)

APPENDIX C: ORDERING OF dW IN EXPANSION
PARAMETER r� 1

It was demonstrated in Appendix B that the full fluid ani-

sotropic dW is self-adjoint. Here we will show that this means

only the lowest order eigenfunction is necessary. If we con-

sider an expansion parameter � and write the plasma displace-

ment as an expansion in �, n ¼ n0 þ �n1 þ �2n2: Then since

dW is self-adjoint, dWðnÞ ¼ dWðn0Þ þ �2dWðn0; n1Þ.
If we now take the expansion parameter to be � ¼ r� 1,

then the full anisotropic fluid dW can be written

dWðnÞ ¼ dWFðn0Þ þ dWAðn0Þ þ Oð�2Þ. Here, the dWA term

is really first order in �, as can be seen by the r� 1 term in

the integral in Eq. (15). Therefore, only the lowest order

eigenfunction is required to calculate dW to first order in �.
However, anisotropy also modifies the equilibrium, as

was discussed in Sec. III. Consider Eq. (9), rewritten to ex-

plicitly show the isotropic equilibrium and its anisotropic

correction

$?
B2

2l0

þ p

 !
� j

B2

l0

¼ $? r� 1ð Þ B2

2l0

þ pavg � pð Þ

 !
� r� 1ð Þj B2

l0

: (C1)

If pavg � p � ðr� 1Þp (or, in our case, pavg � p ¼ 0) then

the right hand side is an anisotropy correction to the equilib-

rium of first order in �. Therefore, any equilibrium quantity

Q can be written as Q ¼ Q0 þ �Q1 þ � � �, where Q0 is the

term calculated by the isotropic equilibrium solver. Since

each term in Eq. (2) includes an equilibrium quantity and an

eigenfunction quantity, we find that dWðnÞ ¼ dWFðQ0; n0Þ
þ �dWFðQ1; n0Þ þ dWAðQ0; n0Þ þ Oð�2Þ. The first term is the

usual isotropic fluid dW, and the third term is the first order

anisotropic correction presented in this paper, but the second

term is also a first order anisotropic correction to the fluid

dW that arises from the anisotropy correction to the equilib-

rium. This term is not calculated here, but may be of the

same order as the fluid corrections presented here and there-

fore should be explored by calculating the anisotropic equi-

librium.20–30 It is worth noting, however, that the anisotropic

kinetic effects were found here to be larger than either of

these first order fluid corrections.
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