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Abstract
Neoclassical transport processes are important to the understanding of plasma confinement physics in doubly periodic magnetized
toroidal plasmas, especially, after the impact of the momentum confinement on the particle and energy confinement is recognized.
Real doubly periodic tori in general are non-axisymmetric, with symmetric tori as a special case. An eight-moment approach
to transport theory with plasma density N , plasma pressure p, mass flow velocity V and heat flow q as independent variables
is adopted. Transport processes are dictated by the solutions of the momentum and heat flux balance equations. For toroidal
plasma confinement devices, the first order (in the gyro-radius ordering) plasma flows are on the magnetic surface to guarantee
good plasma confinement and are thus two-dimensional. Two linearly independent components of the momentum equation
are required to determine the flows completely. Once this two-dimensional flow is relaxed, i.e. the momentum equation
reaches a steady state, plasmas become ambipolar, and all the transport fluxes are determined through the flux–force relation.
The flux–force relation is derived both from the kinetic definitions for the transport fluxes and from the manipulation of the
momentum and heat flux balance equations to illustrate the nature of the transport fluxes by examining their corresponding
driven forces and their roles in the momentum and heat flux balance equations. Steady-state plasma flows are determined
by the components of the stress and heat stress tensors in the momentum and heat flux balance equations. This approach
emphasizes the pivotal role of the momentum equation in the transport processes and is particularly useful in modelling plasma
flows in experiments. The methodology for neoclassical transport theory is applied to fluctuation-driven transport fluxes in the
quasilinear theory to unify these two theories. Experimental observations in tokamaks and stellarators for the physics discussed
are presented.
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1. Introduction

The economic feasibility of toroidal thermonuclear fusion
reactors such as tokamaks and stellarators critically depends
on the understanding and control of plasma particle and
energy transport losses in these devices. The strong magnetic
fields, forming nested magnetic surfaces, shown in figure 1,
are used to confine plasma movements across the magnetic
surfaces. Plasma particles and energy are lost from the
system through transport processes across the magnetic
surface. It was expected that transport losses follow the
predictions of classical transport theory [1]. However, it
has been known that plasma particle and energy confinement

times in tokamaks and stellarators are much shorter than
those predicted by classical transport theory. The research
neoclassical transport theory began when it was realized
that the width of the collisionless particle orbits in the
magnetic geometry of tokamaks and stellarators is much
wider than that of the classical gyro-orbits [2–5]. This
results in much larger transport fluxes than the predicted
classical fluxes when coupled to a dissipation mechanism. The
dissipative mechanism is Coulomb collisions in neoclassical
and classical transport theories of high-temperature plasmas
for thermonuclear fusion purposes. Coulomb collisions are
present even in turbulent plasmas. Thus, they are the
irreducible dissipation mechanism. Neoclassical transport
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Figure 1. A schematic diagram of the magnetic fields and
coordinates for a torus. Here, R is the major radius, ζ is the toroidal
angle, θ is the poloidal angle, Ẑ is the unit vector perpendicular to
the (R, ζ ) plane, Bt is the toroidal magnetic field, Bp is the poloidal
magnetic field, and B = Bt + Bp is the magnetic field. The nested
circles denote magnetic surfaces.

theory, pioneered by Galeev and Sagdeev [2, 3], is a study
of the transport consequences caused by the drift orbits under
the influence of Coulomb collisions.

The neoclassical transport processes in tokamaks are
fundamentally different from those in stellarators. The
magnetic field in ideal tokamaks is toroidally symmetric,
or axisymmetric. Toroidal symmetry ties particles to the
magnetic surface and limits the radial excursions of the
particles. Particles do not drift off the magnetic surface.
The magnetic field geometry for stellarators, on the other
hand, does not possess any symmetry property. Collisionless
particles readily drift off the magnetic surface. Thus,
neoclassical transport losses, especially for fusion-born alpha
particles, in stellarators are much larger than those in tokamaks.
Transport processes in non-axisymmetric tori are further
complicated by the limited ability to describe analytically the
collisionless particle trajectories in complicated magnetic field
configurations.

Even though ideal tokamaks are toroidally symmetric, real
tokamaks do not possess such symmetry due to the presence
of either the discrete numbers of the toroidal magnetic field
coils, or error fields, or low-frequency magnetohydrodynamic
(MHD) activity. In this sense, all real magnetically confined
toroidal plasmas are non-axisymmetric. Thus, at least in
principle, neoclassical transport theory for real tokamaks and
stellarators can be formulated with a unified approach. Details
are of course much different and depend on the spectrum
of the magnetic field strength B = |B|, where B is the
magnetic field. One of the goals of this review is to address the
similarities and differences in the transport properties in these
devices.

Neoclassical transport theory for axisymmetric tokamaks
is a matured subject. Two excellent review papers on the
subject describe the detailed physics, mathematical procedures
for solutions of the drift kinetic equation in various asymptotic
limits, and transport fluxes of the theory [6, 7]. The approaches

described in those two reviews are quite different. In the
review by Hinton and Hazeltine [6], a variational approach
is adopted. Transport coefficients in the transport matrix are
calculated individually by taking the proper moments of the
distribution function. To treat approximately the important
momentum restoring effects in the Coulomb collision operator,
a flow speed, proportional to the radial gradients of the
plasma pressure, electrostatic potential, and temperature, that
is parallel to the magnetic field B is introduced in the solution
of the drift kinetic equation with a variational parameter y to
be determined. The parameter y,and thus a relation between
the parallel flow and the radial electric field, is determined by
minimizing the rate of entropy production, which is equivalent
to the ambipolarity condition, for simple electron–ion plasmas
[5, 8]. The role of the momentum equation in the theory is

not transparent in this approach. In the review by Hirshman
and Sigmar [7], a moment approach to the transport theory
is employed. In that approach, a parallel flow for each
species is introduced, following the insight gleaned from the
variational approach, to treat approximately the momentum
restoring terms in the Coulomb collision operator. The flux–
force relation [9, 10] that relates transport fluxes to forces plays
a pivotal role in the theory. Once the components of the viscous
forces (or stresses in general) are calculated, all transport fluxes
can be obtained by solving for plasma flows that satisfy the
momentum and heat balance equations and by substituting the
resultant plasma flows into the flux–force relation. Thus, it is
not necessary to take the proper moment of the distribution
function for each individual transport flux. This approach
has several advantages. First, it can be readily generalized to
plasmas consisting of multiple ion species, as demonstrated in
[7]; second, the components of the viscous tensors can be used
for modelling plasma flows in experiments; third, the relation
between plasma ambipolarity and momentum relaxation is
clearly delineated [11, 12]; and fourth, the crucial role the
momentum and heat balance equations played in the theory
is transparent. For these advantages, moment approach is
adopted in this review to unify the formulation for the transport
processes in non-axisymmetric tori for simple electron–ion
plasmas. Eight independent fluid variables are employed in the
approach. Specifically, the eight moments are plasma density
N , plasma pressure p (or temperature T ), mass flow velocity V
and heat flux q. The Braginskii equations [1], by contrast, are
based on a five-moment approach where independent variables
are N , V and plasma temperature T .

The momentum confinement is not usually emphasized in
the neoclassical transport theory for axisymmetric tokamaks
presumably because transport fluxes are perceived to be
intrinsically ambipolar [6]. The poloidal flow damping
process becomes a research subject almost as an after thought
[13]. It had been believed that momentum confinement had

nothing to do with the particle and energy confinement until
the development of the theory for the high confinement mode
(H-mode) [14]) to change the paradigm [15–17]. Another
paradigm shift concept in the theory is that the turbulence
fluctuations can be suppressed by the gradient of the E ×
B angular velocity. Here, E is the electrostatic electric
field. Turbulence suppression theory and its implications
on plasma confinement first appeared in 1988 [17], and
were later reviewed in [18]. The electrostatic radial electric
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field is determined from the momentum equation, which
can have bifurcated solutions resulting from the non-linearity
of the plasma viscosity, another paradigm changing idea
in tokamak physics. Thus, the momentum confinement
intimately affects the particle and energy confinement. These
insightful discoveries first demonstrated in [15–17] have led to
the intensive theoretical and experimental research efforts on
the momentum confinement in all plasma confinement devices.
The moment equation approach is particularly suited for
investigating the momentum confinement in toroidal plasmas.

Because the variation of the strength of the equilibrium
magnetic field on the magnetic surface that causes neoclassical
transport fluxes is larger than turbulence fluctuation
amplitudes, the components of the viscous forces caused
by the equilibrium magnetic field variations can be the
dominant forces in the momentum equation. The momentum
confinement mechanism is likely to be neoclassical even in
turbulent plasmas. It is known that turbulence fluctuations
enhance particle and energy transport fluxes but have little
effects on the neoclassical bootstrap current and the electric
conductivity [19, 20]. This is an indication that neoclassical
momentum balance equations are relevant even in turbulent
plasmas. Thus, not all transport coefficients are equally
anomalous as demonstrated in the neoclassical quasilinear
theory [21], and neoclassical theory plays an important role in
the understanding of plasma confinement in non-axisymmetric
tori with axisymmetric tori as a special case.

1.1. Brief summary of neoclassical transport fluxes for
axisymmetric tokamaks

Neoclassical transport fluxes in axisymmetric tokamaks can be
summarized in a 3 × 3 matrix [6, 7], schematically:

⎛

⎝
#r

qr/T

J||/T

⎞

⎠ =

⎛

⎝
D11 D12 D13

D21 D22 D23

D31 D32 D33

⎞

⎠

⎛

⎝
X1

X2

E
(A)
||

⎞

⎠ . (1.1.1)

The transport fluxes in equation (1.1.1) are #r , qr and J||,
which are the radial (across the magnetic surface) particle flux,
radial heat flux and current density parallel to the equilibrium
magnetic field, respectively. The thermodynamic forces are
X1, X2 and E

(A)
|| , where X1 = X1

(
p′/p, T ′/T

)
, X2 = T ′/T ,

the prime denotes the radial derivative, andE
(A)
|| is the inductive

electric field parallel to the magnetic field. The transport
coefficients are Dij , where i and j are positive integers varying
from 1 to 3. Because of Onsager symmetry, Dij = Dji .
The conventional particle and heat diffusion coefficients are
D11, D22, and D12 = D21. The coefficients D13 and D23

describe the particle and heat fluxes resulting from the Ware
pinch [22, 23]. Their conjugate elements D31 and D32 are
coefficients for the bootstrap current driven by the plasma
gradients [23, 24]. D33 is the electric conductivity with the
modification due to the existence of the trapped particles [25].

The fundamental reason that neoclassical transport fluxes
deviate from fluxes in the classical theory is because the
magnetic field strength B varies on the magnetic surface. In
tokamaks, the magnetic field is stronger on the inside of the
torus where θ = π and weaker on the outside of the torus
where θ = 0. Here, θ is the poloidal angle as shown in figure 1.
The right-handed coordinate system is chosen here. In a large

Figure 2. As collision frequency decreases, the diffusion coefficient
Dij for i or j = 1 or 2 goes from the collisional Pfirsch–Schlüter
(P–S) regime, through the intermediate plateau regime and finally to
the banana regime. These scalings can be understood in terms of the
random walk argument. This is a log–log plot.

aspect ratio tokamak, this variation can be expressed as, when
ε < 1, [2–5]

B = B0 (1 − ε cos θ) , (1.1.2)

where B is the magnetic field strength on the magnetic surface,
B0 is the magnetic field strength on the magnetic axis, ε = r/R
is the inverse aspect ratio, r is the local minor radius and R
is the major radius. The typical distance going from θ = 0
to θ = π along a magnetic field line scales as Rq, where the
safety factor q = rBt/

(
RBp

)
, Bt is the toroidal magnetic field

strength, and Bp is the poloidal magnetic field strength.
Particles drift along the constant B surface as a result

of ∇B and curvature drifts due to the non-uniform magnetic
field. In a circular tokamak equilibrium, the constant |B|
surface is parallel to the Ẑ-axis. The radial drift speed is,
thus, proportional to sin θ , and the poloidal drift speed has
cos θ dependence. The radial drift reverses direction across
the θ =0 line. On average, particles do not drift off the flux
surface in axisymmetric tokamaks. It is this drift motion that
enhances the neoclassical transport fluxes over fluxes in the
classical theory.

The typical collision frequency dependence for the particle
and heat fluxes is shown in figure 2.

Because the magnetic moment µ = Mv2
⊥/(2B) is

an invariant for physics processes that have characteristic
frequencies less than the gyro-frequency & = eB/(Mc),
particles are trapped on the outside of the torus where the
magnetic field strength is weaker. Here, e is the electric charge
of the particle, M is the mass of the particle, v⊥ is the particle
speed that is perpendicular to the magnetic field, and c is the
speed of light. These trapped particles are called bananas for
having a poloidal projection similar to the shape of bananas
(see figure 3).

The characteristic width of the trapped particles ('r)b is
of the order of [6, 7]

('r)b ∼
√

ερp, (1.1.3)

where ρp = vt/
∣∣&p

∣∣ is the poloidal gyro-radius, vt =
√

2T /M
is the thermal speed, &p = eBp/(Mc) is the poloidal gyro-
frequency. Because Bp < B in tokamaks, the width in
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Figure 3. A schematic diagram for a banana orbit.

equation (1.1.3) can be much larger than the gyro-radius
ρ = vt/|&|. Typical trapped particles have v∥/v <

√
ε, where

v∥ is the particle speed that is parallel to the equilibrium
magnetic field. Thus, effective collision frequency for trapped
particles to scatter out of the magnetic well is

νeff ∼ ν
[
'(v∥/v)

]2 ∼ ν

ε
, (1.1.4)

where ν is the typical collision frequency, '(v∥/v) denotes the
width in the pitch angle space that is relevant to the physical
process under discussion, and v is the particle speed. Typical
diffusion coefficient D can be estimated using a random walk
argument, which states that

D ∼ fr

('r)2

'τ
, (1.1.5)

where fr is the fraction of the particles that dominate the
transport processes, 'r is the characteristic radial step size
in between decorrelations, and 'τ is the typical decorrelation
time. Using the argument, when trapped particles dominate
the transport processes in tokamaks,

Db ∼ ν
√

ερ2
p , (1.1.6)

which is larger than the classical diffusion coefficient Dc ∼
νρ2 by about two orders of magnitudes when typical Bp is
about a tenth of B. The scaling in equation (1.1.6) is for the
transport coefficients in the banana regime. The banana regime
onsets when the collision frequency is infrequent enough so
that collisionless orbits of the trapped particles can be formed.
Thus, the effective collision frequency in equation (1.1.4) must
be less than the bounce frequency of the trapped particles
ωb ∼ vt

√
ε/(Rq) which yields ν∗ = νRq/

(
ε3/2vt

)
< 1.

In the Pfirsch–Schlüter regime, all particles contribute
to the transport processes. Thus, fr = 1. The step size
is estimated to be the distance a particle can drift within a
decorrelation time, thus 'r ∼ vd'τ , where vd ∼ vtρ/R is
the typical drift speed. The radial drift speed changes direction
from the bottom half to the top half of the torus for having sin θ

dependence. The decorrelation time is determined by the time
for this to occur for particles diffusing along a magnetic field
line through collisions, and is 'τ ∼ (Rq)2 (

ν/v2
t

)
. The typical

diffusion coefficient is then

Dps ∼ νρ2q2, (1.1.7)

which is larger than Dc by a factor of q2 for q > 1.

The plateau regime is dominated by the resonant particles
that have v∥ ∼ 0 in the sense that they suffer persistent
radial drift. This drift is interrupted by the collisions. Thus,
'r ∼ vd'τ . The fraction of the particles that can participate
the transport processes is determined by vt'(v∥/v)/Rq <

ν/
[
'(v∥/v)

]2. Physically, this inequality implies that the time
for the resonant particles to move from the bottom half to the
top half of the torus so that the radial drift reverses the direction
must be less than the effective collision frequency to scatter out
of the resonance layer [6, 7]. This yields fr ∼ ['(v∥/v)] ∼
{ν/[vt/(Rq)]}1/3, and ('τ )−1 ∼ ν/

[
'(v∥/v)

]2. Thus, the
typical diffusion coefficient scales as

Dp ∼
v2

d

vt/(Rq)
. (1.1.8)

The plateau regime is limited by ν < vt/(Rq), which implies
that the particle motion along the magnetic field line is no
longer diffusive, but ν∗ > 1 to prevent the formation of the
trapped particles. It is obvious that the plateau regime can
exist only in large aspect ratio tokamaks.

Externally driven electric current parallel to the magnetic
field line is carried by particles that are circulating around the
torus. In the banana regime, trapped particles cannot circulate
around the torus. Thus, electric conductivity is reduced by a
fraction proportional to the fraction of the trapped particles in
the large aspect ratio limit. When all particles are trapped in
the unity aspect ratio tori, electric conductivity must vanish.
It should be noted, however, that trapped particles can carry
bootstrap current which is diamagnetic in nature.

Bootstrap current is analogous to the diamagnetic current.
It is driven by the radial density gradient and is in the
direction of the magnetic field. Trapped particles move
along the magnetic field line with a speed of the order√

εvt . Because plasma density is not uniform in the radial
direction, there is a parallel fluid flow V|| of the order of
V|| ∼ −

√
ε
(√

εvt
) √

ερpN
−1 dN/dr due to the finite orbit

width of the trapped particles. The first
√

ε in V|| denotes the
fraction of the trapped particles. This parallel flow is damped
by the bumpiness of the magnetic field strength along the
magnetic field line with an effective damping rate νeff ∼ ν/ε.
So far the argument is independent of the plasma species. For
electrons, ν ∼ νei, the electron–ion collision frequency. In the
electron momentum equation, i.e. Ohmic law, this momentum
dissipation must be balanced by the friction force term that
scales as ∼νeiJ||/Ne. The parallel current generated is the
bootstrap current and is of the order of

Jb ∼ −
√

ε
cT

Bp

dN

dr
. (1.1.9)

The bootstrap current exists even in the unity aspect ratio
tokamaks.

Bootstrap current, Ware pinch, and the modification
on the electric conductivity have similar collision frequency
dependence. These physics quantities depend strongly on
the formation of the collisionless trapped particle trajectories.
Thus, they have the largest values in the banana regime where
ν∗ < 1 and diminish when the collision frequency increases.
Schematic collision frequency dependence for these quantities
is shown in figure 4.
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Figure 4. Transport coefficient Dj3 as a function of collision
frequency in a log–log plot is shown.

Figure 5. Schematic magnetic field strength B variation along a
magnetic field line in a stellarator. The red shaded region indicates
particles trapped in a helical well. The arrow indicates particles
trapped in a toroidal magnetic field well.

1.2. Brief summary of neoclassical transport fluxes in
stellarators

All axisymmetric tokamaks have the same magnetic geometry.
However, not all stellarators are equivalent. The simplest
model magnetic field for a classic stellarator is [3.4,26]

B = B0 (1 − εt cos θ − εh cos α) , (1.2.1)

where εt is the Fourier amplitude for the toroidal harmonic,
εh is the amplitude of the helical harmonic, α = mθ − nζ is
the helical angle, and m and n are integers denoting poloidal
and toroidal mode numbers. Usually, in stellarators, nq > m.
Modern real stellarators have a magnetic field spectrum that is
more complicated than that shown in equation (1.2.1) even for
real quasi-symmetric stellarators [27]. There is only one class
of trapped particles in tokamaks. However, there can be at
least two classes of trapped particles in stellarators. Particles
can be trapped either in a toroidal magnetic field well or in a
helical magnetic field well, as shown in figure 5.

The typical collision frequency dependence of diffusion
coefficients for stellarators is shown in figure 6 [3]. This
dependence is generic for non-axisymmetric tori.

The transport mechanisms for the Pfirsch–Schlüter regime
and the plateau regime in stellarators are the same as those in
tokamaks except that there are more than one harmonic in the

Figure 6. Schematic collision frequency dependence of diffusion
coefficients in a stellarator in a log–log plot.

magnetic field spectrum. The contribution from each harmonic
to the diffusion coefficients is additive in these two regimes.
This is because plasmas are collisional, the effects of each
harmonic on particle motion are decoupled from each other.

It is important to note that collisionless trapped particles,
i.e. bananas, do not drift off the magnetic surface upon
averaging over their trajectories in axisymmetric tokamaks
because of the toroidal symmetry, as can be seen in figure 3.
However, this is no longer the case once the toroidal symmetry
is broken as is the case in stellarators and tokamaks with error
fields or MHD activities. Typical drift orbits in stellarators,
e.g. a superbanana, a circulating banana and an orbit that
underwent collisionless detrapping/retrapping, are shown in
figure 7. These drift orbits can have a width much larger
than the poloidal gyro-radius and cause significant transport
losses when normalized magnitudes of the symmetry breaking
components in the magnetic field spectrum are fraction of a
per cent.

When εh > εt , and nq > m, as the collision frequency
decreases, particles trapped in the helical variation of the
magnetic field become collisionless first. These helically
trapped particles drift off the magnetic surface under the
influence of the toroidal variation of the magnetic field, i.e.
the εt cos θ variation in equation (1.2.1).

In the 1/ν regime [3, 4], the collision frequency is high
enough so that helically trapped particles cannot complete their
drift trajectories before being collisionally scattered out of the
helical magnetic well. Thus, the step size is 'r ∼ vd'τ ,
and 'τ ∼ (ν/εh)

−1. An additional 1/εh factor in 'τ appears
because only a small change in '(v∥/v) ∼ √

εh is adequate
for trapped particles to scatter out of the helical well. The
fraction of the particles that participate in the transport process
is fr ∼ √

εh. Recall that vd ∼ vtρ/R, the diffusion coefficient
scales as

D ∼
(

cT

eBr

)2 ε
3/2
h ε2

t

ν
. (1.2.2)

Of course, this 1/ν scaling cannot persist forever.
When the collision frequency decreases even further, the

poloidal drift motion cannot be ignored any more. The
transport fluxes can be categorized as resonant and non-
resonant fluxes depending on whether the poloidal drift speed
vanishes or not along the drift trajectories. If poloidal drift
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Figure 7. Schematic diagrams for typical orbits in a stellarator. The wriggles indicate the helically trapped particles.

vanishes at some point on the drift trajectories, these are
resonant particles because the step size becomes unbounded
at the resonance position. Of course, the unbounded step size
is unphysical. In the superbanana plateau (Sb-P) regime, the
resonance is broadened by collisions analogous to the plateau
resonance in axisymmetric tori [6, 7]. In the superbanana
(Sb) regime, the resonance is removed by the formation of
the non-linear superbananas similar to the banana regime in
the axisymmetric tokamaks [6, 7]. The transport coefficients
in these two regimes have the same collision frequency
dependences as those in the plateau and banana regimes in
axisymmetric tokamaks, respectively, but with much larger
magnitudes due to larger step sizes. If the poloidal drift does
not vanish anywhere along the drift trajectories, particles are
not resonant. In that case, it is the particles in the vicinity of
the helically trapped and untrapped boundary that dominate the
transport processes. These particles can become detrapped or
retrapped either through collisions or even without collisions.
If the collisional effects dominate, the transport coefficients
scales as

√
ν, a typical scaling resulting from the boundary

layer (B-L) analysis [3, 4]. In non-axisymmetric tori, drift
orbits can change their topology even without collisions
because the second adiabatic invariant J2 is no longer a good
invariant quantity [28]. The diffusion coefficients are still
proportional to the collision frequency in this collisionless
detrapping (C-D) regime [3].

1.3. Collision operator

The neoclassical theory for non-axisymmetric toroidal plasmas
is to solve the drift kinetic equation for the perturbed
distribution function to calculate transport coefficients. The
equation for each plasma species is [29]

∂f

∂t
+ (v∥n + vd) · ∇f + ev∥E

(A)
||

∂f

∂E
= C (f ) , (1.3.1)

where f is the particle distribution, n is the unit vector in
the direction of B, vd is the drift velocity, E = Mv2/2 + e.

is the energy of the particles, . is the electrostatic potential,
inductive parallel electric field E

(A)
|| = −c−1n · ∂A/∂t , A

is the vector potential, and C (f ) is the Coulomb collision
operator. The independent variables for equation (1.3.1) are
(E, µ, x), where x denotes spatial coordinates. The subscripts
that indicate plasma species for species-dependent quantities
are suppressed for the sake of simplicity. When plasma species
in physics quantities needs to be specified, the subscript i is
used for ions and e for electrons.

The theory is to solve the linear version of equation (1.3.1)
by expressing the particle distribution f as

f = fM + f1, (1.3.2)

where

fM = N

π3/2v3
t

exp
(
−v2/v2

t

)
(1.3.3)
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is the equilibrium Maxwellian distribution function, and f1 is
the perturbed distribution function. Thus, C (f ) = C (f1)

because C (fM) = 0 when the temperature equilibration
between species is neglected. The operator C (f1) is an
integral–differential operator that makes equation (1.3.1)
difficult to solve. An approximate collision operator that can
yield accurate transport coefficients is adopted in this review
for the illustration purposes, and it is [30]

Cab (fa1) = νab
D

Mv||

B

∂

∂µ
v||µ

∂fa1

∂µ
+ 'νab v||ua1

v2
faM

+νab
s

2v||rba

v2
ta

faM, (1.3.4)

where the subscript that denotes species is restored, Cab

denotes the test particle species a colliding with the
field particle species b. The first term on the right
side of equation (1.3.4) is the pitch angle scattering
operator. The deflection frequency νab

D is defined as
νab

D = νab[. (v/vtb) − G (v/vtb)]/(v/vta)
3, where the basic

relaxation frequency νab = 4πNb (eaeb)
2 ln //

(
v3

taM
2
a

)
, ln /

is the Coulomb logarithm, the Chandrasekhar function is
G (x) =

[
. (x) − x.′ (x)

]
/
(
2x2

)
, and . (x) is the error

function. (In this review, when . has a dimensionless
argument, it denotes error function, and when it has an
argument that is the position it is the electrostatic potential.)
The second term on the right-hand side of equation (1.3.4) is
the momentum restoring term from the test particle operator,
where 'νab = νab

D − νab
s . The slowing down frequency

νab
s is νab

s = νab (2Ta/Tb) (1 + Mb/Ma) G (v/vtb)/(v/vta),
and ua1 =

∫
d(3v∥/2v)v∥fa1/faM. The third term is the

momentum restoring from the field particle distribution, where
rba = (3/2)

∫
dvMbv||ν

ba
s fb1/

∫
dvMaν

ab
s (v/vta)

2faM.
The eight-moment equation approach to be discussed is

not sensitive to the details of the collision operator. The model
operator displayed here is to facilitate the illustrations of the
theory.

1.4. Summary of moment approach to transport theory

The moment approach to transport theory provides a means to
determine plasma flows and as a consequence the transport
fluxes. The roles of plasma flows in transport fluxes are
explicit. Thus, not only the transport fluxes, but also plasma
flows under various physics conditions are of interest in the
theory. For large aspect ratio tokamaks, analytic expressions
for plasma flows and transport coefficients can be obtained.
However, for real stellarators, it is often difficult to have
compact analytic expressions for transport fluxes in the low-
collisionality regimes for a general magnetic field spectrum.
For those cases, plasma flows and transport fluxes for classic
stellarators are discussed to illustrate the physics involved.

The moment approach to the transport theory can be
summarized in figure 8. The momentum equation is used
to determine the plasma flows on the magnetic surface that
make plasmas ambipolar. These plasma flows are substituted
into the flux–force relation to determine the transport fluxes.
The viscous forces in the momentum equation are calculated
from the solution of the kinetic equation to close the moment
equations.

Figure 8. Flow chart for the moment approach.

1.5. Synopsis

The review concerns neoclassical transport processes,
including quasilinear theory, formulated using the neoclassical
methodology and turbulence suppression theory to provide a
theoretical tool to understand plasma transport behaviour in
a non-axisymmetric torus with an axisymmetric tokamak as
the special case. Because the focus of the theory part of the
review is on the analytic neoclassical methodology, only works
that are directly related to the development of the moment
equation approach are referenced, and numerical works on
neoclassical theory are not reviewed here. The subjects and
references chosen are biased towards those that are needed in
the modelling and understanding of the neoclassical transport
phenomena observed in experiments. Thus, they are by no
means extensive. The part on the experiments is limited to
the review on the experimental tests of neoclassical plasma
viscosity and plasma flows in non-axisymmetric tori.

The moment equations are needed for the development
of the transport theory. They are employed to construct
equilibrium flow patterns and current on the magnetic surface,
and the flux–force relation. These equations are displayed in
section 2.

Transport theory is to describe the particle, momentum
and energy losses in equilibrium plasmas. The standard MHD
equilibrium is briefly discussed in section 3. The emphasis
is on the flow patterns and the expression for plasmas current
in non-axisymmetric tori. These flows and current are to be
determined in the transport theory.

The key to the transport theory is the flux–force relation
that relates the transport fluxes in the even velocity moment
equations to forces in the odd velocity moment equations. Both
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moment and kinetic derivations are presented in section 4.
The relation together with the momentum equation is used
to demonstrate that the ambipolar state is reached when two
linearly independent components of momentum equation on
the magnetic surface are relaxed. An example of the poloidal
flow damping or relaxation in the banana regime is employed
to show the relation between flow damping and the so-called
intrinsically ambipolar transport in axisymmetric tokamaks. It
also demonstrates that the radial electric field is first established
on a short time scale of the order of the poloidal flow damping
time and further evolves relatively slowly at the transport time
scale. Thus, it evolves at two distinct time scales in tokamaks.
In addition, it is shown that when neoclassical transport losses
are improved so are the anomalous losses by considering the
relation between the flow damping rate and improvement of
the anomalous losses.

The equivalence between the variational and moment
approaches to neoclassical transport theory is illustrated in
section 5. The reason for the introduction of the parallel flow
into the solution of the kinetic equation is discussed.

The neoclassical transport theory for axisymmetric
tokamaks is reviewed in section 6. Analytic expressions for
particle trajectories both in the region away from and in the
vicinity of the magnetic axis are calculated from conservations
of canonical toroidal momentum and energy together with the
invariant of the magnetic moment. These expressions are used
in a systematic method that calculates the parallel component
of the plasma viscous forces in all regimes. Specific physics
included are transport theory in unity aspect ratio tokamaks in
the Pfirsch–Schlüter regime, effects of orbit squeezing, effects
of finite banana width, non-linear plasma viscosity, transport
theory in the vicinity of the magnetic axis and shock formation.
The application of the theory to low confinement mode (L-
mode) to H-mode transition is also presented.

In section 7, the methodology of the neoclassical theory
is employed to formulate the quasilinear theory to describe
transport losses, including particle, energy and momentum
losses, associated with turbulent fluctuations. The turbulent
suppression theory is also discussed to complement the
neoclassical theory.

Real tokamaks are not axisymmetric. The transport
consequences in tokamaks with weak broken symmetry are
reviewed in section 8. The theory is relevant to the use
of the external coils to control plasma flows and MHD
stabilities. All known collisionality regimes are discussed.
Approximate analytic expressions that join all asymptotic
limits of the solutions of the bounce averaged drift kinetic
equation are presented to facilitate modelling of toroidal flow
in experiments.

The neoclassical transport theory for stellarators is
reviewed in section 9. As the collision frequency decreases,
the model for the magnetic field spectrum used in the theory
becomes simpler due to the inability to have compact analytic
expressions for particle trajectories in real stellarators, and the
difficulties to solve the drift kinetic equation. However, more
detailed mathematical procedures used to calculate transport
fluxes than previous reviews [3, 31] are presented. The key
developments after those reviews [3, 31] are the derivation
of the flux–force relation, and its use to calculate the plasma
flow, radial electric field and transport fluxes. An approximate

expression for the bootstrap current for an arbitrary magnetic
field spectrum in the low-collisionality regime is also obtained
by solving the drift kinetic equation approximately with the
aid of the solution of the moment equations.

Neoclassical radial thermal transport does not play an
important role in optimized stellarator or heliotron devices as
it does in tokamaks. The experimentally evaluated thermal
diffusivity is much larger than that predicted by neoclassical
theory even in plasmas with electron internal transport barriers,
where the turbulence transport is suppressed to some extent
[32, 33]. However, neoclassical transport has a significant

impact in determining the poloidal and toroidal viscosity
in axisymmetric toroidal plasmas and the radial electric
field in helical systems. The toroidal viscosity evaluated
in experiments is comparable to the neoclassical toroidal
viscosity (NTV) in helical plasmas. The transition of the radial
electric field from the electron-root to ion-root or vice versa has
been found to be consistent with the neoclassical predictions
[34–36]. Therefore, it is quite important and interesting to
compare the plasma flow observed in experiments with that
predicted from neoclassical theory. Experimental results on
neoclassical poloidal and toroidal viscosity in stellarators are
discussed in section 10.

Neoclassical transport effects due to low-level non-
axisymmetric magnetic field perturbations (δB/B ∼ O(10−3))

in otherwise axisymmetric systems (e.g. tokamaks) have been
appreciated theoretically since the inception of the theory.
However, it was not until the last decade that NTV was
appreciated as the cause for plasma rotation alteration by
non-resonant field perturbations and other important effects
observed in dominantly axisymmetric devices [37–39]. Early
theoretical studies discounted NTV as being too weak in theory
to reproduce experiment. Eventually, research showed that
NTV theory could indeed quantitatively explain experimental
observations in tokamaks [40, 41]. A review of the evolution
of this appreciation of NTV in tokamaks with corresponding
experimental observations is given in section 11.

In section 12, a physics mechanism for the origin of the
momentum for intrinsic plasma rotation, which is ubiquitous in
theories and experiments discussed, is illustrated. A summary
is also given.

2. Moment equations

Transport theory is used to derive the closure relations for
quantities in the fluid moment equations. The moment
equations are derived by taking the velocity moments of the
kinetic equation [6, 7]. In the eight-moment approach, the
moment equations for the eight independent variables: plasma
density N , plasma pressure p (or plasma temperature T ), fluid
mass velocity V and heat flux q are required. The theory
will not address the effects of sources. Thus, all sources are
neglected.

The kinetic equation for the particle distribution function
f for each plasma species is

∂f

∂t
+ v · ∇f +

e

M

(
E +

1
c
v × B

)
· ∂f

∂v
= C (f ) , (2.1)

where v is the particle velocity. Taking the v0, v, Mv2/2
and Mv2v/2 moments of equation (2.1) yields the density

8



Nucl. Fusion 55 (2015) 125001 Review Article

conservation equation

∂N

∂t
+ ∇ · (NV ) = 0, (2.2)

the momentum equation

NM
dV

dt
= Ne

(
E +

1
c
V × B

)
− ∇p − ∇· ↔

π +F1, (2.3)

the energy conservation law

∂

∂t

(
3
2
p +

1
2
NMV 2

)
+ ∇

·
[
q +

(↔
π +p

↔
I
)

· V +
1
2
NMV 2V +

3
2
pV

]

= Q + (NeE + F1) · V, (2.4)

and the energy flux balance equation

∂Q

∂t
= e

M
E ·

[(
5
2
p +

1
2
NMV 2

)
↔
I +

↔
π +NMV V

]

+
1
c

e

M
Q × B − ∇· ↔

r +
T

M

(5

2
F1 + F2

)
, (2.5)

where d/dt = ∂/t + V · ∇, plasma density N =
∫

dvf ,
plasma flow velocity V =

∫
dvf v/N , plasma pressure

p =
∫

dv
(
Mu2/3

)
f , u = v − V , viscous tensor

↔
π=

∫
dvM

(
uu − u2

↔
I /3

)
f ,

↔
I is a unit tensor, friction force

F1 =
∫

dvMvC(f ), q =
∫

dvu
(
Mu2/2

)
f , heat friction

force F2 =
∫

dvMv
(
x2 − 5/2

)
C(f ), x = v/vt , collisional

energy exchange Q =
∫

dv
(
Mu2/2

)
C (f ), the energy flux

Q =
∫

dv(Mv2v/2)f = q +
(↔
π +p

↔
I
)

· V + NMV 2V /2 +

3pV /2, and the energy stress tensor
↔
r =

∫
dv

(
Mv2/2

)
vvf .

The density conservation law for the Coulomb collision
operator, i.e.

∫
dvC(f ) =0, has been used in deriving

equations (2.2)–(2.5). Note that for energy flux Q and the
energy stress tensor

↔
r , the mass flow V has not been subtracted

from the particle velocity v. Because only the transport theory
for the subsonic mass flow, i.e. |V |/vt < 1, will be discussed,
whether V has been subtracted from the particle velocity v is
not crucial.

An alternative form for the momentum equation, i.e.
equation (2.3) is [6]

∂

∂t
(NMV ) = Ne

(
E +

1
c
V × B

)
− ∇·

↔
P +F1, (2.6)

where the stress tensor
↔
P=

∫
dvMvvf . The energy flux

balance equation can also be cast into a form to emphasize the
heat flux balance as
dq

dt
= e

Mc
q × B − 5

2
∇T ·

(↔
π +p

↔
I
)

− 1
M

∇T ·
(↔
1 +ϑ

↔
I
)

− T

M
∇ ·

(↔
1 +ϑ

↔
I
)

+
1

NM

(
∇· ↔

π +∇p − F1

)
· ↔
π −q · ∇V

−5
3
q∇ · V −

↔
3: ∇V +

T

M
F2, (2.7)

where
↔
1=

∫
duMu(uu−

↔
I u2/3)f , and ϑ =

∫
du(Mu2/

2T − 5/2)M
↔
I (u2/3)f .

For subsonic plasma flow, equations (2.3) and (2.5) can
be simplified to

NM
∂V

∂t
= Ne

(
E +

1
c
V × B

)
− ∇p − ∇· ↔

π +F1 (2.8)

and
∂Q

∂t
= e

M
E ·

(
5
2
p

↔
I +

↔
π

)
+

1
c

e

M
Q × B − ∇· ↔

r

+
T

M

(
5
2
F1 + F2

)
, (2.9)

where Q reduces to Q = q + 5pV /2.
In the eight-moment approach, quantities F1, F2,

↔
π

and
↔
r as functions of the eight independent variables are

derived from the solution of the kinetic equation to close the
moment equations. The solutions of the odd velocity moment
equations, i.e. the momentum and heat flux balance equations,
determine plasma flows and, thus, the transport fluxes, which
are employed in the even velocity moment equations of the
density and energy conservation laws to determine the plasma
density and temperature profiles.

3. Plasma equilibrium

To confine plasmas, all the forces acting on them must be
balanced to reach an equilibrium. This involves solving the
moment equations, Maxwell’s equations, together with the
boundary conditions to determine self-consistent magnetic
field, electric field, current density, mass flow and heat flow.
This is a formidable task for toroidal plasmas. To accomplish
this goal, a gyro-radius ordering is commonly employed. The
small parameter in the ordering is ρ/Ln where Ln is the typical
scale length of the plasma parameters [6, 7]. Note that the
gyro-radius here can be replaced by 'r , the generic radial
width of the particle orbits. In any plasma confinement device
for thermonuclear fusion purpose, 'r must be much smaller
than Ln to avoid rapid convective or direct losses. The force
balance is maintained at each order in the ordering scheme.
In addition, transport ordering is adopted so that equilibrium
plasma density and temperature evolve at a rate of the order of
ν (ρ/Ln)

2 [6, 7].
From equations (2.3) and (2.5), the zeroth-order (in gyro-

radius) force balance equations for each plasma species are

Ne

(
E +

1
c
V × B

)
= ∇p (3.1)

and
e

Mc
q × B = 5

2
p

M
∇T . (3.2)

In the direction of the magnetic field B, the solutions for
equations (3.1) and (3.2) imply that the equilibrium pressure
p, electrostatic potential . and the temperature T are flux
functions, i.e. p = p(χ), . = .(χ) and T = T (χ), where χ
is the poloidal magnetic flux divided by 2π . Thus, equilibrium
plasma density N is also a flux function.

Summing equation (3.1) over plasma species yields the
force balance equation for plasmas

1
c
J × B = ∇P, (3.3)

where P =
∑

j pj is total plasma pressure, and subscript here
j indicates plasma species.

9



Nucl. Fusion 55 (2015) 125001 Review Article

3.1. Magnetic coordinates

Magnetic coordinates in which the magnetic field are straight
lines are employed to describe the nested magnetic surfaces.
The magnetic field B can be represented as

B = q∇χ × ∇θ + ∇ζ × ∇χ , (3.1.1)

where θ is the poloidal angle, ζ is the toroidal angle, and
the safety factor q(χ) = B · ∇ζ/B · ∇θ which is the
same as the inverse rotational transform 2π/ι. The Jacobian√

g = (∇χ × ∇θ · ∇ζ )−1 = 1/B · ∇θ is arbitrary. For
Hamada coordinates [42],

√
g is a flux function. For Boozer

coordinates [43], it is proportional to 1/B2. The poloidal flux
χ plays the role of the radial coordinate analogous to that in
the polar coordinates. The notation θ and ζ denote poloidal
and toroidal angles in the coordinates of interest. They are
different in different coordinate systems.

The conventional definition for the Jacobian in Hamada
coordinates (V , θ, ζ ) is

√
gH = (∇V × ∇θ · ∇ζ )−1 = 1,

where V is the volume enclosed inside the magnetic surface
divided by 4π2 [42]. In terms of (V , θ, ζ ), the magnetic field
in equation (3.1.1) can be expressed as

B = ψ ′∇V × ∇θ − χ ′∇V × ∇ζ, (3.1.2)

where ψ ′ = B ·∇ζ , ψ is the toroidal flux divided by 2π , χ ′ =
B · ∇θ , and prime denotes d/dV . In non-axisymmetric tori,
Hamada coordinates are preferred coordinates for transport
theory because not only the magnetic field and the current
density J are straight lines, but also the incompressible
flow velocity V and heat flow q. It is easier to express
these quantities in Hamada coordinates because there are no
complicated angle dependences in these quantities.

The standard axisymmetric tokamak coordinates can be
obtained from equation (3.1.1) using the identity

∇χ × ∇θ

B · ∇θ
= R2∇ζ. (3.1.3)

to yield
B = I∇ζ + ∇ζ × ∇χ , (3.1.4)

where I = R2∇ζ ·B. The angle ζ is the axisymmetric toroidal
angle in the tokamak coordinates.

In this review, the Hamada coordinates are used in the
transport theory for non-axisymmetric tori and the tokamak
coordinates are used for axisymmetric tokamaks.

The covariant representation B is also useful and
is [44, 45]

B = G∇θ + F∇ζ − τ∇χ + ∇ϕ, (3.1.5)

where F = F (χ) is the poloidal current outside a magnetic
surface multiplied by 2πc/4π , G = G (χ) is the toroidal
current inside a magnetic surface multiplied by 2πc/4π ,
functions τ and ϕ satisfy [44]

B · ∇τ = 4π
dP

dχ

(
1

√
g

1〈
1/

√
g
〉 − 1

)

, (3.1.6)

and

B · ∇ϕ = B2 −
〈
B2〉 − (G + Fq)

(
1

√
g

−
〈

1
√

g

〉)
, (3.1.7)

the angular brackets denote the magnetic flux surface average,
which is defined as

⟨·⟩ =
∫∫ √

g dθ dζ (·)∫∫ √
g dθ dζ

, (3.1.8)

and the integration limits for θ and ζ integrals are from 0 to
2π . There are two identities related to the flux surface average
are commonly used [6]; one is

⟨B · ∇F ⟩ = 0, (3.1.9)

and the other is

⟨∇ · F ⟩ = 1
V ′

∂

∂χ

(
V ′ ⟨F · ∇χ⟩

)
, (3.1.10)

where V ′ =
∫

dθ
∫

dζ
√

g.
It is obvious that the symmetry property of a torus does not

depend on the specific coordinates chosen because plasmas do
not recognize coordinates. This simple concept is used in the
development of the transport theory for non-axisymmetric tori
[46]. The explicit mathematical proof is first shown in [44].

3.2. Plasma flows

The first-order plasma mass and heat flows that are
perpendicular to the magnetic field are [6, 7]

V⊥ = c
B × ∇.

B2
+ c

B × ∇p

NeB2
, (3.2.1)

and

q⊥ = 5
2

cp

eB2
B × ∇T . (3.2.2)

These flows are the standard E × B flow, diamagnetic flow
and diamagnetic heat flow. The general forms for the mass
flow V and heat flow q can then be expressed as

V = V||n + V⊥, (3.2.3)

and
q = q||n + q⊥. (3.2.4)

The first-order (in gyro-radius ordering) parallel flows V|| and
q|| are not yet determined.

Note that both first-order flows V and q are on the
magnetic surface, i.e., V · ∇χ = 0 and q · ∇χ = 0, and they
are two-dimensional vectors. For good plasma confinement
concepts, this should be the case so that plasma losses are
higher order in the ρ/Ln ordering.

It is also important to realize that there are two unknowns
to be determined to specify the first-order flow V completely.
One is V||, and the other is the radial electric field −∇. =
− (d./dχ) ∇χ . Thus, two linearly independent equations
are required. The two equations are two linearly independent
components of the momentum equation. These equations
and their relation to the ambipolarity will be discussed in
section 4.

For subsonic mass flow [6, 7], V is incompressible, i.e.

∇ · V = 0. (3.2.5)

and can be expressed as [47]

V = V ζ∇χ × ∇θ − V θ∇χ × ∇ζ + ∇χ × ∇ηV , (3.2.6)
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where V ζ and V θ are functions of χ only, and ηV is a function
of (χ , θ, ζ ) that satisfies

B · ∇ηV =
(
qV θ − V ζ

) (
1

√
g

−
〈

1
√

g

〉)
. (3.2.7)

Using equation (3.1), the standard radial force balance takes
the form [47]

(
qV θ − V ζ

) 〈
1

√
g

〉
= c.′ +

c

Ne
p′, (3.2.8)

where prime denotes d/dχ . In general, V θ = dVχ/dχ = V ′
χ

and V ζ = dVψ/dχ = V ′
ψ , where Vχ and Vψ are respectively

the poloidal and toroidal velocity fluxes inside the magnetic
surface divided by 2π. Usually, V ζ and V θ are not the
contravariant components of the flow vector V in non-
Hamada coordinates. In Hamada coordinates, using (V , θ, ζ )
coordinates, ηV is a function of V only and

V = V ζ∇V × ∇θ − V θ∇V × ∇ζ, (3.2.9)

where V ζ = dVψ/dV , and V θ = dVχ/dV are contravariant
components of the flow velocity. The velocity V is a straight
line in Hamada coordinates.

In helically symmetric tori,
√

gV · ∇α = mV θ − nV ζ , (3.2.10)

is a flux function, or, explicitly,
√

gV · ∇α = V||

B
(m − nq) +

(mF + nG)cT

eB2

(
p′

p
+

e.′

T

)
,

(3.2.11)

and in particular for m = 1 and n = 0, i.e. tokamaks,
√

gV · ∇θ = V θ

= V||

B
+

FcT

eB2

(
p′

p
+

e.′

T

)
(3.2.12)

is a flux function. In tokamak coordinates, F = I .
Similarly, the incompressible heat flux q, i.e.

∇ · q = 0, (3.2.13)

can be represented as [47]

q = qζ∇χ × ∇θ − qθ∇χ × ∇ζ + ∇χ × ∇ηq, (3.2.14)

where qζ (χ) = dqψ/dχ , qθ (χ) = dqχ/dχ , qψ is the toroidal
heat flux inside the magnetic surface divided by 2π , qχ is the
poloidal heat flux inside the magnetic surface divided by 2π ,
and ηq is a function of (χ , θ, ζ ) that satisfies

B · ∇ηq =
(
qqθ − qζ

) (
1

√
g

−
〈

1
√

g

〉)
. (3.2.15)

Note that the scalar q denotes the safety factor. In Hamada
coordinates, ηq is a flux function and q is a straight line, i.e.

q = qζ∇V × ∇θ − qθ∇V × ∇ζ, (3.2.16)

where qζ = dqψ/dV and qθ = dqχ/dV are, respectively,
contravariant toroidal and poloidal components of q. There is
also a radial heat force balance equation

(
qqθ − qζ

) 〈
1

√
g

〉
= 5

2
c

e
pT ′. (3.2.17)

In helically symmetric tori,
√

gq · ∇α = mqθ − nqζ (3.2.18)

is a flux function, or explicitly,

√
gq ·∇α = q||

B
(m − nq)+

5
2
p

(mF + nG)cT

eB2

T ′

T
, (3.2.19)

and for tokamaks,
√

gq · ∇θ = qθ

= q||

B
+

5
2
p

IcT

eB2

T ′

T

(3.2.20)

is a flux function.

3.3. Magnetohydrodynamic (MHD) equilibrium

The equilibrium current density perpendicular to the
equilibrium magnetic field J⊥, from equation (3.3), is

J⊥ = c
B × ∇P

B2
. (3.3.1)

The general form for the current density is then

J = J||n + J⊥, (3.3.2)

where the current density parallel to the magnetic field J|| in
equation (3.3.2) remains undetermined.

Equation (3.3), together with Ampere’s law,

∇ × B = 4π

c
J (3.3.3)

and the boundary conditions determine the MHD equilibrium
for toroidal plasmas. The typical time scale for establishing
MHD equilibrium is (VA/LA)−1, where VA is the Alfvén
speed, and LA is the typical length scale of the torus. The
radial force balance relation in equation (3.2.8) is established
on this time scale.

In tokamaks because of the toroidal symmetry, the
magnetic field lines form nested magnetic surfaces. The
equilibrium magnetic surface can be calculated from the Grad–
Shafranov equation [48, 49]

'∗χ = −II ′ − 4πR2P ′, (3.3.4)

for given pressure and current profiles, where '∗χ = R2∇ ·(
∇χ/R2

)
.

In non-axisymmetric tori, in general, the nested magnetic
surfaces do not rigorously exist [50]. To facilitate the
development of the transport theory, the existence of the nested
magnetic surfaces is assumed. There are computer codes that
solve for the equilibrium configurations for non-axisymmetric
tori. One of such codes is VMEC [51, 52].

From equation (3.3) and Ampere’s law in (3.3.3), the
current density J is [44]

J = c

4π
(∇G × ∇θ + ∇F × ∇ζ − ∇τ × ∇χ) . (3.3.5)

In Hamada coordinates, τ is a flux function, and J is a straight
line. The current density in equation (3.3.5) satisfies

∇ · J = 0, (3.3.6)

as required by the quasi-neutrality of the plasmas.
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3.4. Equilibrium parallel current density

The equilibrium current density that is parallel to the magnetic
field has not yet been determined. Taking the ∇θ component
of equation (3.3.3) yields

J||

B
= −cF ′

4π
−

[
c

4π

〈
B2∂τ/∂ζ

〉
〈
B2

〉 +
cP ′
〈
B2

〉 (I + ⟨∂ϕ/∂ζ ⟩)
]

+
Jps

B
, (3.4.1)

where the Pfirsch–Schlüter current Jps is defined as

Jps

B
= − c

4π

(
∂τ

∂ζ
−

〈
B2∂τ/∂ζ

〉
〈
B2

〉
)

− cP ′

(
F

B2
− F〈

B2
〉
)

−cP ′

(
1
B2

∂ϕ

∂ζ
− 1〈

B2
〉
〈
∂ϕ

∂ζ

〉)

. (3.4.2)

The Pfirsch–Schlüter current has the property that ⟨BJps⟩ = 0.
One can also take the ∇ζ component of equation (3.3.3)
and obtain an equivalent expression for the Pfirsch–Schlüter
current. In the case of the toroidally symmetric tokamaks, the
Pfirsch–Schlüter current in equation (3.4.2) yields the well-
known expression [6, 7]

Jps

B
= −cP ′

(
I

B2
− I〈

B2
〉
)

, (3.4.3)

in tokamak coordinates.
There is still an undetermined part of the parallel current

density that does not vanish upon flux surface averaging, i.e.
⟨BJ||⟩ ̸= 0. This is the bootstrap current [23, 24]. It is
determined by the flux-surface-averaged electron momentum
equation, i.e. Ohm’s law, and the ion momentum equation

Ne
〈
B · E(A)

〉
−

〈
B · ∇· ↔

π
〉

+ ⟨B · F1⟩ = 0, (3.4.4)

in the direction of B, where the subscripts that denote the
species are omitted for the sake of simplicity [7]. These
equations are coupled to the parallel heat flux balance equations
through the coupling of the heat flows in the friction and
viscous forces. The inductive electric field drives the Ohmic
current and the flux-surface-averaged electron parallel viscous

forces ⟨B · ∇· ↔
π ⟩ and ⟨B · ∇·

↔
1⟩ drive the bootstrap current

[7]. Excluding the ohmic current, the parallel current density
can thus be expressed as

J||

B
=

〈
BJ||b

〉
〈
B2

〉 +
Jps

B
, (3.4.5)

where J||b is the bootstrap current density. The local bootstrap
current is [7]

J||b =
〈
BJ||b

〉
〈
B2

〉 B. (3.4.6)

The poloidal magnetic field in stellarators is generated by
the electric current in the external magnetic field coils. Thus,
there is no need for the inductive plasma current to generate
the field. In this sense, stellarators are steady-state plasma
confinement devices. This is one of the merits often cited when
comparing stellarators and tokamaks as thermonuclear fusion
reactors. However, bootstrap current exists in stellarators as

well due to finite plasma gradients [53, 54]. It has to be taken
into account in MHD equilibrium calculations [55].

Conventional tokamaks are not intrinsically steady-state
plasma confinement devices. The plasma current to create
poloidal magnetic field in tokamaks is maintained by the
inductive electric field induced by the time changing magnetic
flux [56]. The discovery of the bootstrap current makes
the steady-state operation possible if there is a seed current
at the magnetic axis [24]. However, the existence of
the potato bootstrap current at the magnetic axis makes the
seed current unnecessary [57–59]. The bootstrap current
allows tokamaks to become intrinsically steady-state plasma
confinement devices as are stellarators [57–59].

4. Flux–force relation, momentum relaxation and
ambipolarity

The relation between momentum relaxation (i.e. seeking the
steady-state solutions of the momentum equation for plasma
flows) and plasma ambipolarity in axisymmetric tokamaks and,
in general, non-axisymmetric tori is not well known [60, 61].
However, these two important aspects of the plasma dynamics
are intimately related. They need to be treated properly so that
the momentum equation is satisfied. The relation that bridges
these two important constraints is the flux–force relation. It
is first derived for axisymmetric tokamaks in [9, 10] and is
employed in the transport theory extensively in [7]. It is
generalized for non-axisymmetric tori in [53].

4.1. Flux–force relation

The transport fluxes in the even velocity moment equations,
and forces such as perturbed pressure force, viscous forces
and friction forces in the odd velocity moment equations that
are smaller than the equilibrium quantities by a factor of ρ/Ln

have to be expressed in terms of the eight independent variables
to close eight moment equations. The flux–force relation
relates transport fluxes to these forces. The importance of
the relation is that it identifies the transport fluxes calculated
from the solution of the kinetic equation with the closure
terms in the momentum and heat flux balance equations. This
facilitates the determination of the self-consistent plasma flows
including parallel flow and the radial electric field that satisfy
the momentum equation. This shows that the self-consistent
plasma rotation guarantees that the forces acting on the plasmas
are balanced. This also indicates that the ambipolar state is
related to steady-state solutions of the momentum equation
for plasma flows.

There are two methods to derive the relation. One is to
manipulate the moment equations [7, 9, 10] and the other is to
use the kinetic definition for the transport fluxes [47]. These
two approaches are equivalent of course.

4.1.1. Moment approach. Taking the B ×∇χ component of
the steady-state momentum equation in equation (2.8) yields
the flux surface averaged particle flux, #χ = ⟨NV · ∇χ⟩ =
⟨
↔
# ·∇χ⟩,

#χ = −
〈
Nc

E × B · ∇χ

B2

〉

+
〈 c

eB2
B × ∇χ ·

(
F1 − ∇p − ∇· ↔

π
)〉

. (4.1.1.1)
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Using a vector identity [6, 7, 47, 53]:

Bt = (Bt · B) B

B2
− B × ∇χ

B2
, (4.1.1.2)

where Bt = √
g∇χ × ∇θ , to replace B × ∇χ/B2 in

equation (4.1.1.1), the particle flux can be further decomposed.
With the help of the parallel momentum balance equation

NeB · E − B · ∇p − B · ∇· ↔
π +B · F1 = 0, (4.1.1.3)

the particle flux is shown to consist of the Pfirsch–Schlüter flux

#ps = −c

e

〈(
Ic

B2
−

⟨Ic⟩〈
B2

〉
)

B · F1

〉

, (4.1.1.4)

the banana–plateau flux

#bp = −c

e

⟨Ic⟩
⟨B2⟩

⟨B · ∇· ↔
π ⟩ = −c

e

⟨Ic⟩
⟨B2⟩

(
⟨B · F1⟩

+⟨NeB · E(A)⟩
)

, (4.1.1.5)

the non-axisymmetric flux

#na = c

e

(
⟨Bt · ∇p⟩ + ⟨Bt · ∇· ↔

π ⟩
)

, (4.1.1.6)

the classical flux

#cl = −c

e
⟨Bt · F1⊥⟩ , (4.1.1.7)

the flux associated with the moving velocity of the toroidal
magnetic flux surface

#g = N
〈
uψ · ∇χ

〉
= Nc

(
V ′ ⟨B · E⟩

4π2q
− ⟨E · Bt⟩

)

(4.1.1.8)

and the residual E × B flux

#E = Nc ⟨B · E⟩ ⟨Ic⟩〈
B2

〉
(

1 −
〈
B2

〉

⟨Ic⟩
V ′

4π2q

)

, (4.1.1.9)

where Ic = Bt · B, F1⊥ is the component of the friction
force perpendicular to the magnetic field, and ⟨uψ · ∇χ⟩ is
the moving velocity of the toroidal magnetic flux surface
[6, 7, 53, 62, 63]. Thus, relative to the moving toroidal
magnetic flux surface, #χ −#g consists of the Pfirsch–Schlüter
flux, banana–plateau flux, non-axisymmetric flux, classical
flux and the residual E × B flux, which is usually neglected.

It should be noted here that the banana–plateau flux #bp

not only exists in the banana–plateau regime, but also in the
Pfirsch–Schlüter regime. It is subdominant in the Pfirsch–
Schlüter regime, however, except when the inverse aspect ratio
ε approaches unity.

In the derivation of the flux–force relation using the
momentum equation, the viscous tensor is not limited to
the Chew–Goldberger–Low (CGL) form [64], which is
↔
π= (p∥ − p⊥)(nn−

↔
I /3), p∥ =

∫
dvMu2

∥f is the plasma
pressure in the direction of the magnetic field, and p⊥ =∫

dv(Mu2
⊥/2)f is the pressure in the direction perpendicular

to the magnetic field. However, to obtain the neoclassical

transport matrix briefly summarized in section 1, the CGL
viscous tensor is adequate.

Note that the pressure in equations (4.1.1.1) and (4.1.1.6)
is the perturbed pressure driven by the particle drift velocity.
In terms of the gyro-radius ordering they are first order. In
Hamada coordinates, ⟨Bt · ∇p⟩ = 0 for any non-axisymmetric
torus, and only ⟨Bt · ∇· ↔

π ⟩ contributes to non-axisymmetric
particle flux #na. Because #na is driven by the viscous force
and pressure force, it is not intrinsically ambipolar.

A relation between the heat flux and the forces can also
be derived. The relevant moment equation is
∂q

∂t
= e

cM
q × B − ∇· ↔

r +
5T

2M

(
∇p + ∇· ↔

π
)

+
T

M
F2,

(4.1.1.10)
where the higher order terms have been neglected and the heat
flux q reduces to

q = Q − 5
2
T NV . (4.1.1.11)

Employing the same procedure used to decompose the particle
flux, radial heat flux qχ = ⟨q · ∇χ⟩ can be decomposed into
the non-axisymmetric heat flux qna :

qna

T
= c

e

〈
Bt · ∇·

↔
1

〉
+

c

e
⟨Bt · ∇ϑ⟩ , (4.1.1.12)

the banana–plateau heat flux qbp :
qbp

T
= −c

e

⟨Ic⟩〈
B2

〉
〈
B · ∇·

↔
1

〉
= −c

e

⟨Ic⟩〈
B2

〉 ⟨B · F2⟩ ,

(4.1.1.13)
the Pfirsch–Schlüter heat flux qps:

qps

T
= −c

e

〈(
Ic

B2
−

⟨Ic⟩〈
B2

〉
) (

B · ∇ϑ + B · ∇·
↔
1

)〉

= −c

e

〈(
Ic

B2
−

⟨Ic⟩〈
B2

〉
)

B · F2

〉

(4.1.1.14)

and the classical heat flux

qcl

T
= −c

e
⟨Bt · F2⊥⟩ , (4.1.1.15)

where F2⊥ is the heat friction force that is per-
pendicular to the magnetic field, the CGL heat vis-

cous tensor
↔
1 = (1∥ − 1⊥)(nn−

↔
I /3), ϑ =

1∥/3 + 21⊥/3, 1∥ =
∫

dv(v2/v2
t − 5/2)Mv2

∥f and
1⊥ =

∫
dv(v2/v2

t − 5/2)(Mv2
⊥/2)f [6, 7, 53, 62]. For a

Maxwellian distribution, ϑ = 0. Again, qbp also exists in
the Pfirsch–Schlüter regime.

As can be seen from the flux–force relation, except the
Pfirsch–Schlüter fluxes, all transport fluxes are driven by
components of the perturbed pressure and viscosity. Once
the components of these forces are known, all transport fluxes
can be derived by substituting the consistent plasma flows
determined from the solutions of the components of the
momentum equation. Thus, the key to the development of
neoclassical theory in the moment equation approach is to
calculate the plasma viscosity in axisymmetric and in general
non-axisymmetric tori under a variety of plasma conditions.
The main theme of the review is to show the procedures to
calculate plasma viscosity, to obtain the consistent plasma
flows that satisfy the momentum equation, and to demonstrate
the transport consequences.
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4.1.2. Kinetic approach The flux–force relation for the
neoclassical fluxes can also be derived using the definitions
for the neoclassical particle flux

#χ =
〈∫

dvf vd · ∇χ

〉
+

〈
Nc

E(A) × B

B2

〉
, (4.1.2.1)

and the heat flux

qχ

T
=

〈∫
dv

(
v2

v2
t

− 5
2

)
f vd · ∇χ

〉
, (4.1.2.2)

where f , independent of the gyro-phase, is the solution of the
drift kinetic equation [6]. The classical particle and heat fluxes
are, thus, excluded.

To proceed, an explicit expression for the drift velocity [6],

vd = −v∥n × ∇
(
v∥/&

)
, (4.1.2.3)

is needed. Even though the representation for vd in
equation (4.1.2.3) is valid for low-β̄ plasmas, its radial
component, i.e. vd · ∇χ , is valid for arbitrary plasma β̄ [6].
Here, plasma β̄ is defined as the ratio of plasma pressure to the
magnetic field pressure. The radial drift speed vd · ∇χ is

vd · ∇χ = v∥

B
∇ ·

[(v∥

&

)
B × ∇χ

]
. (4.1.2.4)

Substituting equation (4.1.2.4) into equation (4.1.2.1), and
employing the vector identity in equation (4.1.1.2) yields [47,
65]

#χ = −
〈∫

dvf
(v∥

B

)
∇ ·

(
v∥B

2Bt

&

)〉

+

〈∫
dvf

(v∥

B

)
∇ ·

[(
v∥B

2B

&

) (
Ic

B2
−

⟨Ic⟩〈
B2

〉
)]〉

+

〈∫
dvf

(v∥

B

)
∇ ·

[(
v∥B

2B

&

) ⟨Ic⟩〈
B2

〉
]〉

+
〈
Nc

(
E(A) × B

B2

)〉
. (4.1.2.5)

The non-axisymmetric flux #na is

#na = −
〈∫

dvf
(v∥

B

)
∇ ·

(
v∥B

2Bt

&

)〉
, (4.1.2.6)

the banana–plateau flux #bp is

#bp =
〈∫

dvf
(v∥

B

)
∇ ·

[(
v∥B

2B

&

) ⟨Ic⟩〈
B2

〉
]〉

, (4.1.2.7)

and the Pfirsch–Schlüter flux #ps together with part of the
inductive electric field driven flux #gp is

#ps + #gp =
〈 ∫

dvf
(v∥

B

)
∇

·
[(

v∥B
2B

&

) (
Ic

B2
−

⟨Ic⟩〈
B2

〉
)] 〉

. (4.1.2.8)

It is straightforward to show that
∫

dvf
(v∥

B

)
∇ ·

[(
v∥B

2B

&

)
A

]

= c

e
∇ ·

(∫
dvf Mv2

∥AB

)
−

∫
dvv∥ (n · ∇f )

v∥AB2

&
,

(4.1.2.9)

for an arbitrary scalar A. The second term on the right-hand
side of equation (4.1.2.9) can be shown to be
∫

dvv∥ (n · ∇f )

(
v∥AB2

&

)

= c

e
A

(
B · ∇p + B · ∇· ↔

π −NeB · E(S)
)

= c

e
A

(
B · F1 + NeB · E(A)

)
, (4.1.2.10)

where
↔
π is the CGL viscous tensor, and E(S) = −∇.

is the electrostatic electric field. The divergence term
in equation (4.1.2.9) vanishes upon flux surface averaging.
Thus, the neoclassical fluxes are driven fundamentally by
the perturbed pressure, perturbed electrostatic potential and
viscous forces. Equation (4.1.1.3) has been used to obtain the
second equality in equation (4.1.2.10).

Using results given in equations (4.1.2.9) and (4.1.2.10),
the banana–plateau, and Pfirsch–Schlüter fluxes can be shown
to be the same as those derived in section 4.1.1. The rest of
the flux driven by the inductive electric field is the same as
those in section 4.1.1. It is important to note here that the
Pfirsch–Schlüter flux #ps is part of the flux in the definition
of the particle flux in equation (4.1.2.1), thus, it exists in all
regimes.

The non-axisymmetric particle flux #na can be written as

#na = −
〈∫

dvf
Bt · ∇B

&

(
3
2
v2

∥ − v2

2

)〉

−
〈

2
3

∫
dvf

B∇ · Bt

&

(
3
2
v2

∥ − v2

2

)〉

−
〈∫

dvf
B∇ · Bt

&

v2

3

〉

= c

e

(
⟨Bt · ∇p⟩ +

〈
Bt · ∇· ↔

π
〉)

, (4.1.2.11)

using the following identity:

⟨Bt · ∇p⟩ +
〈
Bt · ∇· ↔

π
〉
= −

〈
p∥∇ · Bt

〉

−
〈(

p∥ − p⊥
) Bt · ∇B

B

〉
. (4.1.2.12)

The decomposing of the heat flux using the definition in
equation (4.1.2.2) follows straightforwardly from that of the
particle flux shown here.

4.1.3. Helically symmetric tori. The most general symmetry
property in doubly periodic tori is helical symmetry. The
flux–force relation in such tori can be obtained from those
in sections 4.1.1 and 4.1.2. However, it can be simplified
somewhat because the poloidal magnetic field is usually not
generated by the inductive plasma current, ⟨B · E

(A)
∥ ⟩ = 0,

and the motion of the flux surface can be neglected.
When the torus is helically symmetric, the magnetic field

strength has the form B = B(χ , α). There exists a symmetric
vector in such tori:

S = m
√

g∇χ × ∇θ − n
√

g∇χ × ∇ζ, (4.1.3.1)

so that S · ∇α = 0. The vector S is also divergence free, i.e.
∇ ·S = 0. For axisymmetric tokamaks, m = 1 and n = 0 and
S · ∇ζ = 0. When the symmetry is broken, the vector S can

14



Nucl. Fusion 55 (2015) 125001 Review Article

still be defined although it no longer satisfies S ·∇α = 0. The
corresponding flux–force relation, using the identity

S = (S · B) B

B2
− (m − nq)

B × ∇χ

B2
, (4.1.3.2)

can be derived. The relation is the same as the one derived
using vector Bt in equation (4.1.1.2) except replacing Bt

by [S/(m − nq)]. This replacement forms the basis for the
isomorphic transformation that unifies transport fluxes in all
symmetric tori to be demonstrated in section 9.

The fundamental reason that the perturbed pressure force
also appears in the flux–force relation in magnetic coordinates
other than Hamada coordinates is that the vectors Bt and S are
no longer divergence free in non-axisymmetric tori. However,
a divergence free vector S1 can be constructed by adding a
term to the vector S so that [66]

S1 = S + R∥B, (4.1.3.3)

and R∥ satisfies a magnetic differential equation

B · ∇R∥ = −∇ · S. (4.1.3.4)

With the choice of the function R∥, ∇ · S1 = 0. The
solubility constraint for equation (4.1.3.4) is satisfied because
⟨B · ∇R∥⟩ = −⟨∇ · S⟩ = 0. The explicit expression for
equation (4.1.3.4) is

B · ∇R∥ = − n
√

g

∂
√

g

∂θ
− m

√
g

∂
√

g

∂ζ
. (4.1.3.5)

The integration constant for the solution to equation (4.1.3.5)
is chosen to be zero, because B · ∇R∥ = 0 if and only if the
torus is helically symmetric. With this choice of the integration
constant, R∥ = 0 in Hamada coordinates, because ∇ · S = 0
regardless of the symmetry property in those coordinates. The
vector S1 can be projected in the direction of B and in the
direction perpendicular to B to obtain

S1 = (S1 · B) B

B2
− (m − nq)

B × ∇χ

B2
. (4.1.3.6)

The particle and heat fluxes can be decomposed employing
equation (4.1.3.6) as before. The results are the same as those
obtained previously except for the fact that Bt is replaced by
[S1/(m − nq)]. However, because ∇ ·S1 = 0, ⟨S1 · ∇p⟩ = 0,
and non-axisymmetric particle flux becomes

#na = c

e

〈
S1 · ∇· ↔

π
〉
, (4.1.3.7)

and non-axisymmetric heat flux reduces to

qna

T
= c

e

〈
S1 · ∇·

↔
1

〉
. (4.1.3.8)

The pressure force term in #na and ∇ϑ force term in qna

are annihilated rigorously. This also indicates that the
decomposition of the flux is not unique for non-axisymmetric
tori. However, the total flux through a given magnetic flux
surface must be invariant as illustrated in [53].

4.1.4. Useful identities. The explicit expressions for the flux
surface averaged components of the CGL viscous forces in
terms of the particle distribution function are [67]
〈
B · ∇· ↔

π
〉
= −

〈(
p∥ − p⊥

) B · ∇B

B

〉
, (4.1.4.1)

〈
B · ∇·

↔
1

〉
= −

〈(
1∥ − 1⊥

) B · ∇B

B

〉
, (4.1.4.2)

⟨Bt · ∇p⟩ +
〈
Bt · ∇· ↔

π
〉
= −

〈
p∥∇ · Bt

〉

−
〈(

p∥ − p⊥
) Bt · ∇B

B

〉
, (4.1.4.3)

and〈
Bt · ∇·

↔
1

〉
+ ⟨Bt · ∇ϑ⟩

= −
〈
1∥∇ · Bt

〉
−

〈(
1∥ − 1⊥

) Bt · ∇B

B

〉
. (4.1.4.4)

These expressions are used to calculate the components of
the viscous forces from the solution of the drift kinetic
equation. Sometimes, the components of the viscous forces
are calculated directly using the solution of the drift kinetic
equation and the transport fluxes are derived using the solutions
of the force balance equations. Sometimes, the transport fluxes
are calculated directly and the corresponding viscous forces are
identified.

4.2. Momentum relaxation and ambipolarity

Summing equation (2.8) over plasma species yields

NM
∂V

∂t
= 1

c
J × B − ∇P − ∇· ↔

π , (4.2.1)

where the mass M is approximately ion mass, and
↔
π=∑

j

↔
π j is the total viscous tensor. Taking the projection of

equation (4.2.1) in the direction of S and flux surface averaging
the resultant equation yield the momentum relaxation equation
in the direction of symmetry:

NM
∂ ⟨S · V ⟩

∂t
= m − nq

c
⟨J · ∇χ⟩ − ⟨S · ∇P ⟩

−
〈
S · ∇· ↔

π
〉
. (4.2.2)

Using Ampere’s law,

⟨J · ∇χ⟩ = − 1
4π

∂ ⟨E · ∇χ⟩
∂t

, (4.2.3)

Equation (4.2.2) can be written as

NM
∂ ⟨S · V ⟩

∂t
+

m − nq

c

1
4π

∂ ⟨E · ∇χ⟩
∂t

= − ⟨S · ∇P ⟩

−
〈
S · ∇· ↔

π
〉
= −1

c

∑
j
ej#

na
j . (4.2.4)

The left-hand side of equation (4.2.4) represents the plasma
momentum and the momentum of the electromagnetic field
[6, 60] and the right-hand side of equation (4.2.4) represents

the momentum dissipation when symmetry is slightly broken.
If the torus is helically symmetric, the right-hand side

of equation (4.2.4) vanishes for CGL viscous tensor. In
that case, only the higher order solution in the gyro-radius
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ordering for the drift kinetic equation can give rise to a non-
vanishing component of the stress tensor in the direction of
the symmetry S [68–70]. Setting m = 1 and n = 0 in S
in equation (4.2.4) yields the toroidal momentum relaxation
equation for tokamaks with slightly broken toroidal symmetry:

NM
∂ ⟨Bt · V ⟩

∂t
+

1
c

1
4π

∂ ⟨E · ∇χ⟩
∂t

= − ⟨Bt · ∇P ⟩

−
〈
Bt · ∇· ↔

π
〉

= −1
c

∑
j
ej#

na
j . (4.2.5)

As emphasized previously, the pressure force term vanishes in
Hamada coordinates regardless of the symmetry property of
the tori. In any other magnetic flux coordinates, it does not
vanish when the symmetry is broken unless the momentum
equation is projected in the direction of S1 instead of S. In
that case, in the direction of S1,

NM
∂ ⟨S1 · V ⟩

∂t
+

m − nq

c

1
4π

∂ ⟨E · ∇χ⟩
∂t

= −
〈
S1 · ∇· ↔

π
〉

= −1
c

∑
j
ej#

na
j . (4.2.6)

Similarly, the equation for the evolution of the flow component
that is perpendicular to the direction of the symmetry
is [13, 60, 71]

NM
〈
B2〉

(

1 −
⟨B · S⟩2

〈
B2

〉 〈
|S|2

〉
)

∂K

∂t

−m − nq

c

1
4π

⟨B · S⟩
〈
|S|2

〉
∂ ⟨E · ∇χ⟩

∂t

≈ −
〈
B · ∇· ↔

π
〉

+
⟨B · S⟩
〈
|S|2

〉
(
⟨S · ∇P ⟩ +

〈
S · ∇· ↔

π
〉)

=
〈
B2

〉

c ⟨Ic⟩
∑

j

ej#
bp
j +

⟨B · S⟩
〈
|S|2

〉
1
c

∑
j
ej#

na
j , (4.2.7)

where K(χ) = V · ∇α/B · ∇α = (mV θ − nV ζ )/(m − nq)
if symmetry is only slightly broken. For tokamaks, K(χ) =
V θ . When the torus is either helically symmetric or
toroidally symmetric, (⟨S · ∇P ⟩ + ⟨S · ∇· ↔

π ⟩) = 0. When the
symmetry is slightly broken, both the pressure and the viscous
forces contribute to the evolution of the flow component K .
However, it is most likely that ⟨B · ∇· ↔

π ⟩ dominates the
dissipative processes in the evolution of K when the symmetry
is only slightly broken. It should be noted that even though
it is #

bp
j that appears in equation (4.2.7), the same equation

is still valid in the Pfirsch–Schlüter regime. In that regime, it
is the ⟨B · ∇· ↔

π ⟩ not the Pfirsch–Schlüter particle flux in the
Pfirsch–Schlüter regime that damps the flow.

It is important to note that in the evolution equations for
flows in the direction of the symmetry and in the direction
perpendicular to the symmetry, the dissipation mechanisms
are directly proportional to the components of the viscous
stress and those components are directly proportional to the
particle fluxes according to the flux–force relation, as shown
in equations (4.2.4)–(4.2.7). In the direction of the symmetry, it
is the non-axisymmetric particle flux #na when the symmetry
is slightly broken, and in the direction perpendicular to the
symmetry, it is the banana–plateau flux #bp. When these flows
are relaxed, plasmas reach the ambipolar state [6, 7], i.e.

∑
j
ej#

na
j = 0, (4.2.8)

and ∑
j
ej#

bp
j = 0. (4.2.9)

These are two linearly independent equations that are required
to determine the first-order flow velocity V completely, as
discussed in section 3.2. It is important to note that once
equations (4.2.8) and (4.2.9) are satisfied, the total particle
flux is ambipolar: ∑

j
ej#

χ
j = 0. (4.2.10)

However, the reverse is not true. Because equation (4.2.10) is
only one equation that cannot determine the two unknowns in
the flow velocity V .

Even though, the toroidal systems with slightly broken
symmetry have been employed in the illustrations on the
momentum relaxation and ambipolarity, the results and
conclusions are also valid for non-axisymmetric tori that
cannot be viewed as a perturbation from symmetric tori, as
shown in [61].

The momentum relaxation and ambipolarity have been
discussed in terms of the neoclassical plasma viscous forces,
here, the concept is, however, also applicable when turbulent
plasma viscous forces become important. It needs only
to replace the neoclassical viscous stress tensor with the
turbulence induced viscous stress tensor.

4.2.1. Poloidal flow damping in tokamaks and implications
on anomalous transport. As an example, the poloidal flow
damping in the banana regime in tokamaks is illustrated
here. The magnitude of the parallel viscous force is usually
much larger than that of the viscous force in the direction of
symmetry, S. Thus, the flow component K relaxes much
faster than ⟨S · V ⟩ or the toroidal flow for tokamaks. For
axisymmetric tokamaks, the evolution equation for K(ψ) =
V θ is [60, 71], from equation (4.2.7),

NM
(
1 + 2q2)

〈
B2

p

〉 ∂K

∂t
= −

〈
B · ∇· ↔

π
〉
, (4.2.1.1)

where the term of the order of V 2
A/c2 is neglected. Plasma

inertia is enhanced by a factor of (1 + 2q2) due to the magnetic
geometry. Because usually the parallel component of the
viscous force for ions is much larger than that for electrons
by a factor of

√
Mi/Me, only ⟨B · ∇· ↔

π i⟩ is needed in
equation (4.2.1.1). To obtain accurate damping rate for V θ ,
time dependent ⟨B · ∇· ↔

π i⟩ is required in equation (4.2.1.1)
and is approximately [72]
〈
B · ∇· ↔

π
〉
= NM

〈
B2〉

[
νii

√
ε

(
1.1V θ − 1.28

2
5

qθ

p

)

+1.63ε3/2 ∂V θ

∂t

]
. (4.2.1.2)

Substituting equation (4.2.1.2) into equation (4.2.1.1) yields a
damping rate γp for V θ to be

γp ≈ 0.675νii/ε. (4.2.1.3)

The poloidal flow damping rate is much faster than the toroidal
flow damping rate in tokamaks, which is of the order of
νii('r/Ln)

2. The γp is first obtained in [72] and later
confirmed by Hinton and Rosenbluth [73]. For the time
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scale longer than γ −1
p , the poloidal flow is damped and

∑
j ej#

bp
j = 0. This is the so-called intrinsically ambipolar

state in the neoclassical transport theory for axisymmetric
tokamaks because now the banana–plateau flux is driven by
the parallel component of the friction force [74, 75]. However,
the concept of intrinsic ambipolarity is not really needed
to understand neoclassical theory for tokamaks as long as
poloidal flow damping is consistently determined from the
momentum equation. The toroidal flow is still evolving on
a much slower diffusion time scale. When the toroidal flow is
relaxed for tokamaks with toroidal symmetry slightly broken,
plasmas become ambipolar and

∑
j ej#

na
j = 0. The relaxation

of the components of the plasma flow velocity described for
tokamaks is applicable for any symmetric tori by replacing the
poloidal flow with the flow component perpendicular to the
symmetric direction and toroidal flow with the component in
the symmetric direction.

After poloidal flow is damped, a combination of the V∥
and the radial electric field .′ is determined, as can be seen
from equation (3.2.12). Because the time scale for the toroidal
momentum relaxation in axisymmetric tokamaks is of the
order of the confinement time, V∥, which is approximately
the toroidal flow for large aspect ratio tokamaks, evolves at
the confinement time scale and has a value approximate to
its initial value during the poloidal flow damping process
that lasts for a time span of the order of (νii/ε)

−1 which is
much shorter than the confinement time. Thus, throughout
the slow evolution process of the toroidal flow, the radial
electric field is determined after the time of the order of
(νii/ε)

−1, and evolves slowly at the confinement time scale.
The same physics processes occur in all quasi-symmetric
tori except that the poloidal flow V θ is replaced by mV θ −
nV ζ in equation (3.2.11). The neoclassical transport theory
for axisymmetric tokamaks or for quasi-symmetric tori is
much easier to comprehend if the concept of the ‘intrinsic’
ambipolarity is abandoned and replaced with the concept of
the poloidal or helical flow damping instead. Indeed, before
the poloidal flow is damped, the transport process is not
intrinsically ambipolar in tokamaks.

The Pfirsch–Schlüter particle flux is intrinsically
ambipolar because it is driven by the friction force. The time
scale for the flux to become intrinsically ambipolar is the time
to establish local force balance along the magnetic field line.
The classical particle flux is also intrinsically ambipolar at the
time when the MHD equilibrium is established.

Here, the simplest model has been used to demonstrate
the poloidal flow damping. However, other effects such as
orbit squeezing, sonic poloidal E × B drift speed, non-linear
plasma viscosity, orbit loss, etc can also affect the plasma
viscosity, transport fluxes and the rate of poloidal flow damping
[76, 77]. In addition, because the rate of the poloidal flow

damping is important to the zonal flow damping, and thus,
anomalous transport fluxes, it has been shown that when
neoclassical transport fluxes are reduced due to effects of
orbit squeezing, sonic poloidal E × B drift speed and non-
linear plasma viscosity, the rate of the zonal flow damping
is also reduced along with the anomalous transport fluxes
[78]. Thus, improved neoclassical transport fluxes usually

imply the reduced anomalous transport fluxes [78]. This

indicates that neoclassical transport processes are important
to the understanding of the anomalous transport processes.

In cases where the magnitude of the ion plasma viscous
forces is reduced to that of the electron viscous forces, the
electron viscous forces can no longer be ignored in the
poloidal flow damping equation, i.e. equation (4.2.1.1) and
electrons also participate in the poloidal flow damping as
demonstrated in [79, 80].

5. Neoclassical methodology

Transport fluxes are calculated by solving the drift kinetic
equation given in equation (1.3.1). Usually this is
accomplished by simplifying the equation through an ordering
scheme to linearize the equation. The transport ordering,
assuming 'r/Ln < 1, is adopted to solve the drift kinetic
equation shown in equation (1.3.1) [6, 7]. The time scale
for the equilibrium quantities to evolve is of the order of
the diffusion time ν−1('r/Ln)

−2. Adopting the maximum
ordering to assume that the transit frequency is of the same
order as the collision frequency yields

v∥n · ∇f0 = C(f0), (5.1)

and

v∥n · ∇f1 + vd · ∇f0 + ev∥E
(A)
∥

∂f0

∂E
= C(f1), (5.2)

where the subscripts in f denote the ordering. The time scale
for the temperature relaxation is assumed to be the same as that
for the radial transport [6, 7].

The solution to equation (5.1) is a Maxwellian
distribution, i.e.

f0 = fM(χ), (5.3)

and equation (5.2) becomes

v∥n · ∇f1 + vd · ∇χ
∂fM

∂χ
+ ev∥E

(A)
∥

∂fM

∂E
= C (f1) , (5.4)

where

∂fM

∂χ
= fM

[
p′

p
+

e.′

T
+

(
v2

v2
t

− 5
2

)
T ′

T

]
. (5.5)

The prime denotes d/dχ . The term v∥n ·∇f1 in equation (5.4)
describes the particle motion along the magnetic field line.

To solve equation (5.4) forf1, the explicit form for the
collision operator is required. Assuming that electrons and
ions have a common parallel flow V∥, the approximate ion–ion
collision operator is, by neglecting the ion–electron collisions
due to the common parallel flow assumption,

Cii (fi1) = ν ii
D

Miv∥

B

∂

∂µ
v∥µ

∂fi1

∂µ
+ ν ii

D
2v∥V∥

v2
ti

fiM. (5.6)

The approximate electron collision operator consists of the
electron–ion collision operator

Cei (fe1) = νei
D

Mev∥

B

∂

∂µ
v∥µ

∂fe1

∂µ
+ νei

D
2v∥V∥

v2
te

feM, (5.7)
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and the electron–electron operator

Cee (fe1) = νee
D

Mev∥

B

∂

∂µ
v∥µ

∂fe1

∂µ
+ νee

D
2v∥V∥

v2
te

feM. (5.8)

The terms involving V∥ are responsible for restoring the
momentum to the test particle pitch angle scattering operator.

The facts that electrons and ions have a common parallel
flow V∥, and there is no parallel heat flow for both species,
i.e. q∥e = q∥i = 0, imply that part of the solution, that is
responsible for the common flow, is

f1j = 2v∥

v2
tj

V∥fM, (5.9)

which is also the solution for the homogeneous equations

Cj

(
f1j

)
= 0, (5.10)

for each species for the exact collision operator when the
relaxation of temperature is neglected, where j = i for ions
and e for electrons. The distribution function in equation (5.9)
is not localized in the phase space. The pitch angle scattering
rate is comparable to the momentum restoring rate for non-
localized distribution. Thus, the momentum restoring term
is important for this distribution. In the original theory [5],
complete Cii(fi1), Cee(fe1) and Cei(fe1) are employed in the
treatment of the momentum restoring terms. It should be noted
that the solutions that have a common parallel flow do not allow
for the driving terms that are proportional to v∥ or P1(v∥/v),
the Legendre polynomial.

5.1. Variational method

For the sake of simplicity, the inductive electric field is
neglected first, and equation (5.4) reduces to

v∥n · ∇f1 + vd · ∇χ
∂fM

∂χ
= C (f1) . (5.1.1)

The perturbed distribution function is now expressed as

f1 = 2v∥

v2
t

V∥fM + H, (5.1.2)

where

V∥ = −I
v2

ti

2&i

[
p′

i

pi
+

ei.
′

Ti
+

(
y − 5

2

)
T ′

i

Ti

]
, (5.1.3)

and y is a parameter to be determined. The choice of y,
which is not a function of particle energy, is to make sure
that the shifted Maxwellian portion of the solution satisfies
the homogeneous equation of the collisional operator, i.e.
equation (5.10). In the banana–plateau regime, the function
H is localized in the phase space resulting from the resonance
at v∥ ∼ 0. Note that the V∥ in equation (5.1.2) does not
contribute to the Pfirsch–Schlüter heat flow, thus, it is incapable
of producing the Pfirsch–Schlüter heat flux in the banana–
plateau regime. In the Pfirsch–Schlüter regime, H is not
localized. The localization is important to the treatment of
the momentum restoring effects approximately in the collision
operator in the banana–plateau regime when ε < 1. The

equation resulting from the minimization of the rate of entropy
production in the variational procedure to determine y is the
same as the ambipolarity constraint, and for

√
Me/Mi < 1, the

constraint is that the ion particle flux approximately vanishes
[5, 8]. In cases where the ion particle flux is no longer

larger than the electron particle flux, the full ambipolarity
constraint should be used. It should be noted that the form
of V∥ in equation (5.1.3) does not satisfy the incompressible
flow requirement, i.e. ∇ · V = 0. For ε < 1, however, this is
inconsequential.

Substituting equation (5.1.2) into equation (5.1.1) yields,
for ions,

v∥n · ∇Hi + (vdi · ∇χ)

(
v2

v2
ti

− y

)
T ′

i

Ti
fMi = Ci (Hi) ,

(5.1.4)

and, for electrons

v∥n · ∇He + (vde · ∇χ) fMe

×
{

p′
e

pe
+

(
v2

v2
te

− 5
2

)
T ′

e

Te
+

Ti

ZTe

[
p′

i

pi
+

(
y − 5

2

)]
T ′

i

Ti

}

= Ce (He) , (5.1.5)

where Z is the ion charge number. Transport coefficients are
evaluated using the localized solution H , and only test particle
pitch angle scattering operators for both ions and electrons
are employed in the processes. The reason is that for the
localized distribution function H , the pitch angle scattering
operator dominates the collision operator for being larger than
the momentum restoring terms by a factor of ε−1. For this
reason, there is no momentum restoring issue for the localized
distribution function in the ε < 1 limit. This concept is used
in the moment equation approach as well.

It is important to note that, as illustrated here, the
momentum restoring for the test particle pitch angle scattering
operator is treated approximately by introducing a term from
the shifted Maxwellian distribution in equation (5.1.2). Once
this is done, the momentum non-conservation property for the
test particle operator is no longer an issue for the localized
distribution H . The parameter y and thus, the parallel
flow in equation (5.1.3) is determined from the ambipolarity
constraint. It is not necessary to determine y from demanding
the momentum conservation of the test particle pitch angle
scattering operator for the localized distribution function H in
large aspect ratio tokamaks.

When the inductive electric field is taken into account, a
Spitzer solution fse for the equation

Ce
(
v∥fse

)
= −v∥

ee

Te
fMe (5.1.6)

is added in equation (5.1.2) for the electron distribution
function fe1 [6] so that

f1e = 2v∥

v2
te

V∥fMe

+
ee

Te
fMe

∫ θ

0

dθ

B · ∇θ

(

BE
(A)
∥ − B2

〈
B2

〉
〈
BE

(A)
∥

〉)

+v∥fse
B〈
B2

〉
〈
BE

(A)
∥

〉
+ He. (5.1.7)
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The second term on the right-hand side of equation (5.1.7) is to
convert BE

(A)
∥ in the driving term in equation (5.4) to ⟨BE

(A)
∥ ⟩

and can be viewed as the perturbed density of the Maxwellian
distribution. The term has no explicit neoclassical transport
consequences. It is important to note that the Spitzer term in
equation (5.1.7) can be viewed as part of the parallel electron
flow V∥e and heat flow q∥e, if two-term Laguerre polynomial
expansion is used to approximate the Spitzer solution fse. The
Spitzer term drives flows that differ from the common parallel
flow V∥ due to the inductive electric field.

In the case of ions, the ⟨BE
(A)
∥ ⟩ term is combined with the

ion–electron friction force F∥ie from the ion–electron collision
operator Cie due to the difference between V∥i and V∥e to form
⟨BE∗⟩ = ⟨B[E(A)

∥ + F∥ie/(Niei)]⟩ [6]. ⟨BE∗⟩ is then replaced
by the electron banana–plateau flux using equation (4.1.1.5).
Thus, electron and ion fluxes are now coupled through the
flux surface averaged parallel momentum balance equation
(equation (4.1.1.3)).

5.2. Moment method

In the moment approach, the perturbed distribution function is
expressed as [7, 81]

f1 = 2v∥

v2
t

(
V∥L

(3/2)
0 − 2

5
L

(3/2)
1

q∥

p

)
fM + h (5.2.1)

for each species in large aspect ratio tokamaks, where Laguerre
polynomials are L

(3/2)
0 = 1, and L

(3/2)
1 = 5/2 − v2/v2

t . In the
banana and plateau regimes, h is localized in the phase space,
and parallel flows it generates can be neglected in the large
aspect ratio limit. As pointed out in section 5.1, the parallel
flows in equation (5.2.1) include not only flows required for
the momentum restoring in the linear collision operator, but
also those from the inductive electric field and, in general,
any possible driving terms in the linear drift kinetic equation
that is proportional to P1(v∥/v)fM. However, the dependences
of these parallel flows on the driving terms remain implicit.
For these driving terms, the expansion in equation (5.2.1)
implies the two-term Laguerre polynomial approximation to
the solution fDj of the equation

Cj

(
v∥fDj

)
= −v∥

ej

Tj

fMj . (5.2.2)

It should be noted that the Pfirsch–Schlüter parallel flow
and heat flow are included in equation (5.2.1). Thus, it
can reproduce Pfirsch–Schlüter fluxes, which exist in all
regimes. Substituting equation (5.2.1) into equation (5.1.1)
and employing the following relations for incompressible flows

V∥ = BV θ +
IcT

eB

(
p′

p
+

e.′

T

)
, (5.2.3)

and

q∥ = Bqθ +
5
2
p

IcT

eB

T ′

T
, (5.2.4)

in equations (3.2.12) and (3.2.20) yield

v∥n · ∇h +
2v2

v2
t

(
3v2

∥

2v2
− 1

2

)

fM

[
V θ − 2

5
L

(3/2)
1

qθ

p

]

×n · ∇B = C (h) , (5.2.5)

for both ions and electrons. The driving term in
equation (5.2.5) is basically the parallel viscosity, i.e. η0 in
Brangiskii’s classification when the condition that flows are
incompressible is imposed and the perpendicular flows are
the diamagnetic and E × B flows [1]. For large aspect ratio
tokamaks, the pitch angle scattering operator,

C (h) = νD
Mv∥

B

∂

∂µ
v∥µ

∂h

∂µ
, (5.2.6)

where νD = ν i
D = ν ii

D for ions and νD = νe
D = νee

D + νei
D

for electrons, is adequate for equation (5.2.5) in the banana
and plateau regimes because it is larger than the momentum
restoring terms for the localized distribution function h by
a factor ε−1. An explicit demonstration for equation (5.2.5)
for large aspect ratio tokamaks can be found in [81], where
the inductive electric field and the momentum restoring terms
using the model collision operator in equation (1.3.4) are
included in the derivation. In the Pfirsch–Schlüter regime,
h is not localized, and equation (5.2.1) is valid for finite aspect
ratio tokamaks as well. In that regime, equation (5.2.5) can be
solved using the exact linear collision operator. The plateau
regime cannot be clearly defined in finite aspect ratio tokamaks.
In the banana regime, equation (5.2.5) can be solved for large
aspect ratio tokamaks using the conventional method given in
[6]. For finite aspect ratio tokamaks, a different approach is

used to obtain flux surface averaged parallel viscous forces [7].
It is important to note that the plasma gradient terms

in vd · ∇χ∂fM/∂χ in equation (5.4) are cancelled by the
corresponding gradient terms in equations (5.2.3) and (5.2.4)
and are replaced by V θ and qθ . Also the (v2

∥ + v2) dependence
in vd · ∇χ is replaced by P2(v∥/v) = (3v2

∥/2v2 − 1/2), the
Legendre polynomial. The reason for this replacement is that
the B dependence in front of V θ and qθ differs from that in front
of the plasma gradient terms in equations (5.2.3) and (5.2.4).
The plasma gradient terms contribute to the Pfirsch–Schlüter
fluxes. Thus, the cancellation of these terms in equation (5.2.5)
imply that the Pfirsch–Schlüter fluxes driven by the friction
forces are removed. The V θ and qθ terms do not contribute
to the Pfirsch–Schlüter fluxes. In addition, because h is
proportional to P2, it does not contribute to parallel plasma
flows in the Pfirsch–Schlüter regime. The information on the
parallel flows is included in f1 − h in equation (5.2.1) in large
aspect ratio limits. The Spitzer term in equation (5.1.7) has
the same v∥B dependence as V∥ and q∥ in equations (5.2.3)
and (5.2.4). Thus, the Spitzer term does not contribute to the
Pfirsch–Schlüter fluxes either.

A more general approach to the moment method is
to adopt the drift kinetic equation for large mass flow
[82], as demonstrated in [83]. In that approach, the
shifted Maxwellian, which describes the plasma mass flow
in equations (5.1.2) and (5.2.1), has already been taken
into account in the derivation of the drift kinetic equation.
The advantages of this approach are that the density,
temperature and plasma flows can have arbitrary geometric
angle dependences and that plasma flows can be compressible.
This allows the resultant drift kinetic equation to be valid for
physical situations beyond what the conventional neoclassical
theory addressed in [6, 7]. An example is shock formation
when the poloidal flow speed is sonic.
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5.3. Equivalence of two methods

The treatments of the momentum restoring terms in the
variational and moment methods are equivalent in the ε < 1
limit. The parallel flow is introduced into the perturbed
distribution function to eliminate the momentum restoring
terms resulting from the test particle pitch angle scattering
operator for the non-localized distribution function. The
difference is that in the variational method, a parameter y is
introduced. In the moment method, two independent variables,
i.e. V θ and qθ , are employed. The relation between V θ and qθ

is to be determined from
〈
B · ∇· ↔

π i

〉
= 0, (5.3.1)

which is the same as, using the flux–force relation in
equation (4.1.1.5),

#
bp
i = 0. (5.3.2)

Equations (5.3.1) and (5.3.2) are also a statement of the
relaxation of the poloidal flow to reach the intrinsically
ambipolar state, as discussed in section 4. The ambipolarity
constraint in equation (5.3.2) is also derived from the
variational method to determine the parameter y [5,6].

The pitch angle dependence in equation (5.2.5) differs
from that in equations (5.1.4) and (5.1.5). In the moment
method, the pitch angle dependence in equation (5.2.5) is
P2(v∥/v). In the variational method, the quantity vd ·∇χ has a
pitch angle dependence that is (v2

∥ + v2). This difference in the
pitch angle dependence is not important for large aspect ratio
tokamaks. The reason is that in the banana–plateau regime it
is either the particles that are trapped or are barely circulating
or those that have v∥ ∼ 0 that dominate the processes. For
these particles either v2

∥ ∼ εv2 < v2 in the banana regime
or v2

∥ ∼ ('v∥/v)2v2 < v2, with 'v∥/v, the width of the
resonance layer in the plateau regime, the difference in the
pitch angle dependence is inconsequential. However, this
difference becomes important when the resonance is not at
v∥ ∼ 0 due to sonic poloidal E × B drift for the nonlinear
plasma viscosity [79, 84].

6. Transport processes in axisymmetric tokamaks

Neoclassical transport theory for axisymmetric tokamaks has
been reviewed in [6, 7], where the methods of solutions and the
physics involved are illustrated in detail. Transport coefficients
have since been calculated using numerical codes [85–87],
which indicate that analytic coefficients in [3, 6, 7] have an
accuracy of 20%. Some of these numerical results have been
incorporated in widely used fitting formulas [86, 88]. The
moment approach is also implemented in the NCLASS code
to consistently model neoclassical plasma flows and transport
for axisymmetric tokamaks with impurities [89]. Here, a few
subjects that have been developed after those reviews were
published that are relevant to advanced tokamak operations
are discussed.

6.1. Orbit trajectory in axisymmetric tokamaks

Particle trajectories are intimately related to the method of
the solution to the drift kinetic equation when the collision

frequency is infrequent enough so that particles can complete
their collisionless trajectories. In axisymmetric tokamaks,
particle trajectories are governed by the conservations of
the toroidal canonical angular momentum pζ , and particle
energy Mv2/2 together with the invariant magnetic moment µ.
Because pζ is conserved, at any two positions on the particle
trajectory,

pζ = χ − I
v∥

&
= χ0 − I

v∥0

&0
, (6.1.1)

where the gyro-phase dependent terms have been averaged out
and the subscript 0 indicates that the quantity is evaluated at the
reference position (χ0, θ0). The equation that determines the
orbit trajectories is, then, assuming the poloidal E × B Mach
number Mp = cEr/(Bpvt) < 1 and neglecting the effects of
orbit squeezing,

(χ − χ0)
2 + 2

Iv∥0

&0
(χ − χ0)

+2
(

Iv∥0

&0

)2

(ε0 cos θ0 − ε cos θ)

+2
(

I

&0

)2
µB0

M
(ε0 cos θ0 − ε cos θ) = 0 + O(ε),

(6.1.2)

where Er is the radial electric field. Both ε < 1 and
equation (1.1.2) have been used in deriving equation (6.1.2).
The terms that involve v2

∥0 and µB0/M in equation (6.1.2) are
the curvature and gradient B drifts, respectively.

6.1.1. Banana orbits. If the width of the orbit is much
narrower than r , ε can be treated as a constant over the entire
orbit trajectory. Because all particles pass through θ = 0, it
is convenient to choose θ0 = 0. In this case, the solution to
equation (6.1.2) is

χ − χ0 = −Iv∥0

&0
± I

&0

√
2ε

(
2v2

∥0 + 2µB0/M
)

×
(

k2
b − sin2 θ

2

)1/2

, (6.1.1.1)

where k2
b = v2

∥0/[4ε(v2
∥0 + µB0/M)]. For k2

b > 1, particles are
circulating. For k2

b < 1, particles are trapped in the (1−ε cos θ)

well. The typical width ('χ)b for trapped particles, i.e.
bananas, scales as [6]

('χ)b ∼
√

2ε
Ivt

&0
. (6.1.1.2)

6.1.2. Potato orbits. In the vicinity of the magnetic axis,
the width of the orbits is comparable to the local minor
radius r , ε cannot be treated as a constant [90–96] over orbit
trajectories and equation (6.1.2) in general becomes a quartic
algebraic equation. In that case, there does not seem to have a
simple analytic solution to equation (6.1.2), and the numerical
solution yields complicated particle trajectories in the region
near the magnetic axis [92, 95]. However, for trajectories
passing through the magnetic axis, equation (6.1.2) reduces to
a cubic algebraic equation that has relatively compact analytic
solutions [94].

The crucial χ dependence enters through ε = Cχ
√

χ ,
where Cχ =

√
2q/(δIR), and δ is the elongation parameter of
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the magnetic surface. Choosing χ0 = 0 and neglecting dq/dχ ,
the orbit equation becomes [94]

x̄3 + 2
Iv∥0

&0
x̄ − 2

I 2Cχ

&2
0

(
v2

∥0 + µB0/M
)

cos θ = 0, (6.1.2.1)

where x̄ = √
χ . Equation (6.1.2.1) describes particle

trajectories that go through the magnetic axis. The trajectories
can be categorized according to the sign and magnitude of the
parameter σpkp, where σp = v∥0/|v∥0| is the sign of v∥0, and

kp = 8
27

(I
∣∣v∥0

∣∣/&0)
3

(I 2Cχ/&2
0)

2(v2
∥0 + µB0)2

. (6.1.2.2)

When −∞ < σpkp < −1, the poloidal particle speed
defined as

ωθ = v∥ − v∥
∂

∂χ

(
I
v∥

&

)
(6.1.2.3)

does not vanish anywhere on the trajectories. These particles
are circulating. There are two classes of circulating particles.
One that encircles the magnetic axis is described by

x̄ = 2x̂(−σpkp)
1/6

⎧
⎪⎪⎨

⎪⎪⎩

cos
(

β

3

)
, cos θ > 0,

sin
(

π

6
+

β

3

)
, cos θ < 0,

(6.1.2.4)

where x̂ = [(I 2Cχ/&2
0)(v

2
∥0 + µB0)]1/3. Angle β is

related to the poloidal angle θ through the relation cos β =
cos θ/

√
−σpkp if cos θ > 0, and the relation cos β =

|cos θ |/
√

−σpkp if cos θ < 0. The other that intersects the
magnetic axis but does not encircle it is described by

x̄ = 2x̂(−σpkp)
1/6 sin

(
π

6
+

β

3

)
, cos θ < 0. (6.1.2.5)

This class of circulating particles exist in the second and third
quadrants where cos θ < 0.

Particles with 0 < σpkp < ∞ are also circulating. Their
trajectories follow the equation

x̄ = 2x̂(σpkp)
1/6 sinh

(
β

3

)
, (6.1.2.6)

where sinh β = cos θ/
√

σpkp for cos θ > 0. These particles
also intersect and do not encircle the magnetic axis. They only
exist in the first and fourth quadrants.

Trapped particles have a poloidal speed that vanishes at
turning points on their trajectories, and are characterized by
−1 < σpkp < 0. Their trajectories have a complicated
functional form. On the outer half of the trajectory,

x̄ = 2x̂(−σpkp)
1/6

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cosh
(

β

3

)
, (i)

cos
(

β

3

)
, (ii)

sin
(

π

6
+

β

3

)
, (iii)

(6.1.2.7)

and on the inner half of the trajectory,

x̄ = 2x̂(−σpkp)
1/6 sin

(
π

6
− β

3

)
, (iii). (6.1.2.8)

Figure 9. Particle orbits in the vicinity of the magnetic axis and a
standard banana orbit are shown. Class (a), (b) and (d) are
circulating orbits with −∞ < σpkp < −1 and 0 < σpkp < ∞.
Class (c) is trapped particles, i.e. potato orbits with −1 < σpkp < 0.
Class (e) is a standard banana orbit.

These two halves are separated by the turning points ±θt =
±(π − θc), where ωθ (±θt) = 0. The angle θc satisfies
σpkp + cos2 θc = 0. The region (i) in equation (6.1.2.7) is
limited to −θc < θ < θc and cos θ > 0. The region (ii)
is marked by θc < θ < π/2, or −π/2 < θ < −θc and
cos θ > 0. The region (iii) in equations (6.1.2.7) and (6.1.2.8)
is characterized either by (π − θc) > θ > π/2 or by
−(π − θc) < θ < −π/2, and cos θ < 0. Trapped particles
have the shape of potatoes and are thus named [93].

Typical trapped particles and circulating particles in the
vicinity of the magnetic axis are shown in figure 9.

The typical width for potato orbits is [90–94]

('χ)p ∼
(

I 2Cχv2
t

&2
0

)2/3

. (6.1.2.9)

The ratio of the potato orbit width of ions to that of electrons is
(Mi/Me)

2/3 when measured in poloidal flux ψ . The fraction
of trapped potato orbits scales as [90–94]

fp ∼
(

IC2
χvt

&0

)1/3

, (6.1.2.10)

which differs from the fraction of banana orbits. It should be
noted that fp also depends on the mass and temperature of the
species. From these estimates, the ion heat conductivity scales
as [94], using random walk argument,

χi ∼ νi

(
Ivt

&0

)7/3

C2/3
χ , (6.1.2.11)

in the tokamak magnetic coordinates. The potato transport
coefficients are valid over a region wider than the potato width.

6.2. Parallel plasma viscosity in axisymmetric tokamaks away
from the magnetic axis

In axisymmetric tokamaks, parallel components of the viscous
forces (including both viscous and heat viscous forces) play
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the key role in the neoclassical transport theory in the banana–
plateau regime. Once the closure relations for the parallel
viscous forces are known, all the transport coefficients in the
banana and plateau regimes are known. In these regimes, the
drift kinetic equation (equation (5.2.5)) has a singularity at
v∥ = 0 in the region away from the magnetic axis. There are
two ways to resolve this singularity. One is by collisions and
this leads to the plateau regime. The other is by the non-linear
particle trajectories, which results in the banana regime.

6.2.1. Banana regime This regime is defined by ν∗ <

1. The singularity at v∥ = 0 in the drift kinetic equation
(equation (5.2.5)) is resolved by non-linear particle trajectories.
Using ν∗ < 1 as the auxiliary expansion parameter,
equation (5.2.5) can be further expanded and the leading order
equation is

v∥n · ∇h0 +
2v2

v2
t

(
3v2

∥

2v2
− 1

2

)

fM

[
V θ − 2

5
L

(3/2)
1

qθ

p

]

×n · ∇B = 0, (6.2.1.1)

and the next order equation is

v∥n · ∇θ
∂h1

∂θ
= C(h0), (6.2.1.2)

where the subscript in h indicates the order in the auxiliary
expansion. Note that the non-linear particle dynamics along
the magnetic field line described by v∥ is kept because the
independent variables are E and µ, but the finite width of
particle orbits is not because the radial drift motion is neglected
in equations (5.2.5) and (6.2.1.1).

Integrating equation (6.2.1.1) yields

h0 = − 2
v2

t
v∥BfM

[
V θ − 2

5
L

(3/2)
1

qθ

p

]
+ gb(χ , E, µ),

(6.2.1.3)

where gb(χ , E, µ) is an integration constant to be determined
from the constraint condition of equation (6.2.1.2) and
boundary conditions. The constraint condition is to guarantee
that h1 is periodic in θ . The boundary condition for circulating
particles is

h(θ = 0) = h(θ = 2π), (6.2.1.4)

because the system is periodic in θ . For trapped particles, the
reflection boundary condition is satisfied, i.e.

h+(θt) = h−(θt), (6.2.1.5)

and
h+(−θt) = h−(−θt), (6.2.1.6)

where the subscripts ± indicate the sign of v∥ defined
as σ = v∥/|v∥|, and ±θt are turning points that satisfy
v∥(χ , ±θt, E, µ) = 0. Integrating equation (6.2.1.2) and using
the boundary conditions in equations (6.2.1.4)–(6.2.1.6) yield
the constraint condition

⟨C(h0)⟩t = 0, (6.2.1.7)

where the angular brackets denote the annihilator defined
as ⟨·⟩t =

∫ 2π

0
dθ
v∥

B
√

g(·) for circulating particles, ⟨·⟩t =

∑
σ

∫ θt

−θt

dθ
|v∥|B

√
g(·) for trapped particles, and

√
g = 1/B · ∇θ .

Equation (6.2.1.7) is an equation for the integration constantgb.
The function gb must be an odd function of σ by examining
equation (6.2.1.7). Thus, gb = 0 for trapped particles after
imposing the reflection boundary condition. Substituting h0

in equation (6.2.1.3) into equation (6.2.1.7) yields [7]

gb = −σ
fM

v2
t

〈
B2

〉

BM

∫ λ

1

dλ′
〈∣∣v||

∣∣/v
〉
[
V θ − 2

5
L

(3/2)
1

qθ

p

]
,

(6.2.1.8)

for circulating particles, where λ = µBM/(Mv2/2), and BM is
the global maximum value of B on the magnetic surface. For
axisymmetric tokamaks, BM is also the maximum value of B

on a given magnetic field line. The function h0 in large aspect
ratio tokamaks is determined.

Using the definition for the parallel viscous force and
equation (5.2.5) yield a quadratic form for the parallel viscous
force⎛

⎝

〈
B · ∇· ↔

π
〉

〈
B · ∇·

↔
1

〉

⎞

⎠ = −
〈∫

dv
{

Mv2
t

2

(
1

x2 − 5/2

)

× hC(h)

fM
[
V θ − 2

5L
(3/2)
1

qθ

p

]
}〉

. (6.2.1.9)

Flux surface averaged parallel viscous forces are, after
substituting h0 into equation (6.2.1.9),
⎛

⎝

〈
B · ∇· ↔

π
〉

〈
B · ∇·

↔
1

〉

⎞

⎠ = NM
〈
B2〉

(
µ1 µ2

µ2 µ3

) (
V θ

2
5

qθ

p

)

,

(6.2.1.10)

where the viscous coefficients are µj = (8/3
√

π)
∫ ∞

0 dx×
x4e−x2

(x2 − 5/2)j−1ftνD for j = 1 − 3, which are the large
aspect ratio limit of the viscous coefficients for finite aspect
ratio tokamaks [7]:

µj =
(
8/3

√
π

) ∫ ∞

0
dxx4e−x2 (

x2 − 5/2
)j−1

(ft/fc) νD.

(6.2.1.11)

The coefficients in equation (6.2.1.11) are obtained by solving
the conventional drift kinetic equation i.e. equation (5.2) and
converting the driving term from the plasma gradients to
plasma flows. The fraction of trapped particles is defined as
ft = 1 − fc, and the fraction of circulating particles fc is
defined as [7]

fc = 3
4

〈
B2

〉

B2
M

∫ 1

0
dλ

λ〈∣∣v∥/v
∣∣〉 . (6.2.1.12)

A good approximate expression for fc, which can be evaluated
efficiently by the numerical method presented in [97], is
fc = 1 − 1.46

√
ε + 0.46ε. Thus, when ε →1, fc → 0

as expected. It is obvious that viscous forces are Onsager
symmetric. As noted previously that the surface averaged
parallel viscous forces in equation (6.2.1.10) are valid even
when there are external momentum and heat flux inputs as long
as those source terms have a pitch angle dependence scales
as v∥fM. The inductive electric field n · E(A) in the parallel
momentum equation certainly belongs to that class of external
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sources. Thus, the viscous forces derived here are applicable to
calculate transport consequences resulting from the inductive
electric field.

Even though h is no longer localized in the velocity space,
h0 in equation (6.2.1.3) is a valid solution at the unity aspect
ratio limit where gb = 0. Indeed, it is straightforward to show
that by taking the v∥ and v∥L

(3/2)
1 moments of equation (5.2.1)

yields the proper parallel flows at the ε = 1 limit [98].
Furthermore, it can be shown that finite aspect ratio viscous
coefficients in equation (6.2.1.11) can also be derived from
equation (6.2.1.3) when the method used to determine gb in
terms of poloidal flows developed in [7] is employed by
imposing that v∥ and v∥L

(3/2)
1 moments of h0 vanish. Thus,

it is possible that the equation for h is also approximately valid
when ε is finite in the banana regime.

In this review, viscous forces in axisymmetric tokamaks
are expressed in the form in equation (6.2.1.10) except for the
fact that viscous coefficients are different in various asymptotic
limits when different physics are involved.

There are four unknowns in the parallel viscous forces in
equation (6.2.1.10), i.e. electron and ion parallel flow speed V∥
and heat flow q∥. The four equations for these unknowns are
the flux surface averaged electron and ion parallel momentum
and heat flux balance equations

〈
B · ∇· ↔

π
〉
= ⟨B · F1⟩ , (6.2.1.13)

〈
B · ∇·

↔
1

〉
= ⟨B · F2⟩ . (6.2.1.14)

The inductive electric field ⟨B · E(A)⟩ can also be added
to the momentum balance equation in equation (6.2.1.13).
However, because coupled equations are linear, unless the
electric resistivity needs to be calculated, it is not necessary
to include such a term. The explicit expressions for the
parallel components of the friction forces are [7] n · F1i ≡
F1i = −n · F1e ≡ −F1e = −le

11(V∥i − V∥e) − (2/5)le
12q∥e/pe,

n · F2e ≡ F2e = −le
12(V∥i − V∥e) − (2/5)le

22q∥e/pe and
n · F2i ≡ F2i = −(2/5)li

22q∥i/pi, where le
11 = NeMeνei, le

12 =
1.5le

11, le
22 = (13/4 +

√
2/Z)le

11 and li
22 =

√
2NiMiνii. Note

that
∑

j n · F1j = 0, which is a statement of the momentum
conservation of the Coulomb collision operator.

In the unity aspect ratio limit where ε →1, the fraction of
circulating particles fc → 0, and µj → ∞, i.e. the parallel
viscous forces approach infinity. In this limit, the leading order
solutions, using the small parameter that is the ratio of the
friction forces to the viscous forces, to equations (6.2.1.13)
and (6.2.1.14) are

V θ = 0, (6.2.1.15)

and
qθ = 0, (6.2.1.16)

for each species. This implies that the poloidal flow is
forbidden when all particles are trapped. However, the parallel
flow remains finite and is [7, 98]

V∥

B
= − Ic

B2

(
.′ +

p′

Ne

)
, (6.2.1.17)

for each species. Thus, even when all particles are trapped, the
fluid flow along the magnetic field line is finite. The parallel

heat flow is [7, 98]

q∥

B
= −5

2
p

IcT

eB2

T ′

T
, (6.2.1.18)

for each species. The parallel flows in equations (6.2.1.17)
and (6.2.1.18) include Pfirsch–Schlüter flows as well.
Summing the result in equation (6.2.1.17) over plasma species
yields a net plasma current along the magnetic field line [7, 98]:

J∥

B
= − Ic

B2
P ′, (6.2.1.19)

which is diamagnetic in nature. Thus, the plasma current
along the magnetic field line remains finite even when all
particles are trapped. The current in equation (6.2.1.19) can
be decomposed into the bootstrap current J∥b and the Pfirsch–
Schlüter current J∥ps:

J∥b

B
= −IcP ′

〈
B2

〉 (6.2.1.20)

and
J∥ps

B
= −IcP ′

(
1
B2

− 1〈
B2

〉
)

. (6.2.1.21)

The ion heat flux consists of both the heat viscous driven
flux in equation (4.1.1.13) and the heat friction driven flux
in equation (4.1.1.14). The ion heat viscous force, in the next
order in the ratio of the friction forces to the viscous forces, is

〈
B · ∇·

↔
1i

〉
= li

22
IcT ′

i

ei
, (6.2.1.22)

by substituting equation (6.2.1.18) into (6.2.1.14). Thus,
the ion heat viscous driven flux is, using the expression in
equation (4.1.1.13),

q
bp
i

Ti
= −li

22
I 2c2T ′

i

e2
i

1〈
B2

〉 , (6.2.1.23)

and the ion heat friction driven flux is, by substituting
equation (6.2.1.18) into equation (4.1.1.14),

q
ps
i

Ti
= −li

22
I 2c2T ′

i

e2
i

(〈
1
B2

〉
− 1〈

B2
〉
)

. (6.2.1.24)

Thus, the total ion heat flux qi/Ti, which is the sum of both
viscous and friction forces driven flux, is

qi

Ti
= −li

22
I 2c2T ′

i

e2
i

〈
1
B2

〉
. (6.2.1.25)

In the unity aspect ratio limit, the Pfirsch–Schlüter heat flux in
equation (6.2.1.24) not only exists but also is important in the
banana regime [98].

For finite values of the viscous coefficients µj s, relatively
simple expressions for the ion poloidal flow and ion heat
flux can be obtained for arbitrary aspect ratio tokamaks by
exploring

√
Mi/Me > 1. From

∑

j=i,e

〈
B · ∇· ↔

π j

〉
= 0 (6.2.1.26)
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the ion poloidal flow is found to be

V θ
i = −2

5
µ2i

µ1i

qθ
i

pi
. (6.2.1.27)

The poloidal ion heat flow can be calculated, using
equation (3.2.20), ion heat flux balance equations (6.2.1.14)
and (6.2.1.27), to obtain

2
5

qθ
i

pi
=

−µ2iV
θ

i +
[
li
22/(NiMi)

] [
IcT ′

i /
(
ei

〈
B2

〉)]

µ3i + li
22/(NiMi)

,

(6.2.1.28)

and

V θ
i = − µ2il

i
22/(NiMi)

|µi| + µ1il
i
22/(NiMi)

IcT ′
i

ei
〈
B2

〉 , (6.2.1.29)

where |µi| = µ1iµ3i − µ2
2i. In the limit of ε < 1, V θ

i reduces
to the familiar expression

V θ
i = −µ2i

µ1i

IcT ′
i

ei
〈
B2

〉 , (6.2.1.30)

where µ2i/µ1i = −1.17 [6, 7]. The banana–plateau heat flux

q
bp
i driven by ⟨B · ∇·

↔
1i⟩ is

q
bp
i

Ti
= −NM

〈
B2〉

(
Ic

ei
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〉
)2

(|µi|/µ1i)
[
li
22/(NiMi)

]

|µi|/µ1i + li
22/(NiMi)

T ′
i .

(6.2.1.31)

The heat flux can be expressed as the combination of two
parts [99]

(
q

bp
i

Ti

)−1

=
(

q
bp
i

Ti

)−1

f

+

(
q

bp
i

Ti

)−1

µ

, (6.2.1.32)

where the part that depends on friction force, valid when
ε → 1, is

(
q

bp
i

Ti

)−1

f

= −NiMi
〈
B2〉

(
Ic

ei
〈
B2

〉
)2

li
22

NiMi
T ′

i , (6.2.1.33)

and the heat viscous part, appropriate when ε → 0, is

(
q

bp
i

Ti

)−1

µ

= −NiMi
〈
B2〉

(
Ic

ei
〈
B2

〉
)2

|µi|
µ1i

T ′
i . (6.2.1.34)

The proper way to combine these two limits is the well-known
inverse law as shown in equation (6.2.1.32). The total heat flux
is the sum of q

bp
i and q

ps
i .

The bootstrap current can be obtained by solving
equations (6.2.1.13) and (6.2.1.14) for electrons for plasma
current. The result is [7]

〈
J∥bB

〉
= −σeff

Meµ1e

Nee2
e

Ic

[ (
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leb
12

leb
22

µ2e

µ1e
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)

+NeT
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e
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µ2e

µ1e
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leb
12

leb
22

µ3e

µ1e

) ]
, (6.2.1.35)

where leb
11 = le

11 + NeMeµ1e, leb
12 = le

12 − NeMeµ2e, leb
22 =

le
22 + NeMeµ3e, and neoclassical plasma conductivity is [6, 7]

σeff = (Neee)
2 leb

22

leb
11l

eb
22 −

(
leb
12

)2 . (6.2.1.36)

In the case of ε → 1, all particles are trapped, and
σeff → 0. It is straightforward to show that when ε → 1,
equation (6.2.1.35) reproduces equation (6.2.1.20).

It should be noted that the transport fluxes in the banana
regime obtained using the eight-moment approach are not as
accurate as those in [100] because only P1 dependence in
the momentum restoring terms is kept. Indeed, by including
the P3 moment in the collision operator, the accuracy of
the viscous coefficients in the banana regime can be greatly
improved, as demonstrated in [101, 102]. Here, P3 is the
Legendre polynomial. These modified coefficients can be used
to improve the accuracy of NCLASS.

6.2.2. Plateau regime. When collisions are frequent enough
so that ν∗ > 1, but infrequent enough so that ν/ωt < 1,
plasmas are in the plateau regime. Here, ωt = vt/Rq is the
transit frequency. The condition ν∗ > 1 is used to neglect
the mirror force that is responsible for the non-linear motion
of the trapped particles. The condition ν/ωt < 1 is used to
obtain the localized solution in the vicinity of the resonance.
It is obvious that only when ε < 1, the asymptotic limit of
the plateau regime can exist. In this regime, the singularity at
v∥ = 0 is removed by collisions.

By changing independent variables from (χ , θ, E, µ) to
(χ , θ, v∥, v) in the linear drift kinetic equation, equation (5.2.5)
becomes

v∥n · ∇h − 1
2

(
v2 − v2

∥
)
n · ∇ (ln B)

∂h

∂v∥

+
2v2

v2
t

(
3v2

∥

2v2
− 1

2

)

fM

[
V θ − 2

5
L

(3/2)
1

qθ

p

]
n · ∇B

= νD

2
∂

∂
(
v∥/v

)
(

1 −
v2

∥

v2

)
∂h

∂
(
v∥/v

) . (6.2.2.3)

The second term on the left-hand side of equation (6.2.2.3) is
the mirror force term that is responsible for pulling trapped
particles back from the turning points and can be neglected
when ν∗ > 1. It is trivial to realize that it is not because
particles are highly circulating but because v∥ is an independent
variable that v∥ is not a function of the poloidal angle θ [103].
By contrast, in the banana regime, v∥ is not an independent
variable but rather a function of E, µ, χ and θ . Thus, in the
plateau regime, the equation to be solved is [81]

v∥n · ∇h +
2v2

v2
t

(
3v2

∥

2v2
− 1

2

)

fM

[
V θ − 2

5
L

(3/2)
1

qθ

p

]
n · ∇B

= νD

2
∂

∂
(
v∥/v

)
(

1 −
v2

∥

v2

)
∂h

∂
(
v∥/v

) . (6.2.2.4)

Equation (6.2.2.4) can be solved either using a Krook model
to approximate the pitch angle scattering operator on the right-
hand side of equation (6.2.2.4) or approximating the pitch angle
scattering operator as

νD

2
∂

∂
(
v∥/v

)
(

1 −
v2

∥

v2

)
∂h

∂
(
v∥/v

) ≈ νD

2
∂2h

∂
(
v∥/v

)2 (6.2.2.5)
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because the localized distribution function is centred around
(v∥/v) ≈ 0. The width of the singular layer can be estimated
by balancing the pitch angle scattering operator with the
collisional broadening of the singularity at v∥ = 0, i.e. the
first term on the left-hand side of equation (6.2.2.4). Indeed,
the proper interpretation for that term is that it represents the
collisional broadening of the resonance at v∥ = 0. Expanding
v∥ in terms of Taylor series at v∥ = 0 yields

v∥ = 0 +
dv∥

dv∥

)

v∥=0
v∥, (6.2.2.6)

where the 0 on the right-hand side of equation (6.2.2.6)
indicates the singularity or resonance, and the second term
denotes the collisional broadening. Thus, the collisional
broadening yields a singular layer width '(v∥/v) ∼
(ν/ωt)

1/3 < 1. Using the Krook model for the collision
operator, i.e. C(h) = −νh, and expanding h as

h = hs sin θ + hc cos θ (6.2.2.7)

yield the resonant part of the solution

hs = ν
(
v∥n · ∇θ

)2 + ν2

v2

v2
t

(B · ∇θ) εfM

×
[
V θ − 2

5
L

(3/2)
1

qθ

p

]
, (6.2.2.8)

and the non-resonant part of the solution

hc = − v∥n · ∇θ
(
v∥n · ∇θ

)2 + ν2

v2

v2
t

(B · ∇θ) εfM

×
[
V θ − 2

5
L

(3/2)
1

qθ

p

]
. (6.2.2.9)

Equation (1.1.2) has been employed in obtaining equa-
tions (6.2.2.8) and (6.2.2.9). The plateau asymptotic limit
is reached when ν/ωt < 1, and in that limit the resonance
function

ν
(
v∥n · ∇θ

)2 + ν2
→ πδ

(
v∥n · ∇θ

)
, (6.2.2.10)

where δ(s) is a delta function in the resonant part of the
solution. The resonance occurs at the singular point v∥ = 0.
Thus, fundamentally, the solution in the plateau regime results
from the resonance at which the kinetic part of the drift kinetic
equation vanishes. Indeed, this is a generic behaviour in
the kinetic theory. One can view the resonance as Landau
resonance [104] for a zero frequency mode. The non-resonant
solution does not contribute to the flux surface averaged
parallel viscous forces because it is out of phase with n · ∇B
in the expressions of the parallel viscous forces.

The parallel viscous forces are obtained by substituting
hs in equation (6.2.2.8) into the expressions for the parallel
viscous forces in equations (4.1.4.1) and (4.1.4.2). The viscous
coefficient µj is then [81]

µj =
√

π

4
ωtε

22
∫ ∞

0
dxx5

(
x2 − 5

2

)j−1

e−x2
, (6.2.2.11)

for j = 1 − 3. The energy integrals in equation (6.2.1.11)
can be evaluated and they are, respectively, C1 = #(3),
C2 = #(4)−(5/2)#(3) and C3 = #(5)−5#(4)+(25/4)#(3).
Here, #(s) is the gamma function.

6.2.3. Pfirsch–Schlüter regime When ν/ωt > 1, plasmas are
in the Pfirsch–Schlüter regime. In this regime because the
collisional effects dominate, the linear drift kinetic equation in
equation (5.2.5) reduces to

2
v2

v2
t

(
3
2

v2
∥

v2
− 1

2

)

fMn · ∇B

(
V θ − 2

5
L

3/2
1

qθ

p

)
= C (h) .

(6.2.3.1)

It can be solved by expanding the distribution function h in
terms of Legendre polynomial P2 and Laguerre polynomials
of order (5/2), i.e. L

(5/2)
j [7]. However, a simple Krook

model C(h) = −νT h with a judiciously chosen collision
frequency νT = 3νD + νE for the collision operator yields
viscous coefficients that are accurate to about 20% [7]. Here,
νE is the energy exchange frequency and is defined as νab

E =
2νab

s − 2νab
D − νab

∥ , where νab
∥ = 2νabG(v/vtb)/(v/vta)

3 [30].
It is also easier to join results from various asymptotic limits
using a Krook model in the Pfirsch–Schlüter [7, 105]. Thus,

h = −ν−1
T 2
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t
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fMn · ∇B

[
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(3/2)
1

qθ

p

]
,

(6.2.3.2)

when a Krook model for the collision operator is employed.
The viscous coefficients µj s for j = 1 − 3 in the Pfirsch–

Schlüter regime are, thus,

µj = 8
5
√

π

v2
t

〈
(n · ∇B)2〉
〈
B2

〉
∫ ∞

0
dxx6e−x2

(
x2 − 5

2

)j−1 1
νT

.

(6.2.3.3)
The parallel viscosity obtained here is mainly employed to
calculate the poloidal flow damping in the Pfirsch–Schlüter
regime and yields the well-known relation between the
parallel flow and the radial electric field. It is known that
because the viscous forces decrease with increasing collision
frequency, bootstrap current in the Pfirsch–Schlüter regime is
small because it scales as (ν/ωt)

−2 and is usually neglected.
However, because the factor ⟨(n · ∇B)2⟩ approaches infinity
which compensates the 1/ν dependence in the viscous forces,
the viscous forces also drive a bootstrap current and contribute
to the ion thermal conductivity when the aspect ratio A of
tokamaks approaches unity. For a circular equilibrium with
B = [B0/(1 + ε cos θ)][(ε/q)θ̂ + ζ̂ ],

〈
(n · ∇B)2〉 =

[
ε2

2
(
1 − ε2

)3/2

] (
B0ε

rq

)2

, (6.2.3.4)

where θ̂ and ζ̂ are unit vectors in the poloidal and toroidal
directions respectively [105]. Thus, when ε = 1/A → 1,
⟨(n · ∇B)2⟩ → ∞. The factor ⟨(n · ∇B)2⟩ has been
calculated numerically using an equilibrium code, and is shown
in figure10 [106].

Thus, both ⟨B · ∇· ↔
π ⟩ and ⟨B · ∇·

↔
1⟩ diverge in unity

aspect ratio tokamaks for any finite value of collision
frequency. The consequences for the bootstrap current and
plasma flows are that these quantities are exactly the same as
those in the banana regime when ε → 1. Furthermore, the heat
viscous force driven ion heat flux also becomes comparable to
the friction force driven ion heat flux. The total ion heat flux in
the Pfirsch–Schlüter regime is the same as that in the banana
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Figure 10. The geometric factor ⟨(n · ∇B)2⟩ as a function of the
aspect ratio A for a fixed q profile and toroidal magnetic field
strength on the axis. The circles are calculated from numerical
equilibrium and the solid line is from equation (6.2.3.4).

regime in the ε → 1 limit [98, 105]. This collisionless-like
behaviour in the collisional Pfirsch–Schlüter regime appears
when νt < vt[⟨(n · ∇B)2⟩/⟨B2⟩]1/2 by balancing the friction
forces with the viscous forces in the collisional regime and
neglecting the numerical coefficients of the order of unity.

6.2.4. Approximate analytic expressions for parallel viscous
forces. To model tokamak plasmas, it is convenient to use a
formula that joins analytic expressions of the parallel viscous
forces in the asymptotic limits of the banana, plateau and
Pfirsch–Schlüter regimes. This is accomplished by using the
rational approximation. The approximate expression for the
parallel viscous forces, after extending the analytic expressions
for the parallel viscous forces to multiple poloidal modes in the
|B| spectrum to allow for arbitrary magnetic surface shape,
is [105]
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∫ ∞
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2

)j−1

,

(6.2.4.1)

for j = 1 − 3, where

KB = ft

fc
νD, (6.2.4.2)
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(6.2.4.5)

and ωm = vtxmn · ∇θ . A similar expression for the viscosity
coefficients that connects all regimes is also constructed
in [107].

The expression in equation (6.2.4.1) has been bench-
marked [105] using the Drift Kinetic Equation Solver (DKES)
code [108]. A boundary layer analysis has been carried out
to make the slope of the perturbed distribution function con-
tinuous across the trapped-circulating boundary that leads to
the modification scales as

√
ν to transport fluxes in the banana

regime [8]. This
√

ν scaling has been incorporated into the
connection formulas for the transport coefficients that join all
asymptotic limits in [6]. However, as can been seen in the
figures in [105] that show the viscous coefficient versus the
collision frequency for several values of the aspect ratio, the
µj evaluated using equation (6.2.4.1) fits the DKES results
quite well without the

√
ν scaling. Indeed, the connection

formula that joins all asymptotic limits usually gives a fairly
good description of the viscous coefficients or transport fluxes
without the need of the results obtained from the boundary
layer analysis. The µj shown in equation (6.2.4.1) has also
been implemented in the NCLASS code to model neoclassical
transport processes in axisymmetric tokamaks [89].

6.2.5. Effects of orbit squeezing and finite banana width. The
orbit trajectories discussed in section 6.1 are based on the
assumption that the width of a banana

√
ερp is much less than

Ln. However, in the edge region of H-mode, Ln is comparable
to ρp. In that case, the width of the banana orbits is squeezed
from the standard scaling

√
ερp [109]. Thus, in the edge

region of the H-mode plasmas, anomalous transport losses are
improved as a result of the turbulence suppression [16, 17],
and the neoclassical ion transport losses are also reduced due
to the effects of orbit squeezing [110].

In the conventional neoclassical theory, the finite width
of the banana orbits is neglected. The bounce motion is the
zeroth order and the radial drift is the first order in gyro-
radius ordering. Thus, the bounce motion with zero banana
width is the ‘unperturbed’ orbit. The information of the
width of the banana orbits is obtained by integrating along
the unperturbed orbits. The method employed in solving
the kinetic equation for the theory for the effects of orbit
squeezing has to include the finite width in the unperturbed
orbits because in the (χ , θ, E, µ) space v∥ only describes
bounce motion and contains no orbit squeezing information.
Here, E = Mv2/2+e.. Thus, the theory that describes effects
of orbit squeezing intrinsically is a finite orbit width theory in
the context of the local transport. In the limit when the orbit
squeezing is insignificant, the theory becomes a theory for the
finite banana width of large aspect ratio tokamaks.

6.2.5.1. Squeezed banana orbits. The squeezed banana orbit
trajectories can be calculated from the constants of motion
pζ and total particle energy E = Mv2/2 + e., together
with invariant magnetic moment µ. The energy conservation
implies

v2
∥

2
+

µB

M
+

e.

M
=

v2
∥0

2
+

µB0

M
+

e.0

M
, (6.2.5.1)

where the subscript 0 indicates that quantities are evaluated
at the reference point (χ0, θ0). Expanding the equilibrium
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potential yields

. = .0 + .′
0 (χ − χ0) +

1
2
.′′

0 (χ − χ0)
2 + · · · . (6.2.5.2)

The width of the orbits is obtained by solving equations (6.1.1),
(6.2.5.1) and (6.2.5.2) for (χ − χ0) to yield [79, 110]

(χ − χ0) = − I

S&0

(
v∥0 +

I

&

e.′
0

M

)
± Iωs

S&0
, (6.2.5.3)

where

ωs = σsω̂s

(
1 − ks sin2 θ

2
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, (6.2.5.4)

ω̂s =
∣∣∣∣v∥0 +
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&

e.′
0

M

∣∣∣∣ , (6.2.5.5)

σs denotes the sign of ωs , the orbit squeezing factor S is defined
as [109]

S = 1 +
I 2

&2

e.′′
0

M
, (6.2.5.6)

and the pitch angle parameter ks is

1
ks

=
[
v∥0 + Ie.′

0/(&M)
]2

4 |S| ε
(
v2

∥0 + µB0/M
) . (6.2.5.7)

For trapped particles, ks > 1 and for circulating particles,
ks < 1. Note that ks is a constant of motion. For S > 0
particles are trapped on the weak field side of the torus, and
θ0 is chosen to be 0. When S < 0 particles are trapped on the
strong field side of the torus, and θ0 = π . For |S| > 1, the
transport fluxes do not depend on the sign of S. Without loss
of generality S is chosen to be positive. It can be inferred from
the expression of ωs that the fraction of the trapped particles
is increased by a factor of

√
S to

√
εS.

Using equation (6.2.5.3), equation (6.1.1) can be recast
into [79]

χ − pζ = − I

S&0

[
(S − 1) v∥0 +

I

&0

e.′
0

M

]
+

Iωs

S&0
= Iv∥

&
.

(6.2.5.8)

Because .′′′
0 is neglected, S is constant on particle trajectories,

the difference between χ − pζ and Iωs/(S&0) is a constant
of motion as can be seen from equation (6.2.5.8). Thus,
Iωs/(S&0) plays the role of Iv∥/& in the conventional
theory. It should also be noted that squeezed orbits only
exist in (E, µ, pζ , θ) space and not in (E, µ, χ , θ) space from
single particle point of view. Indeed, in (E, µ, χ , θ), the
only sinusoidal variation in ωs , which can be shown to be
(v∥ + Ic.′/B), is associated with the equilibrium magnetic
field in v∥; and both the electrostatic potential . in v∥, and the
radial electric field .′ are constant.

Examining the definition for S, it is obvious that the effects
of squeezing are significant when ρp|d ln Er/dr| is of the order
of unity or larger. It is easier for ions to meet this requirement
for having larger poloidal gyro-radii. This requirement is
usually satisfied in the edge region of the H-mode plasmas
and inside the internal transport barriers. The typical width of
the trapped particles is, inferred from equation (6.2.5.3),

('χ)Sb ∼
√

2ε
Ivt

&0
√

S
. (6.2.5.9)

Thus, the width of the bananas is reduced by a factor of
√

S
when S > 1 [79, 109, 110]. The corresponding ion heat flux
is reduced by a factor of S3/2 [110].

6.2.5.2. Linear drift kinetic equation and its solution. Because
the width of the trapped particles is squeezed when S > 1,
the transport fluxes must be modified. The squeezed orbit is a
result of the finite width of the particle orbits. When particles
drift to a neighbouring magnetic surface, they see a different
value of the radial electric field, and thus experience a different
value of the poloidal E ×B drift if the radial electric field has
a sharp radial gradient. Larger poloidal E × B drift leads to
smaller radial width of the orbits. Thus, to describe the physics
of the effects of the orbit squeezing, the radial drift motion must
be included in the linear drift kinetic equation. The linear drift
kinetic equation equation (5.4) becomes

v∥n · ∇f1 + vd · ∇θ
∂f1

∂θ
+ vd · ∇χ

∂f1

∂χ
= C (f1)

−vd · ∇χ
∂fM

∂χ
− ev∥E

(A)
∥

∂fM

∂E
. (6.2.5.2.1)

The linear terms of the left-hand side of equation (6.2.5.2.1)
describe the particle motions. In this case, the drift motions,
especially the radial drift motion, are included to describe
orbits with finite radial width because even though |f1| < fM

but |∂f1/∂χ | ∼ |∂fM/∂χ | [111] Again, to treat the momentum
restoring terms, and the driving terms that are proportional to
P1(v∥/v)fM, f1 is expanded as
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[
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]
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and the localized function h satisfies
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(6.2.5.2.3)

Terms that are smaller by a factor of ρ/Ln are neglected to
obtain equation (6.2.5.2.3). Note that the vd · ∇θ∂h/∂θ , and
vd · ∇χ∂h/∂χ terms must be kept when parallel plasma flows
are introduced to keep the small but finite poloidal E × B
drift. The collision operator in equation (6.2.5.2.3) is the
test particle pitch angle scattering operator because ε < 1
is assumed. The poloidal E × B drift Mach number Mp,
and V∥/vt are both assumed to be less than unity. With
these assumptions, only the effects of the orbit squeezing are
included in equation (6.2.5.2.3). Because ε < 1, vd · ∇θ ≈
Ic.′B · ∇θ/B2. The equation to be solved is then
(
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(6.2.5.2.4)

Changing the independent variables from (χ , θ, E, µ) to
(pζ , θ, E, µ), the terms for the orbit dynamics reduce to
(
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Ic.′

B

)
n · ∇θ
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+ vd · ∇χ
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=
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pζ ,E,µ

,
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and equation (6.2.5.2.4) becomes
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(6.2.5.2.5)

Expanding .′ = .′
0 + .′′

0(χ − χ0), and using results in
section 6.2.5.1, yield

v∥ +
Ic.′

B
= ωs . (6.2.5.2.6)

Equation (6.2.5.2.5) can be solved by the standard subsidiary
expansion appropriate for the banana regime. The small
parameter is ν∗s = ν∗S

−3/2 < 1, where the additional S factor
reflects the increased fraction of trapped particles. The leading
order equation is
(
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(6.2.5.2.7)

and the next order equation is
(

v∥ +
Ic.′

B

)
n · ∇θ

∂h1

∂θ
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pζ ,E,µ

= C (h0) , (6.2.5.2.8)

where the subscript in h denotes the subsidiary ordering.
When ε < 1 and Mp < 1, the tips of the squeezed bananas

are still centred around v∥ ≈ 0, and the v2
∥/v

2 term on the right-
hand side of equation (6.2.5.2.7) can be neglected for being
small by a factor of εS < 1. Equation (6.2.5.2.7) can then be
integrated straightforwardly to yield

h0 = −4
DsB0ε

ω̂2
s ks

ωsfM + gs, (6.2.5.2.9)

where gs is an integration constant, and Ds = (v2/v2
t )[V

θ+
(v2/v2

t − 5/2)2qθ/(5p)]. Note that gs is also a constant
of motion. To determine gs , the constraint condition for
equation (6.2.5.2.8)

⟨C (h0)⟩t = 0, (6.2.5.2.10)

is solved. The operator ⟨·⟩t annihilates the left-hand side of
equation (6.2.5.2.8) to guarantee that h1 is periodic. This
is accomplished by using the periodic boundary condition
for circulating particles and reflection boundary condition
for trapped particles (see equations (6.2.1.4)–(6.2.1.6)). The
operator ⟨·⟩t is thus defined as ⟨·⟩t = (2π)−1

∫ 2π

0 dθ(·)/ωs

for circulating particles, and ⟨·⟩t = (2π)−1 ∑
σs

∫ θt

−θt
dθ(·)/|ωs |,

for trapped particles. Here, the turning points are defined as
ωs(±θt) = 0. Of course, the integral in ⟨·⟩t is performed
holding (pζ , E, µ) fixed. However, it is not necessary to
express the integrand in terms of (pζ , E, µ) explicitly. All
that is required is that all the quantities in the integrand
are constants on the particle trajectory. The pitch angle
scattering operator dominates the test particle operator and

is approximately C(f ) = (νD/2)∂2f /∂(v∥/v)2, when the
independent variables are (x, v, v∥/v). This simple operator
can reproduce all standard transport coefficients in the ε < 1
limit for axisymmetric tokamaks [79], because for a localized
distribution the highest derivative dominates. Physically, the
second derivative corresponds to estimating the de-correlation
time in random walk argument using τ ∼ ν−1

eff ∼ f 2
r /ν.

Changing variables to (x, v, ωs) yields

C(f ) = νD

2
v2 ∂2f

∂ω2
s

. (6.2.5.2.11)

To perform bounce averaging along the particle trajectory, the
independent variables are changed to (χ0, θ, v, ks). Neglecting
terms smaller by a factor of

√
εS < 1, equation (6.2.5.2.10)

can be made explicit to become

ks

∂

∂k

(
ks

ω̂2
s

⟨ωs⟩θ
∂gs

∂ks

)
= 0, (6.2.5.2.12)

where ⟨ωs⟩θ = (2π)−1
∫ 2π

0 dθωs for circulating particles,
and ⟨ωs⟩θ = (2π)−1

∫ θt

−θt
dθ |ωs | for trapped particles. The

relation ∂ωs/∂ks = −ω̂2
s /(2ksωs) has been used to obtain

equation (6.2.5.2.12). Because gs is odd in ωs , and
∂gs/∂θ = 0,

gs = 0, (6.2.5.2.13)

for trapped particles. For circulating particles, the solution to
equation (6.2.5.2.12) is

∂gs

∂ks

= Csω̂
2
s

ks ⟨ωs⟩θ
, (6.2.5.2.14)

where Cs is a constant. To determine Cs , imposing the
boundary condition that ∂h0/∂ωs is localized in the velocity
space yields Cs = −2[DB0ε/(ω̂

2
s ks)]fM, and

∂gs

∂ωs

= 4
DB0ε

ω̂2
s ks

ωs

⟨ωs⟩θ
fM, (6.2.5.2.15)

for circulating particles. Combining the solutions for gs for
both trapped and circulating particles yields

∂h0

∂ωs

= −4
DB0ε

ω̂2
s ks

fM

[
1 − H(1 − ks)

ωs

⟨ωs⟩θ

]
, (6.2.5.2.16)

where H is step function. Knowing ∂h0/∂ωs is adequate for
the calculations of the parallel plasma viscosity.

6.2.5.3. Parallel viscous forces. Because effects of orbit
squeezing resulting from the finite width of the particle orbits
are described in equation (6.2.5.2.4), local transport theory
exists only in the radial averaged sense [110, 111]. Physically,
local radial transport fluxes are meaningful on a scale larger
than the typical radial width of the particle orbits but smaller
than Ln. Thus, the kinetic definition for the flux surface and
radially averaged parallel viscous force is
⎛

⎝

〈
B · ∇· ↔

π
〉

〈
B · ∇·

↔
1

〉

⎞

⎠ =
〈 ∫

dvf Mv2
(

1
v2/v2

t − 5/2

)

×
(

1
2

− 3
2

v2

v2
∥

)
B · ∇B

B

〉

r

, (6.2.5.3.1)
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where the angular brackets with the subscript r denote both
flux surface and radial averages

⟨·⟩r =
∫

dχ

'χ

∫
dθ

√
g (·)

/∫
dθ

√
g, (6.2.5.3.2)

and 'χ is an interval in χ that is larger than the squeezed
banana width but smaller than Ln. Using equation (6.2.5.2.5),
⟨B · ∇· ↔

π ⟩ can be expressed in terms of the collision operator
to obtain
〈
B · ∇· ↔

π
〉
= −

〈 ∫
2πv dv

∫
dks

ω̂2

2kω

Mv2
t

2

× hC(h)[
V θ − 2

5L
(3/2)
1

qθ

p

]
fM

〉

r

. (6.2.5.3.3)

Integration over poloidal angle to annihilate ωs∂h0/∂θ |E,µ,pζ

has been made to obtain equation (6.2.5.3.3), which
is quadratic in h that is related to the local rate of
entropy production. This is made possible by the radial
average. Without the radial average, the quadratic form
in equation (6.2.5.3.3) cannot be obtained. In the case
of the conventional neoclassical transport theory, a similar
quadratic form is derived without the radial average because
particle drifts that describe the finite width of the orbits in
equation (6.2.5.2.3) are not required in the theory. However,
for squeezed orbits, those drifts are indispensable in the theory.
The radial average allows the average to be performed in
(E, µ, pζ , θ) space. The averaging process illustrated here
is valid for the finite orbit width induced transport theory.
Note that the quadratic in h in equation (6.2.5.3.3) corresponds
to the ('x)2 in the random walk argument. Integrating by
parts in ks and substituting ∂h0/∂ωs in equation (6.2.5.2.16)
in the resultant expression yield the viscous coefficient µj , for
j = 1 − 3 [110]:

µj = 2

√
2
π

Ips

√
ε

S3/2

∫ ∞

0
dxνDx4

(
x2 − 5

2

)j−1

e−x2
,

(6.2.5.3.4)

where Ips is a pitch angle integral defined as

Ips =
∫ ∞

0

dks

k
3/2
s

(〈
ω̂s

|ωs |

〉

θ

− H (1 − ks)
ω̂s

⟨|ωs |⟩θ

)
≈ 1.38.

(6.2.5.3.5)

The viscous coefficients are reduced by a factor of S3/2,
however, with the same numerical number, when compared
with the large aspect ratio limit of µj in equation (6.2.1.11).
The integration in ks corresponds to the fraction of the trapped
particles in the random walk argument. In the process of
calculating the viscous coefficients for the effects of orbit
squeezing, the one to one correspondence between the analytic
calculations and random walk argument is demonstrated. The
same correspondence can be made for most of the particle and
heat flux calculations.

6.2.5.4. Transport fluxes. Once parallel viscous forces are
known, transport fluxes follow naturally from the solutions
of the parallel components of the momentum and heat flux
balance equations, as shown in section 6.2.1, using the flux–
force relation.

The four linearly independent equations to be solved are
〈
B · ∇· ↔

π i

〉
− Niei

〈
BE

(A)
∥

〉
= ⟨BF1i⟩ , (6.2.5.4.1)

〈
B · ∇· ↔

π e

〉
− Neee

〈
BE

(A)
∥

〉
= ⟨BF1e⟩ , (6.2.5.4.2)

〈
B · ∇·

↔
1i

〉
= ⟨BF2i⟩ , (6.2.5.4.3)

and 〈
B · ∇·

↔
1e

〉
= ⟨BF2e⟩ . (6.2.5.4.4)

The subscripts i and e are restored to indicate ion and electron
quantities, and the subscript r that indicates the radial average
is suppressed for simplicity.

6.2.5.4.1 Moderate squeezing. When the value of the orbit
squeezing factor S is moderate so that ion viscous forces
are still larger than electron viscous forces, the coupled
equations (6.2.5.4.1)–(6.2.5.4.4) can be solved approximately
by exploring differences in the magnitudes of these viscous
forces.

Examining equations (6.2.5.4.2)–(6.2.5.4.4) it is noted
that, when ε < 1, friction forces are larger than the viscous
forces by at least a factor of

√
ε. Thus, the leading order

solutions to equations (6.2.5.4.2) and (6.2.5.4.4) are

q∥i ≈ 0, (6.2.5.4.1.1)

q∥e ≈ 0, (6.2.5.4.1.2)

and
V∥i ≈ V∥e. (6.2.5.4.1.3)

The result in equation (6.2.5.4.1.3) is well known [6, 7]. It
implies that electrons and ions have common parallel flow in
large aspect ratio tokamaks, as discussed in section 5.

To determine ion parallel flow or common flow, summing
equations (6.2.5.4.1) and (6.2.5.4.2) yields equation (6.2.1.26),
i.e. ⟨B · ∇· ↔

π i⟩+⟨B · ∇· ↔
π e⟩ = 0. For simplicity, it is assumed

that even though the magnitudes of the ion viscous coefficients
are reduced as a result of orbit squeezing, they are still much
larger than those of the electron viscous coefficients. With
this assumption, the ion parallel flow is determined by solving
⟨B · ∇· ↔

π i⟩ ≈ 0, and the result is,

V θ
i = −µ2i

µ1i

2
5

qθ
i

pi
, (6.2.5.4.1.4)

or explicitly, after using equations (3.2.12) and (3.2.20),
〈
V∥B

〉
〈
B2

〉 +
IcTi

ei
〈
B2

〉 ei.
′

Ti
= − IcTi

ei
〈
B2

〉
(

p′
i

pi
+

µ2i

µ1i

T ′
i

Ti

)
,

(6.2.5.4.1.5)

where µ2i/µ1i = −1.17. The relation between the parallel
mass flow and the radial electric field in equation (6.2.5.4.1.5)
is the same as that in the conventional theory [112]. Even
though the individual viscous coefficient is modified by the
orbit squeezing factor S, the ratio of µ2i/µ1i is not modified.
Thus, the orbit squeezing does not modify the relation between
the ion parallel flow and the radial electric field when the
squeezing is moderate in large aspect ratio tokamaks [112].
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For the approximation that leads to results in equa-
tions (6.2.5.4.1.1)–(6.2.5.4.1.3) and (6.2.5.4.1.5), it is con-
venient to evaluate the heat flux using the heat viscous
force in equation (4.1.1.13). Substituting results in equa-
tions (6.2.5.4.1.1) and (6.2.5.4.1.4) into heat viscous force
yields

q
bp
i

Ti
= −NiMi

c2

e2
i

I 2
〈
B2

〉µ3i

(
1 −

µ2
2i

µ1iµ3i

)
dTi

dχ
. (6.2.5.4.1.6)

When S = 1, the ion heat flux in the conventional theory is
reproduced. Note that the ratio µ2

2i/(µ1iµ3i) is not affected by
S. The orbit squeezing effects on the ion heat flux and ion heat
conductivity appear in the coefficient µ3i, which is reduced
by a factor of S3/2 when S > 1 [110]. The scaling can be
understood in terms of the random walk argument using the
facts that the orbit width is reduced by a factor of

√
S in χ

and the fraction of trapped particles increases by a factor of√
S [110]. The S−3/2 scaling in the ion heat conductivity is

also observed in a Monte Carlo simulation [113].
Electron transport fluxes are not modified because the

ratios of the ion viscous coefficients remain the same as
those in the conventional theory. The bootstrap current is
driven by the parallel viscous forces and is [7], by solving
equations (6.2.5.4.2) and (6.2.5.4.4),

〈
J∥bB

〉
= σs

Nee

(〈
B · ∇· ↔

π e

〉
+

le
12

le
22

〈
B · ∇·

↔
1e

〉)
,

(6.2.5.4.1.7)

where Spitzer conductivity σs = (Nee)
2le

22/[le
11l

e
22 − (le

12)
2],

and e = |ee|. The ion contribution to ⟨J∥bB⟩ appears in V θ
e by

expressing it as

V θ
e =

(
V θ

e − V θ
i

)
+ V θ

i . (6.2.5.4.1.8)

The ⟨B(V∥i − V∥e)⟩ term in (V θ
e − V θ

i ) represents the
modification on the electric conductivity in tokamaks resulting
from the existence of trapped particles. Because ion dynamics
do not modify it in the approximation adopted here, the effects
of orbit squeezing do not modify the electric conductivity in
the conventional neoclassical theory. Evaluating the viscous
forces in equation (6.2.5.4.1.7) yields the bootstrap current

〈
J∥bB

〉
= −σs

Meµ1e

Nee2
Ic

[(
1 +

le
12

le
22

µ2e

µ1e

) (
P ′ +

µ2i

µ1i

1
Z

NeT
′

i

)

+ NeT
′

e

(
µ2e

µ1e
+

le
12

le
22

µ3e

µ1e

)]
, (6.2.5.4.1.9)

where P ′ = P ′
e + P ′

i , and µje for j =1–3 is the same as
the standard viscous coefficients because orbit squeezing is
ineffective for electrons. From equation (6.2.5.4.1.9), it is
clear that the bootstrap current is not affected by the orbit
squeezing because the ratio µ2i/µ1i remains unchanged in the
approximation adopted here. Thus, the Ware pinch flux is not
modified either.

The ambipolar electron particle flux and the electron heat
flux can also be calculated by evaluating the viscous force
in the flux–force relation. Because the ion parallel flow
is determined by neglecting the electron viscous force, the
electron particle flux in equation (4.1.1.5) is the ambipolar
particle flux, i.e. ee⟨#e · ∇χ⟩ = −ei⟨#i · ∇χ⟩ within the
approximation adopted here. The ⟨B(V∥i − V∥e)⟩ term in

(V θ
e − V θ

i ) now represents the Ware pinch particle flux. The
ambipolar particle flux is then

#bp
e = −NeMe

c2

e2

I 2
〈
B2

〉µ1e

(
P ′

Ne
+

µ2e

µ1e
T ′

e +
µ2i

µ1i

1
Z

T ′
i

)
.

(6.2.5.4.1.10)

Using the results for plasma flows, the electron heat flux can
be evaluated to obtain

q
bp
e

Te
= −NeMe

c2

e2
i

I 2
〈
B2

〉µ2e

(
P ′

Ne
+

µ3e

µ2e
T ′

e +
µ2i

µ1i

1
Z

T ′
i

)
.

(6.2.5.4.1.11)

Both the ambipolar electron particle flux and the electron heat
flux are not affected by the orbit squeezing because the ratio
µ2i/µ1i remains unchanged.

Thus, in the moderate squeezing limit, only the ion heat
flux is modified by squeezed ion orbits. The rest of the transport
fluxes are not modified [110, 112].

It is important to note that in evaluating bootstrap current,
the ion poloidal flow is used in evaluating the electron
viscous forces because equation (6.2.5.4.1.8) is employed in
the process. Since the bootstrap current is neoclassical in
tokamaks, this implies that the ion poloidal flow must be
neoclassical or very close to neoclassical. This important
relation between the ion poloidal flow and the bootstrap current
is transparent in the moment approach.

6.2.5.4.2. Strong squeezing. When the squeezing factor S is
large enough so that the ion and electron viscous coefficients
are comparable, the electron viscous force also contributes to
the momentum relaxation [114]. In this case, all transport
coefficients are modified except the effect of the trapped
electrons on the electric conductivity [114].

Because |µje| < νe, and |µj i| < νi, the conclusions that
V∥i ≈ V∥e, q∥e ≈ 0, and q∥i ≈ 0 are still valid. However, since
NiMi|µj i| ∼ NeMe|µje|, the electron viscous force cannot be
neglected in solving equation (6.2.5.4.1) for V θ

i . In this case,
V θ

i becomes

V θ
i = − µ2i

µ1i + NeMe
NiMi

µ1e

IcT ′
i

ei
〈
B2

〉 +
µ2e

µ1e + NiMi
NeMe

µ1i

IcT ′
e

e
〈
B2

〉

+
µ1e

µ1e + NiMi
NeMe

µ1i

[
IcP ′

Nee
〈
B2

〉

+
(

1 +
le
12

le
22

µ2e

µ1e

) σs

〈
E

(A)
∥ B

〉

Nee
〈
B2

〉
]
. (6.2.5.4.2.1)

The ⟨E(A)
∥ B⟩ term is obtained by approximating ⟨J∥B⟩ =

σs⟨E(A)
∥ B⟩ and (2/5)⟨q∥eB⟩/pe = −(le

12/le
22)σs⟨E(A)

∥ B⟩/(Nee),
which are the solutions to equations (6.2.5.4.2) and (6.2.5.4.4)
when the electron viscous forces are suppressed. Thus, be-
sides the ion temperature gradient, electron temperature gra-
dient, and total pressure gradient, the inductive electric field
contributes to the ion poloidal flow. These additional contri-
butions become important only when ion and electron viscous
forces become comparable. The V θ

i in equation (6.2.5.4.2.1)
is a simplified version of that shown in [114] by neglecting
higher order viscous terms.
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The bootstrap current becomes

〈
J∥bB

〉
= −σs

Meµ1e

Nee2
Ic

[ (
1 +

le
12

le
22

µ2e

µ1e

) (

P ′ −
Nee

〈
B2

〉

Ic
V θ

i

)

+NeT
′

e

(
µ2e

µ1e
+

le
12

le
22

µ3e

µ1e

)]
, (6.2.5.4.2.2)

where V θ
i is made explicit to emphasize the role it plays. It

is also clear that the neoclassical bootstrap current implies the
neoclassical poloidal flow as discussed in section 6.2.5.4.1. In
the limit where NiMi|µj i| < NeMe|µje|, the P ′ in V θ

i tends
to cancel the explicit P ′ dependence in equation (6.2.5.4.2.2),
and the magnitude of the bootstrap current can be reduced as
a result. This phenomenon was first discussed in [114] and
can be used to control the bootstrap current in the pedestal
region in H-mode plasmas and, thus, edge localized modes
(ELMs) [115]. Note that the inductive electric field also
contributes to the bootstrap current through ion poloidal flow
when NiMiµj i ∼ NeMeµje. Thus, in the strong squeezing
limit, the bootstrap current is fundamentally different from
that in the conventional theory.

The ambipolar particle flux is

#bp
e = −Me

I 2c2

e2
〈
B2

〉µ1e

[
P ′ −

Nee
〈
B2

〉

Ic
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NeT
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e

+
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1 +
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le
22

µ2e

µ1e

) σs

〈
BE

(A)
∥

〉

Ic

]
, (6.2.5.4.2.3)

and the electron heat flux is
q

bp
e

Te
= −Me

I 2c2

e2
〈
B2

〉µ2e

[
P ′ −

Nee
〈
B2

〉

Ic
V θ

i +
µ3e

µ2e
NeT
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e

+
(

1 +
le
12

le
22

µ3e

µ2e

) σs

〈
BE

(A)
∥

〉

Ic

]
, (6.2.5.4.2.4)

where Ware pinch fluxes are also displayed. The Onsager
symmetry between the bootstrap current and the Ware
pinch is obvious by examining coefficients in front of the
thermodynamic forces.

The effect of trapped particles on the electric conductivity
is not modified by the strong squeezing as long as the electrons
are not squeezed significantly. However, if the bootstrap
current driven by the inductive electric field is viewed as
part of the ohmic current, the electric conductivity is also
modified through the ion poloidal flow even though electrons
are not squeezed. In that case, the inductive electric field
driven current should be removed from the bootstrap current
expression to avoid double counting.

The ion heat flux is, using the flux force relation in
equation (4.1.1.13),

q
bp
i

Ti
= −NiMiTi

c2

e2
i

I 2
〈
B2

〉
(

µ2i
ei

〈
B2

〉

IcTi
V θ

i + µ3i
T ′

i

Ti

)

.

(6.2.5.4.2.5)

6.2.5.5. Effects of finite width of banana orbits. When the
orbit squeezing factor S = 1, the theory for orbit squeezing
becomes a theory for the effects of finite banana width. The
results of the theory indicate that the finite banana width has
no effect on the transport fluxes in large aspect ratio tokamaks
[116]. The effects have been studied using numerical codes
[117, 118]. The same conclusion is reached in the numerical

calculations [117].

6.3. Potato orbit induced transport fluxes in the vicinity of the
magnetic axis

In the vicinity of the magnetic axis, the potato width scales
differently from the banana width. The transport fluxes must
be different from those away from the magnetic axis discussed
in section 6.2.1. The analysis of the drift kinetic equation for
potato orbits is similar to that for the squeezed banana orbits
because both the poloidal and radial drifts must be included to
describe the potato orbits in the near axis region.

6.3.1. Perturbed distribution for potato orbits. The linear
drift kinetic equation to be solved for potato orbits near the
magnetic axis is the same as that for squeezed banana orbits, i.e.
equation (6.2.5.2.3). Finite width of the orbits must be taken
into account in the transport theory. However, the width of the
orbits must be smaller than Ln to facilitate a local transport
analysis.

Similar to the method used for calculating the effects of
orbit squeezing, the poloidal angle dependence in the poloidal
particle speedωθ in equation (6.1.2.3) needs to be made explicit
to facilitate the solution to equation (6.2.5.2.3). Assuming
ε < 1 and using ε = Cχ

√
χ , ωθ becomes [94], using

equations (6.1.2.1), (6.1.2.2), and χ0 = 0,

ωθ = ω̂θ

(
4T 2

p + σp

)
, (6.3.1.1)

where ω̂θ = (3/4)(&0/I)x̂2k
1/3
p , and Tp is one of the

following functions: cos(β/3), sin(π/6±β/3), sinh(β/3) and
cosh(β/3). A typical potato has the poloidal speed of the
order of ωθ ∼ vtfp by estimating kp ∼1, where the fraction of
potatoes fp is given in equation (6.2.1.10).

In the potato regime, where ν∗p = ν[vtf
3
p /(Rq)]−1 < 1,

equation (6.2.5.2.3) is solved by a subsidiary expansion
procedure, i.e. h = h0 + h1 + . . ., using the small parameter
ν∗p. Employing the same procedure that solves the linear drift
kinetic equation for the squeezed orbits yields

∂h0

∂ωθ

= −3
4

I

&0
Dp

(
1 −

|ωθ |
⟨|ωθ |⟩θ

Hp

)
, (6.3.1.2)

where Dp = (2/v2
t )(&0B0/I)fM[V θ + (v2/v2

t − 5/2)2qθ/
(5p)], Hp = 1 for circulating particles, and Hp = 0 for
trapped particles. To calculate parallel viscous forces, knowing
∂h0/∂ωθ is adequate.

6.3.2. Parallel viscous forces. The parallel viscous forces
accounting for the physics of potato orbits are calculated from
the definitions in equations (4.1.4.1) and (4.1.4.2). Because
potato orbits have finite width, the radial average in addition
to the flux surface average must be performed over parallel
viscous forces to obtain the local transport fluxes valid over a
region larger than the width of potatoes.

The viscous coefficients µj for j = 1–3 are calculated to
be [119], using equation (6.3.1.2),

µj = 1.12
Ipp√
π

(
IvtC

2
χ

&0

)1/3

2
∫ ∞

0
dxx13/3

(
x2 − 5

2

)j−1

×νDe−x2
, (6.3.2.1)

where the constant Ipp = 2.77 is a result of the pitch angle
integral over the kp space [94]. It should be noted that µj

scales as the fraction of trapped potatoes fp.
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6.3.3. Effects of orbit squeezing on potato orbits. When
the potato width is comparable to Ln, the effects of orbit
squeezing become important. The squeezing makes the real
squeezed potato width smaller than the Ln, and facilitates a
local transport analysis [116].

The analysis for squeezed potato orbits is the same as that
for squeezed banana orbits. The orbit equation for the squeezed
potato orbits that pass through the magnetic axis is [119]

Sx̄3 + 2
(

Iv∥0

&0
+

I 2e.′
0

M&2
0

)
x̄ − 2I 2C1

&2
0

(
v2

∥0 + µB0
)

cos θ = 0,

(6.3.3.1)

where the squeezing factor S is the same as that for squeezed
banana orbits defined in equation (6.2.5.6). The orbit
trajectories for potato orbits in equations (6.1.2.4)–(6.1.2.8)
can be used for squeezed potato orbits when the quantities σp,
kp and x̂ in those equations are redefined as

σp = sgn
(

v∥0 + Ic.′
0/B

S&0

)
, (6.3.3.2)

kp = 8
27

(
I

|S| &0

)3
∣∣v∥0 + Ic.′

0/B0
∣∣3

(
I 2Cχ/|S| &2

0

)2
(
v2

∥0 + µB0

)2 ,

(6.3.3.3)

and

x̂ =
[(

I 2Cχ/|S| &2
0

) (
v2

∥0 + µB0
)]1/3

. (6.3.3.4)

From equation (6.3.3.4), it is obvious that the width of the
potato orbits is reduced by a factor of |S|−2/3 in χ . For |S| > 1,
the local transport analysis is valid even when the width of un-
squeezed potato orbits is comparable to Ln. The fraction of
trapped potatoes increases by a factor of |S|1/3, which can be
inferred from the modified parameter kp in equation (6.3.3.3).
The viscous coefficients are reduced by a factor of |S|−5/3, and
become [120]

µj = 1.12
2Ipp√
π |S|5/3

(
IvtC

2
χ

&0

)1/3

×
∫ ∞

0
dxx13/3

(
x2 − 5

2

)j−1

νDe−x2
. (6.3.3.5)

As in the case for squeezed bananas, orbit squeezing does not
affect the electron potato orbits significantly.

It should be noted that for a parabolic profile for the radial
electric field in local radius r , it has a linear profile in poloidal
flux χ . For this profile, .′′ in the squeezing factor S is finite.
Thus, orbit squeezing is an important mechanism to make
local transport analysis valid in the vicinity of the magnetic
axis. As pointed out in [116], whenever the width of the orbit
is comparable to Ln, the effects of orbit squeezing become
important to make the real width of the orbits smaller than Ln.

6.3.4. Transport fluxes in the vicinity of the magnetic axis The
transport fluxes can again be obtained by solving the parallel
force balance equations and utilizing the flux–force relation. In
the large aspect ratio limit, the formal expressions for transport
fluxes in terms of the viscous coefficients are the same as those
in section 6.2.5.4. Only the detailed expressions for the viscous
coefficients differ.

For the moderate squeezing case, the ion poloidal flow in
the near magnetic axis region is
〈
V∥B

〉
〈
B2

〉 +
IcTi

ei
〈
B2

〉 ei.
′

Ti
= − IcTi

ei
〈
B2

〉
(

p′
i

pi
+

µ2i

µ1i

T ′
i

Ti

)
, (6.3.4.1)

where µ2i/µ1i = −1.021 for the potato regime instead of
−1.17 for the banana regime. The ion heat flux is

q
bp
i

Ti
= −0.8νii

(
Ivti

&i

)7/3 ( q

δIR

)1/3
S−5/3Ni

T ′
i

Ti
, (6.3.4.2)

which can be understood in terms of the random walk argument
in χ using the fraction of trapped potatoes, the width of potato
orbits, and νeff ∼ ν/f 2

p . For typical tokamaks, the width of
an ion potato is about 15% of the minor radius. Thus, local
ion transport theory is meaningful on a length scale longer
than this width, and ion transport fluxes are averaged over this
length scale as well. The equilibrium profiles must be relatively
flat on this length scale because ion potato orbits smooth out
the profiles. When converting q

bp
i in equation (6.3.4.2) into

cylindrical coordinates, the radius r is only meaningful in the
radially averaged sense. Thus, r cannot be set to 0.

The transport fluxes for potato orbits of alpha particles
have also been calculated in [57]. The results are to replace the
fraction of bananas in the transport theory for alpha particles
away from the axis [121] by the fraction of potatoes just as
discussed here.

The electric conductivity is also modified by the
finite value of fp. The formal expression for σeff in
equation (6.2.1.36) is still valid when the viscous coefficients
for potato orbits are used. The potato bootstrap current
is proportional to fp of electrons as can be seen from
equation (6.2.5.4.1.9), and does not vanish on the magnetic
axis. The same scaling for the potato bootstrap current is also
obtained in [122]. The existence of the bootstrap current on
the magnetic axis provides a possibility to have steady-state
100% bootstrap current tokamak equilibria without the need to
have external current drive [58, 59]. The potato orbits of alpha
particles can also drive a bootstrap current on the magnetic axis
[57, 58]. The transport fluxes for electron potatoes are more

local in radius than those for ion potatoes. Thus, electron
potato transport fluxes easily satisfy the requirement for the
local transport theory.

6.3.5. Intrinsic steady-state tokamak: 100% bootstrap current
equilibria. Conventionally, tokamaks are not intrinsically
steady state devices because the poloidal magnetic field is
created by the plasma current, which, in turn, is driven by the
inductive electric field E(A). This is one of the main criticisms
for tokamak fusion power plants. To maintain a steady-state
tokamak discharge, plasma current must be driven externally
using either neutral particle beams or radio frequency waves
to deliver momentum to electrons or utilizing a self-generated
bootstrap current. However, because bootstrap current in the
standard theory vanishes on the magnetic axis, a seed current
is needed to maintain plasma equilibrium [24, 123]. Because
the bootstrap current driven by potatoes does not vanish on
the magnetic axis as shown in section 6.3.4, the steady-state
tokamak equilibrium can be sustained with bootstrap current
alone. Thus, tokamaks are intrinsically steady-state devices
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Figure 11. Flux surface grid of a steady-state tokamak equilibrium
for A = 1.4, δ = 3.0 and κ = 0.522.

Figure 12. Safety factor q, and pressure gradient P ′ profiles as a
function of normalized radius

√
χ .

without the need of the external current drive. The steady-
state tokamak equilibrium can also be maintained by the potato
bootstrap current from fusion-born alpha particles [58].

Tokamak equilibria with 100% bootstrap current are
obtained by solving the Grad–Shafranov equation [48, 49]
including the bootstrap current induced from the potato orbits
[59]. The function I and I ′ in the Grad–Shafranov equation

can be calculated from [124]

〈
J∥bB

〉
= −IcP ′ −

c
〈
B2

〉

4π
I ′. (6.3.5.1)

An example for the 100% bootstrap current equilibrium which
is stable against ballooning modes is shown in figures 11–13
for a tokamak with A = 1.4, δ = 3.0, and triangularity
κ = 0.522 [59].

The equilibrium has a reversed q profile as shown in
figure 12, which may have better plasma confinement than

Figure 13. Pressure and toroidal current density profiles as a
function of the major radius R.

the monotonically increasing q profile. Thus, a tokamak with
100% bootstrap current may have more than one beneficial
trait.

From the economic point of view, it is attractive to operate
thermonuclear fusion power plants in a steady state. This
will relax the requirements for the plasma facing materials.
Issues related to steady-state tokamak fusion reactors have
been reviewed in [125].

6.3.6. Potato plateau regime. The resonance in the plateau
regime in the vicinity of the magnetic axis does not occur
at v∥ = 0 anymore; instead it occurs at ωθ = 0, as
can be seen from equation (6.2.5.2.3), which are also the
turning points of the potato orbits. However, this shift in
the resonance position in the phase space does not change
the transport fluxes in the plateau regime because fp <

1. The reason is that v2
∥ < v2 in the driving terms

of equation (6.2.5.2.3) by a factor of f 2
p < 1. Thus,

the parallel viscous forces in the plateau regime away
from the magnetic axis are still valid in the near axis
region [126].

However, for the sake of practical applications, because
in the potato regime the viscous forces are both flux surface
and radially averaged, it might be convenient to radially
average the potato plateau viscous forces. This has been done
in [127] using the orbit trajectories in section 6.1.2.

6.4. Non-linear plasma viscosity

In the edge region of H-mode plasmas and in the core region
inside transport barriers, the poloidal E × B Mach number
Mp can be of the order of unity or higher. The plasma viscous
forces become a non-linear function of Mp [128]. The poloidal
momentum equation can have bifurcated solution for the radial
electric field that leads to turbulence suppression and thus
improved plasma confinement [15, 129]. Here, it should be
emphasized that Mp ∼ 1 does not necessarily imply that the
toroidal rotation speed is sonic. The more relevant physics to
the edge region of H-mode plasmas is that the poloidal flow is
sonic if the diamagnetic flow speed is not adequate to cancel
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the poloidal E × B flow. In that case, a poloidal shock can
form [130–132]. However, usually the poloidal diamagnetic
flow almost cancels the poloidal E × B flow to make the real
poloidal speed subsonic.

As can be seen from the method developed to solve the
drift kinetic equation, the way to treat the momentum restoring
terms in Coulomb collision operator, and the driving terms that
are proportional to P1 is to introduce parallel flows. This goal
can also be accomplished by using the drift kinetic equation
derived with the assumption of the large mass flow [82].
However, the flow velocity is interpreted to be the velocity
for each species [83]. One of the advantages of using the drift
kinetic equation with the large mass flow is that the parallel
flow with arbitrary geometric angle dependence is treated
rigorously in the kinematic part of the drift kinetic equation.
Compressible plasma flow, i.e. ∇ · V ̸=0, can also be treated
using this approach [83]. This feature for compressible flow is
not needed for sonic Mp but the real mass flow is subsonic. This
condition can be satisfied when the poloidal E×B flow cancels
approximately the poloidal diamagnetic flow, a phenomenon
often observed in tokamak experiments. Thus, even though
the drift kinetic equation with large mass flow is adopted here,
the gyro-radius ordering is also used so that the equation is
valid for sonic Mp but subsonic mass flow.

The drift kinetic equation with a large mass flow is [82]

∂f

∂t
+

(
v∥n + vd + V

)
· ∇f + ˙̄w

∂f

∂ ˙̄w
= C(f ). (6.4.1)

The independent variables in equation (6.4.1) are (x, t, µ, w̄),
where w̄ = v2/2. Components of particle velocity v∥, and v⊥
together with v are all defined relative to the mass flow velocity
V for each species. The drift velocity vd is defined as [82]

vd = FHW × n

&
+

µBn

M&

(
J∥

B

)
+

n

&

×
[
µ∇B/M + v∥n · ∇V + V · ∇

(
v∥n

)
+ v2

∥n · ∇n

]
,

(6.4.2)

where the force FHW is

FHW = e

M

(
E +

1
c
V × B

)
− ∂V

∂t
− V · ∇V . (6.4.3)

The approximate expression for ˙̄w is [82]

˙̄w = FHW · v∥n − µB

M
∇ · V −

(
v2

∥ − µB

M

) (
v2

∥ − µB
)
n

·n · ∇V + vd · FHW. (6.4.4)

The full expression for ˙̄w is tedious and only first-order (in
gyro-radius ordering) terms are displayed. For the case where
the flow velocity V is first order, the neglected terms are second
order.

To solve equation (6.4.1), the solution is expressed as
[128]

f = fM − 2v∥

v2
t

2
5

q∥

p
L

(3/2)
1 fM + h, (6.4.5)

where fM is the shifted Maxwellian distribution because
particle velocity v is defined relative to the flow velocity
V . Note that the (2v∥V∥/v

2
t )fM term used in treating the

momentum restoring terms and the driving terms proportional
to P1 in the standard drift kinetic equation is already included

in f through the shifted Maxwellian fM. The role of the q∥
term is the same as before. The q∥ term is assumed to be the
first order in the gyro-radius ordering in equation (6.4.5).

Substituting equation (6.4.5) into equation (6.4.1) yields
an equation for h, for incompressible flows,
[
(v∥ + V∥)n + VE + vd

]
· ∇h − C(h)

= 2
v2

v2
t

(
1
2

− 3
2

v2
∥

v2
t

)

fM

×
[

V · ∇B

B
+

(
v2

v2
t

− 5
2

)
q · ∇B

B

]
, (6.4.6)

where VE = cE × B/B2 is the E×B drift velocity. To obtain
equation (6.4.6), the steady-state density and temperature
evolution equations, i.e. V · ∇N = 0, and V · ∇T = 0, in
addition to an approximate expression FHW ≈ ∇p/(NM),
have been used. Equation (6.4.6) is valid for subsonic
incompressible flow. For compressible flows, both ∇ · V and
∇ · q also contribute to the right-hand side of equation (6.4.6).
These compressible terms dominate when shocks form in sonic
rotating plasmas [130–133].

The time-dependent ∂h/∂t term can also be added to
the left-hand side of equation (6.4.6). In that case, time-
dependent density and temperature evolution equations must
be used. However, this does not change the right-hand side of
equation (6.4.6). The ∂h/∂t term has been used in the drift
kinetic equation to develop the theory for the time-dependent
plasma viscosity to calculate the poloidal flow damping rate
[13, 72, 133].

The key difference between equations (6.4.6) and
(6.2.5.2.3) is the appearance of the V∥n · ∇h term in the
kinetic part. Thus, only the combination of VE and V∥n
appears in equation (6.4.6) and in the solution for tori that
possess symmetry. The flux surface averaged viscous forces
determine this combined quantity and, subsequently, all the
transport fluxes as a consequence. Without the V∥n·∇h term in
equation (6.4.6), the parallel flow speed and the component of
VE appear as two independent entities even in tori that possess
symmetry. The averaged parallel force balance equations alone
are not adequate to determine plasma flows and transport fluxes
if that is the case. In addition, when V∥n+VE is in the toroidal
direction in axisymmetric tokamaks, the resonant shift of the
tips of the banana particles does not occur, as evidenced in
[134]. Thus, to have proper physics when VE is important,

the parallel flow velocity must be included in the drift kinetic
equation. This important physics is often ignored, however.

6.4.1. Plateau–Pfirsch–Schlüter regime. In the ε < 1
limit, the ∇B and curvature drifts can be neglected and
equation (6.4.6) reduces to

[
(v∥ + V∥)n + VE

]
· ∇h − C(h) = 2

v2

v2
t

(
1
2

− 3
2

v2
∥

v2

)

fM

×
[

V · ∇B

B
+

2
5

(
v2

v2
t

− 5
2

)
q · ∇B

pB

]
. (6.4.1.1)

In the plateau–Pfirsch–Schlüter regime, equation (6.4.1.1) can
be solved using a Krook model to approximate the collision
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operator, i.e., C(h) = −νT h. The viscous coefficients
are [135]

µj = vt

Rq

ε2

2
√

π
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0
dxx5e−x2

(
x2 − 5

2

)j−1

×
∫ 1

−1
dy

(
1 − 3y2)2

(
vB · ∇θ

B

)
R10, (6.4.1.2)

where R10 = νT /(ω2
θa + ν2

T ) and ωθa = (v∥ + V∥)B · ∇θ/B +
VE · ∇θ .

In the plateau regime where νT approaches 0, the resonant
function R10 reduces to a delta function. The resonant
singularity, however, is no longer at v∥ = 0 as in the
conventional theory. Instead, it is at

v∥ = −V∥ − B
VE · ∇θ

B · ∇θ
= −V∥ − Ic.′

B
. (6.4.1.3)

Because |v∥/v| < 1, the resonance condition in
equation (6.4.1.3) can be satisfied only when

v

vt
>

∣∣∣∣
V∥

vt
+

Ic.′

Bvt

∣∣∣∣ =
∣∣∣∣
V∥

vt
− cEr

Bpvt

∣∣∣∣ . (6.4.1.4)

Since the equilibrium distribution function is a Maxwellian, the
number of particles that can satisfy the resonance condition
diminishes exponentially, and the viscous coefficients in
equation (6.4.1.2) decrease exponentially as |Up,m| =
|V∥/vt − cEr/(Bpvt)| increases. This exponentially decay
dependence is the characteristic behaviour for the resonant
transport when the radial electric field becomes important to the
particle dynamics. The viscous coefficients scale linearly with
Up,m when |Up,m| < 1, reach an extreme when |Up,m| is of the
order of unity, and decrease exponentially when |Up,m| > 1.

In the Pfirsch–Schlüter regime, the resonant function can
have two distinct scalings. One is when νT > |ωθa| and
R10 ∼ ν−1

T . This reproduces the standard viscous forces
in the Pfirsch–Schlüter regime shown in section 6.2.3. The
other limit is when |ωθa| > νT , and R10 ∼ νT /ω2

θa . The
viscous forces in equation (6.4.1.2) decrease as 1/|Up,m| in this
limit. This algebraic decay dependence is the characteristic
behaviour for the non-resonant transport.

The integrals in the viscous coefficients µj properly
describe the transitions from various limits in the plateau–
Pfirsch–Schlüter regime. It is important to note that plasma
viscous forces are a non-linear function of Up,m. When |Up,m|
increases, plasma viscous forces decrease either exponentially
for the resonant transport mechanism or algebraically for the
non-resonant transport mechanism.

6.4.2. Banana regime. The non-linear dependence of the
viscous forces on Up,m also exists in the banana regime [136].
In the edge region of H-mode plasmas, the effects of orbit
squeezing are also important. Thus, it is better to combine
these two pieces of physics in the theory for the non-linear
plasma viscosity in the banana regime.

To have the non-linear plasma viscosity dependence on
Up,m for axisymmetric tokamaks, the theory for squeezed
orbits must also include the parallel mass flow V∥ in addition
to the customarily included poloidal E × B drift, as shown
in [136]. Using this generalized theory for the squeezed orbits
and the method in solving the drift kinetic equation developed

for the effects of orbit squeezing yield the viscous coefficients
for the non-linear plasma viscosity in the banana regime for
large aspect ratio tokamaks, for j = 1–3, [79, 136]
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where Ipn = 1.38, and

Ff =
(

1 −
U 2

p,m

x2

)

+
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νD

U 2
p,m

x2
. (6.4.2.2)

The factor Ff results from the energy dependence in the
resonant condition that makes the energy scattering operator
important in the de-correlation of the squeezed banana orbits.
The viscous coefficients in the banana regime have a similar
dependence on Up,m as those in the plateau regime. They
decrease exponentially as e−U 2

p,m when |Up,m| is larger than
unity.

6.4.3. Approximate analytic expressions for non-linear viscous
coefficients and electrode-induced bifurcation. To facilitate
modelling of the bootstrap current and the neoclassical
transport processes in the pedestal region it is convenient to
have approximate analytic expressions for viscous coefficients
that join asymptotic limits in the banana and plateau–Pfirsch–
Schlüter regimes that include effects of orbit squeezing
and finite values of |Up,m|. This can be accomplished by
using rational approximation [6, 7] that reproduces asymptotic
limits, and the results are [115]
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for j = 1–3, where
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)2 + [νT /(xωt)]2
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and ωt = vtB · ∇θ/B. The first term on the right-hand side
of equation (6.4.3.1) represents the resonant contribution in
the banana–plateau regime and the non-resonant part from the
Pfirsch–Schlüter regime. The second term is the non-resonant
contribution in the Pfirsch–Schlüter regime.

A schematic dependence of the non-linear plasma
viscosity in the plateau–Pfirsch–Schlüter regime on Up,m [15]
is shown in figure 14.

The dynamics of the L–H transition theory based on
the non-linear plasma viscosity [15] has been observed in
electrode-induced L–H transition experiments [137]. The

35



Nucl. Fusion 55 (2015) 125001 Review Article

Figure 14. Typical non-linear plasma viscosity in the
plateau–Pfirsch–Schlüter regime as a function of Up,m in a tokamak.
The extrema occur at |Up,m| of the order of unity. It decays
exponentially when |Up,m| is greater than unity. When |Up,m| is
much larger than unity, it decays algebraically.

radial current driven by the orbit loss in the banana regime in the
theory is replaced by the electrode current. When the electrode
current vanishes, the standard neoclassical poloidal flow is
reproduced in the theory as expected because it is Up,m not
poloidal E ×B drift that is employed in the formulation of the
theory. As the current in the biased electrode increases, Up,m,
and, thus the radial electric field, deviates from the neoclassical
value. When the electrode current is further increased, Up,m

bifurcates as predicted by the non-linear plasma viscosity [15].
The bifurcation in experiments provides a direct test of the non-
linearity in the viscous forces. Because the compressibility is
not included in the theory, the shock formation is prevented.
This implies that the real poloidal flow speed is assumed to be
subsonic. Physically, this assumption implies that improved
plasma confinement due to turbulence suppression results in a
steep pressure gradient that almost cancels the increased E×B
drift [132, 133]. If the real poloidal flow is sonic, the plasma
flow velocity becomes compressible, and shock formation will
occur. In that case, the shock viscosity becomes the relevant
force for the electrode-induced bifurcation [132, 133].

The concept of the perpendicular conductivity or
resistivity in toroidal plasmas [138] has often been used to
describe the electrode-induced bifurcation. The conductivity
or resistivity has been calculated by following the pioneering
work in [139, 140]. The work in [139, 140] is also extended
to describe the L–H transition in [141].

6.4.4. Transport fluxes The neoclassical transport fluxes
associated with the non-linear plasma viscosity are different
from those in the standard neoclassical theory when Up,m

is of the order of unity or higher and when S > 1. The
transport fluxes are smaller than those in the conventional
theory. Thus, neoclassical plasma confinement is improved
in the edge region of tokamaks after L–H transitions.

The specific transport fluxes can be obtained by
substituting the viscous coefficients in the expressions for
the fluxes in equations (6.2.5.4.2.1)–(6.2.5.4.2.5). Unlike
when only the effects of the orbit squeezing are included,
all transport fluxes are now modified except the neoclassical

electric conductivity when Up,m is finite because the ratios of
ion viscous coefficients are no longer the same as those in the
conventional theory.

The equation for ion poloidal flow is a non-linear equation
for Up,m by casting V θ

i as
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in large aspect ratio tokamaks. When NiMi|µj i| ∼
NeMe|µje|, the equation for V θ

i in equation (6.2.5.4.2.1) can
be expressed explicitly as a non-linear equation for Up,m:
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This non-linear equation is similar to the bifurcation equation
in the L–H transition theory in [15, 129] to determine Up,m in
H-mode plasmas.

Ion heat flux q
bp
i /Ti decreases exponentially as e−U 2

p,m in
addition to the reduction as S−3/2 resulting from effects of orbit
squeezing in the banana regime [110]. In the plateau regime, it
decreases as e−U 2

p,m [142]. In both regimes, there are additional
dependences on the complicated rational functions of Up,m.

The bootstrap current and Ware pinch flux are also
modified through ion poloidal flow V θ

i or Up,m. When
the magnitudes of the ion and electron viscous forces are
comparable, the bootstrap current can be reduced and can be
used to control ELMs in the pedestal region.

6.5. Orbit loss

In the edge region of a tokamak, parallel plasma viscosity in
the banana regime in the conventional neoclassical theory is
no longer valid because collisionless particle orbits intersect
the plasma boundary, which is either determined by a limiter
or a divertor. There exists a loss region in the velocity space,
analogous to the loss cone in a mirror machine [143–145].
When particles collisionally scatter into the loss region, they
move out of the confinement zone. However, the loss process
in tokamaks differs from that in mirror machines. In mirror
machines, particles scatter into the loss region locally. In
tokamaks, particles first transport radially to the edge region
and then collisionally scatter into the loss region [146]. The
process involves both spatial transport and velocity space
scattering. It transports particle, momentum and energy from
the core region to the edge region. Physically, this is to set
a gradient scale length in the edge region so that the radial
transport rate is the same as the orbit loss rate. This modifies
the parallel plasma viscosity in the edge region, and thus, the
parallel momentum balance equation.

The loss cone is not isotropic in the velocity space. It
results in a toroidal flow even without obvious dissipation
processes [147, 148]. This is another important aspect of
the orbit loss process for the physics of plasma flows in the
H-mode plasmas.
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6.5.1. Estimated orbit loss rate. The detailed orbit loss
rate depends on the position and the configuration of the
limiter or the divertor. Thus, it varies from configuration to
configuration. However, the gross scaling of the loss rate
should be robust and only depend on the fundamental physics
processes involved. Because the width of the ion orbits is
greater than that of electrons, ions dominate the orbit loss
process. In rare occasions when the electron temperature is
much higher than the ion temperature, electrons can dominate
the orbit loss process.

Particle, momentum and energy losses in the banana
regime are all modified by the presence of the orbit loss
region in the edge of tokamaks. The theory for energy loss
was first developed in [146] using model orbits in a divertor
configuration. By balancing the radial ion energy transport
rate to the edge energy loss rate to determine a temperature
gradient scale length, the corresponding ion energy flux at the
separatrix is [146]

Q
χ
i = π

2&2

IG

W

∫
dvνDv3 Miv

2

2
f0, (6.5.1.1)

where&2 is the ion gyro-frequency evaluated at the outer radius
in a square well magnetic field model, IG = 3ε1/2 − 2ε3/2,
W = 0.8ε, and f0 is the equilibrium ion distribution function
which is non-Maxwellian [149] because the radial transport
rate is comparable to the collisional energy scattering rate of
the Coulomb collision operator. The rate of the energy loss
does not depend explicitly on the plasma gradients. The effects
of orbit squeezing are not included in equation (6.5.1.1). It is
argued that because particle transport is intrinsically ambipolar
in tokamaks, ion orbit loss does not affect the radial electric
field [146].

However, from the flux–force relation and the theory for
the poloidal flow damping discussed in section 4, the particle
flux prior to the damping of the poloidal flow is proportional
to the flux surface averaged parallel plasma viscosity, which is
not governed by the intrinsic ambipolarity. When parallel flow
is neglected, the poloidal flow is driven by the radial gradients
of the plasma potential and pressure. In the edge region, the
orbit loss process dictates that the gradient scale length is of
the order of the squeezed orbit width [150]

'χ ∼
√

ε
Ivti

&i
√

S
, (6.5.1.2)

in equation (6.2.5.9). This is also the scaling of the width of
the orbit loss region and effectively the scaling for the pedestal
width in H-mode plasmas [150]. In the banana regime,
the parallel plasma viscosity driven particle flux prior to the
poloidal flow damping must be balanced by the collisional
orbit loss rate. Thus, the parallel plasma viscosity scales as

〈
B · ∇· ↔

π i

〉
∼ −NiMiBvti

νii

S
. (6.5.1.3)

This yields an estimated orbit loss rate in the banana
regime [151]
(

∂ ⟨N⟩
∂t

)

orbit
= − 1

'χ

∫
d

(
v2

2

)
πνD

Iv2

&iS
4.4f0, (6.5.1.4)

including the effects of orbit squeezing.

The radial electric field is negative when the parallel
viscous force due to orbit loss in the banana regime is coupled
to the viscous force in the plateau and Pfirsch–Schlüter regimes
[15, 129]. The radial electric field is to make ion particle loss
vanish approximately to satisfy the ambipolarity constraint.
This process also corresponds to the poloidal flow damping in
the presence of the orbit loss region. When electron dominates
the orbit loss process, the sign of the radial electric field
becomes positive in the edge region.

It should be noted that the existence of the separatrix does
not change the collision frequency scaling of the orbit loss rate
because it merely changes the shape of the loss region in the
phase space but not the fundamental physics of the coupling
of the core transport with the collisional scattering into the
loss region to determine the gradient scale length in the edge
region [152].

Ion orbit loss flux when coupled to the electron anomalous
particle flux leads to a non-linear equation for the radial electric
field, first obtained in [153]. It has bifurcated solutions. It is
the first theory to explain the L–H transition in tokamaks.

6.5.2. Non-linear momentum equation and L–H transition.
The parallel momentum balance equation in the core region
of axisymmetric tokamaks is a linear function of Up,m. In
tokamaks, only this combined quantity is determined from
the parallel momentum balance equation. In the edge region,
however, Up,m is of the order of unity, i.e., sonic because the
radial gradient scale length of the radial electric field is of the
order of the ion poloidal gyro-radius in the pedestal of H-mode
plasmas. This makes the non-linear plasma viscosity relevant
to the parallel momentum balance equation. Coupling the non-
linear plasma viscosity to the ion orbit loss in the parallel
momentum equation leads to a non-linear equation for Up,m

and it has bifurcated solutions [15, 129].
A model for the non-linear equation based on the orbit

loss for a bi-Maxwellian distribution function

f = Nc

π3/2v3
tc

e−v2/v2
tc +

NH

π3/2v3
tH

e−v2/v2
tH , (6.5.2.1)

is [129]
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where the subscript c indicates that the quantities are for the
cold component of the distribution, the subscript H is for the hot
component, the left-hand side is the ion orbit loss associated
with the parallel plasma viscosity for the hot component that is
in the banana regime, the right-hand side is the parallel plasma
viscosity for the cold component, νc

∗si is the ν∗s for cold ions,
Vp = V θB/vti, and 'r is 'χ in cylindrical r coordinate. The
Ibps is defined as

Ibps = 2
π

∫ ∞

0
dxx5e−x2 KbsKpsn

Kbs + Kpsn
, (6.5.2.3)
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Figure 15. Bifurcated solution for Up,m as the ion orbit loss rate
increases by increasing the ratio of NH/Nc from 0.1 (a) to 0.13 (b)
and to 0.15 (c). The dashed line is the orbit loss rate, and the solid
line is the non-linear plasma viscosity.

where Kpsn =
∫ 1
−1 dy(1 − 3y2)2ν∗siε

3/2(νT /νx)×
{(y + Up,m/x)2 + [ν∗siε

3/2(νT /νx)]2}−1, Kbs = 2.5νc
∗si×

(x4|S|3/2). It is a formula that joins the non-linear plasma
viscosity in the plateau–Pfirsch–Schlüter regime and the orbit
squeezing viscosity in the banana regime. The poloidal heat
flow in the plasma viscosity for the cold component and the
electron viscosity are neglected in equation (6.5.2.2). The non-
linear equation (6.5.2.2) has bifurcated solutions for Up,m over
a wide range value of νc

∗si. An example is shown in figure 15.
When the orbit loss rate from the hot component is small, Up,m

is the standard neoclassical value when the ion heat flow term
is restored in the plasma viscosity for the cold component.
This is the L-mode solution (figure 15(a)). As the orbit loss
rate increases, there can be three solutions for Up,m. Besides
the L-mode solution, two more solutions appear; only one of
them is stable. The new stable solution is the H-mode solution
(figure 15(b)). As the orbit loss rate further increases, only
H-mode solution for Up,m exists (figure 15(c)). The L-mode
solution and H-mode solution are separated by the extremum
of the viscous force, which occurs at a critical value of Up,m,
defined as UC

p,m. This critical value of U c
p,m as a function of

ν∗si that separates L-mode from H-mode is shown in figure 16
for ε = 1/4 and S = 1.

The orbit loss also drives a poloidal flow as can be seen

Figure 16. Critical value of U c
p,m that separates L-mode from

H-mode discharges as a function of ν∗si for ε = 1/4 and S = 1.

from equation (6.5.2.2). The direction of the flow is in the
direction of the poloidal flow in the plateau–Pfirsch–Schlüter
regime in the standard neoclassical theory [6, 7]. Thus, as far
as the poloidal flow is concerned, the orbit loss mechanism is
to increase the nominal value of ν∗ effectively. In the L-mode
case, the magnitude of this flow is insignificant. In H-mode,
because of the large value of Up,m and S, it should not modify
the neoclassical poloidal flow in (6.2.5.4.2.1) significantly
either. In both cases, the poloidal flow should be determined
by the neoclassical processes.

There are other observed L–H transition phenomena that
can also be understood in terms of the theory presented here.
The ion orbit loss mechanism provides a natural explanation for
the dependence of the H-mode power threshold on the direction
of the ion gradient B drift [154]. Neutral particles also affect
the L–H transition. Through the charge exchange momentum
loss mechanism, the extremum of the effective viscous force
disappears when the density of the neutral particles exceeds a
critical value [155]. This prevents the bifurcation, and thus
the L–H transition. The effects of the guiding center shift also
affect the radial electric field and, thus, L–H transition [156].

Neoclassical theory is usually employed to calculate the
radial electric field. However, using the physics of the Pfirsch–
Schlüter flow, the electrostatic potential variation in the edge
region of the H-mode plasmas is also predicted in [157–159],
which is in agreement with the experimental observations.

6.5.3. Shock formation. When the poloidal flow speed
becomes sonic, i.e. the poloidal Mach number Mps =
VθB/(Bpvt) is of the order of unity, a poloidal shock can form
as a result of the resonance between the parallel components
of the inertia NV · ∇V and plasma pressure ∇P [130–
133]. A Bernoulli equation along the magnetic line can be
derived. Because the magnetic field is not uniform on the
magnetic surface, the poloidal flow along the field line is
similar to a nozzle flow in gas dynamics. However, because
the magnetic field is periodic in θ , the Bernoulli equation
satisfies the periodic boundary condition, which differs from
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the boundary condition for the nozzle flow. The plasma density
and temperature vary on the magnetic surface resulting from
plasma rotation. When Mps ≪ 1, the density and temperature
variations are negligible. However, when |1 − Mps | <

√
ε,

a shock forms that is characterized by sharp variations of
density and temperature with a width that depends on the
dissipation of the system. This sharp variations of the density
and temperature lead to a large viscous stress in the region
where |1 − Mps | <

√
ε [130–133,160,161].

The viscosity is still calculated from the kinetic equation,
but with an important difference. The equilibrium Maxwellian
distribution is no longer a flux function. The density and
temperature are allowed to have angle dependences. The
drift kinetic equation is derived using the full density and
temperature evolution equations including compressibility
terms as illustrated in [132, 133].

7. Neoclassical quasilinear theory and turbulence
suppression

Toroidal plasmas are plagued with turbulent fluctuations.
The quasilinear theory can be adopted to give qualitative
explanations to the observed anomalous particle, energy
and momentum transport fluxes [162–171]. The effects of
turbulence fluctuations on the bootstrap current, Ware pinch
flux and modification on plasma resistivity are not usually
addressed in the theory. In this regard, the conventional
quasilinear theory is not as sophisticated as the neoclassical
theory. However, the methodology of the neoclassical theory
is well developed and should be used to describe transport
related phenomena in toroidal plasmas. The purpose of the
neoclassical quasilinear theory is to apply the methodology
of the neoclassical theory to the quasilinear theory to unify
both theories. The emphasis here is on the methodology and
not on the magnetic geometry. Indeed, the methodology of
the neoclassical theory can be applied even to unmagnetized
plasmas.

The unification of neoclassical theory and quasilinear
theory is first accomplished in [19, 21]. The methodology
of the neoclassical theory is applied to solve the drift kinetic
equation in the presence of turbulent fluctuations. The
quasilinear transport fluxes including not only particle and
energy fluxes but also bootstrap current [19, 21, 172], Ware
pinch flux, and modification of plasma resistivity [19, 21, 167]
are obtained in the theory.

There are several important implications and conse-
quences as a result of the unification. It is first noted that the
turbulence fluctuation spectrum can be affected by the radial
electric field [21, 173]. This eventually leads to the devel-
opment of the turbulence suppression theory [17]. The fluc-
tuation driven bootstrap current, Ware pinch flux, and mod-
ification of the electric resistivity are shown to be relatively
small compared with the corresponding transport coefficients
in the neoclassical theory. This provides a natural explanation
as to why even in turbulent tokamak and stellarator plasmas
these transport fluxes are close to the values of the neoclas-
sical theory. When the neoclassical methodology is applied
to calculate the toroidal component of the stress in tokamaks,
the toroidal momentum convective flux and the residual stress
emerge naturally [174–178] besides the conventional toroidal

momentum diffusion flux [179] similar to the constituents
of the axisymmetric neoclassical toroidal plasma viscosity
[68–70, 134, 180–188].

7.1. Particle, energy and current transport

Particle and energy transport fluxes are routinely calculated
in quasilinear theory for toroidal plasmas [162–171]; the
bootstrap current and its conjugate, i.e. Ware pinch, are
not. The bootstrap current density parallel to the equilibrium
magnetic field can be calculated in the theory using the
neoclassical methodology. This puts the quasilinear theory
on the same level of sophistication as the neoclassical theory.

7.1.1. Flux–force relation. As in the neoclassical theory, the
flux–force relation is important to identify the forces that drive
transport fluxes. For the sake of simplicity, only electrostatic
fluctuations are discussed. When the electrostatic potential
and, subsequently, the plasma density and temperature are
allowed to have spatial and temporal random fluctuations,
plasma transport losses are enhanced due to perturbed radial
E × B drift.

Using the procedure that leads to the flux–force relation in
the neoclassical theory, the electrostatic potential fluctuation-
induced radial particle flux #anand heat flux qan are, in Hamada
coordinates, [21]

#an = c

χ ′ψ ′e

〈
eNBt · ∇.̃

〉

− c

χ ′ψ ′e

〈
(Bt · n) Nen · ∇.̃

〉
, (7.1.1.1)

and

qan = c

χ ′ψ ′e

〈
e

(
3
2
N̄ T̃ − Ñ T̄

)
Bt · ∇.̃

〉

− c

χ ′ψ ′e

〈
Bt · B

B2
e

(
3
2
N̄ T̃ − Ñ T̄

)
B · ∇.̃

〉
, (7.1.1.2)

where the angular brackets denote both flux surface average
and ensemble average in this section, the tilde denotes
fluctuation quantities, the overbar denotes equilibrium
quantities and prime denotes d/dV . The definition for heat
flux is ⟨q · ∇V ⟩ = ⟨Q · ∇V ⟩ − (5/2)⟨NV · ∇V ⟩T̄ . From the
expressions for #an and qan, it is obvious that these fluxes are
driven by the coupling between the perturbed potential and the
perturbed density and temperature. To calculate these fluxes,
the forces on the right-hand sides of equations (7.1.1.1) and
(7.1.1.2) must be evaluated from the solution of the kinetic
equation.

7.1.2. Linear drift kinetic equation. Low frequency
fluctuations, with frequency ω < |&|, usually cause larger
step size. Therefore transport fluxes are larger than higher
frequency modes, and the drift kinetic equation is appropriate
to use, in neoclassical quasilinear theory. The gyro-kinetic
equation can also be used [189]. However, the important
qualitative results do not depend on which kinetic equation is
employed in the theory.

The drift kinetic equation is [29]
∂f

∂t
+ v∥n · ∇f + vd · ∇f +

(
e
∂.

∂t
+ ev∥E

(A)
||

)
∂f

∂E
= C (f ) .

(7.1.2.1)
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Assuming |e|.̃/T ∼ ε < 1, and ω ∼ ωd < ωt = vt/(Rq) ∼
ν, equation (7.1.2.1) can be linearized. Here, ωd is the typical
drift frequency, which is of the order of mvd/Ln. The lowest
order equation is

v||n · ∇f0 = C (f0) , (7.1.2.2)

which has a solution

f0 = fM = N̄

π3/2v3
t

exp

(

−v2

v2
t

− 2e.̃

Mv2
t

)

. (7.1.2.3)

The next order equation is
∂f1

∂t
+ v∥n · ∇f1 + vd · ∇f1 + vd · ∇fM

+

(

e
∂.̃

∂t
+ ev∥E

(A)
||

)
∂fM

∂E
= C (f1) , (7.1.2.4)

where both neoclassical and quasilinear effects are included.
Again to treat the momentum restoring terms in the collision
operator, and the driving terms that are proportional to P1, the
solution is expanded as [19, 21]

f1 = h +
2v||

v2
t

(
V|| −

2
5
L

(3/2)
1

q||

p̄
+ · · ·

)
fM. (7.1.2.5)

Substituting equation (7.1.2.5) into equation (7.1.2.4), keeping
only the perturbed E×B drift terms that are first order in ρ/Ln

ordering, and neglecting neoclassical ∇B and curvature drift
terms yield

∂h
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fM, (7.1.2.6)

where equilibrium flows are

Vp = (n · ∇θ) V|| +
T̄

M

B × ∇V · ∇θ
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Vt = (n · ∇ζ ) V|| +
T̄

M

B × ∇V · ∇ζ

B&

(
p̄′

p̄
+

e.̄′

T̄

)
,

(7.1.2.8)
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and
qt

p̄
= (n · ∇ζ )
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+

5T̄
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T̄ ′

T̄
.

(7.1.2.10)

It is important to note that if the neoclassical ∇B and
curvature drift terms are kept in equation (7.1.2.6), neoclassical
viscous forces and, subsequently, all neoclassical fluxes can
be obtained as demonstrated in [21]. Thus, the unification is
accomplished.

The standard quasilinear theory corresponds to the
‘plateau’ regime in the neoclassical theory. In the
‘plateau’ regime, where ωtmn|e.̃mn/T |3/2 < ν <

|ωE
mn| ∼ ωtmn, the dissipation mechanism is the resonance

between the transit frequency ωtmn = [vt/(Rq)]|m − nq|
and the Doppler shifted mode frequency ωE

mn = ω +
ωE . Here, .̃mn is the amplitude of the fluctuating
electrostatic potential with mode number (m, n), and ωE =
(c.̄′/B2)(mB × ∇V · ∇θ − nB × ∇V · ∇ζ ). The lower
limit of this regime prevents electrostatic particle trapping from
occurring. The upper limit is the lower bound of the fluid
regime. In this regime, neoclassical theory and quasilinear
theory are decoupled, and modes are also independent of
each other because plasmas are collisional enough to prevent
particles moving along the magnetic field line from sampling
all the modes.

In the plateau regime, equation (7.1.2.6) can be solved by
using a Krook model for the collision operator and expanding h

and .̃ as h =
∑

m,n̸=0 hmn exp[iωt + i(mθ − nζ + ηmn)], and
.̃ =

∑
m,n̸=0 .̃mn exp[iωt + i(mθ − nζ + ηmn)], where ηmn

represents the random phase. Substituting these expressions
into equation (7.1.2.6) and taking the ν → 0 limit, which
corresponds to the asymptotic limit of the plateau regime, yield
the resonant part of the solution

hmn = iπδ
[
ωE

mn + v∥
(
n̂ · ∇θ

)
(m − nq)

]
Dmn, (7.1.2.11)

where
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. (7.1.2.12)

7.1.3. Transport matrix. The distinct feature of the
unification is to include the bootstrap current, Ware
pinch flux and the modification of the plasma resistivity
in the quasilinear theory. The Ware pinch flux is
obtained from the parallel flows in the components of
the electrostatic forces ⟨eNBt · ∇.̃⟩, ⟨(Bt · n)Nen · ∇.̃⟩,
⟨e[(3/2)N̄ T̃ − Ñ T̄ ]Bt · ∇.̃⟩, and ⟨(Bt · B/B2)e[(3/2)N̄ T̃ −
Ñ T̄ ]B · ∇.̃⟩. These forces play the same roles as the
viscous forces in the neoclassical theory. The bootstrap
current and the modification on the plasma resistivity are
obtained by solving the parallel force balance equations for
electrons

⟨NeeBn · ∇.⟩ −
〈
NeeE

(A)
|| B

〉
+

〈
BF1||e

〉
= 0, (7.1.3.1)

and
〈
e

(
3
2
N̄eT̃e − ÑeT̄e

)
Bn · ∇.

〉
+ T̄e

〈
BF2||e

〉
= 0, (7.1.3.2)

obtained by taking the v∥ and v∥(Mev
2/2 − 5T̄e/2) moments of

equation (7.1.2.6). Thus, it is obvious that the forces that drive
the fluctuation-induced bootstrap current are the electrostatic
forces ⟨NeeBn · ∇.⟩ and ⟨e[(3/2)N̄ T̃ − Ñ T̄ ]B · ∇.̃⟩.

Evaluating the fluxes using the resonant solution and
solving the parallel force balance equations yield the
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electron transport matrix [21], in approximate cylindrical

coordinates,
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and .mn = |.̃mn|.
The transport matrix is Onsager symmetric because the

collision operator is self-adjoint [7]. It is important to note that
transport coefficients have different wave vector dependences.
The diffusion coefficients depend on the perpendicular wave
vector and are strongly anomalous. The bootstrap current and
modification on the plasma resistivity on the other hand depend
on the parallel wave vector and are not affected significantly
by the turbulent fluctuations.

7.1.4. Physics implications of the unified theory. The
bootstrap current, Ware pinch fluxes and the modification on
the plasma electric conductivity are not usually calculated in
the conventional quasilinear theory. The unification of the
neoclassical and quasilinear theories is to extend the standard
particle and energy fluxes in the conventional quasilinear
theory to include these additional transport quantities related
to the plasma current. The quasilinear transport matrix
in equation (7.1.3.3) is also obtained in [190] using the
conventional method for the neoclassical theory.

It is important to note that the fluctuation driven bootstrap
current is proportional to the parallel wave vector, i.e. (m−nq).
Thus, it vanishes for symmetric modes that centre around the
mode rational surfaces where m =nq. There are at least two
possibilities that the fluctuation driven bootstrap current does
not vanish. The first possibility is that when the modes are
not symmetric relative to the mode rational surface, e.g., as
shown in figure 17. The second possibility is that when the
fluctuation spectrum has a radial gradient, i.e.

∑
mn |.mn|2 has

a radial gradient as shown in figure 18, which is often the
case in tokamaks and stellarators. However, in both cases,
the fluctuation driven bootstrap current is small relative to
the equilibrium bootstrap current [19, 21]. This provides
an explanation as to why in turbulent tokamak and stellarator
plasmas, the bootstrap current is close to the value predicted
by the neoclassical theory.

Similarly, because the modification of the plasma
resistivity resulting from the fluctuations is proportional to
|m − nq|, the experimentally observed plasma resistivity is
close to that predicted by the neoclassical theory.

One of the most significant implications of the unified
theory is that the parallel momentum and heat flux balanced
equations in turbulent toroidal plasmas can be approximated
by those used in the neoclassical theory for localized modes
that have m − nq ≈ 0. This implies that the poloidal flow in
tokamaks is close to what predicted by the neoclassical theory.
It follows that both the bootstrap current and the modification
on the plasma resistivity are well approximated by values in
the neoclassical theory.

There is a radial electric field in the thermodynamic force
X1e in the particle flux. However, because for low frequency
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Figure 17. Schematic diagram for a mode that is not symmetric to
the mode rational surface.

Figure 18. Schematic diagram for the fluctuation spectrum that has
a radial gradient. The black dots indicate the positions of the mode
rational surfaces.

electrostatic fluctuations quasineutrality is imposed to obtain
the dispersion relation, ambipolarity is not maintained by
setting the ion particle flux to the electron flux. Thus, when
there is a change in the radial electric field, the fluctuation
spectrum must change to maintain ambipolarity. This leads to
the turbulence suppression theory.

7.2. Toroidal momentum transport

Neoclassical theory usually cannot explain toroidal momen-
tum confinement in tokamaks because the predicted toroidal
flow relaxation time is too long [68–70, 134, 180–188]. The
theory for the neoclassical toroidal angular momentum flux has
been evolving. The recent accepted form has been established
basically in [184, 185], where the key insight, that when the
potential and density variations along the magnetic field line
are taken into account the magnitude of the gyro-viscosity re-
duces to that of the perpendicular viscosity, is advanced. In
terms of Braginskii classification, these are viscosities that de-
pend on ν0 and ν1 respectively. Neoclassical toroidal angular
momentum flux consists of both perpendicular viscosity and
gyro-viscosity. The perpendicular viscosity yields the mo-
mentum diffusion, which determines the relaxation time scale,
and the gyro-viscosity, independent of the flow, acts like the
momentum source. Thus, it has constituents similar to that ob-
served in experiments. To understand the physics of toroidal

rotation in experiments, fluctuation driven toroidal stress can
be important. The quasilinear theory for the toroidal momen-
tum flux provides a qualitative description for the toroidal ro-
tation when the turbulent fluctuation level is high enough to
compete with other mechanisms.

The drift kinetic equation is adopted. In the quasilinear
theory, as in most of the neoclassical theories for the axisym-
metric toroidal stress for tokamaks [67–70, 134, 180–188], the
toroidal stress is derived in the laboratory frame, where the
notion of the Coriolis force is not applicable. In the theory
for the sonic toroidal rotation [134],the Coriolis force appears
in the drift velocity. However, the diamagnetic flow is higher
order and is neglected in that theory. A quasilinear theory de-
veloped using the same sonic ordering is presented in [191].
Experimentally, the toroidal rotation speed, measured in the
laboratory frame, is usually subsonic and is of the order of
vtρpi/Ln. Thus, the diamagnetic flow must be kept in the the-
ory for toroidal momentum confinement to model experiments.
For these reasons, the standard drift kinetic equation for sub-
sonic flow is employed. The gyro-kinetic equation can also be
used for the same purpose [192].

7.2.1. Linear drift kinetic equation. The toroidal stress can be
derived from the second-order linear drift kinetic equation in
the gyro-radius ordering, i.e. (ρpi/L)2. Again, the perturbed
distribution function is expanded as

f1 = h +
2v∥V||

v2
t

fM +
2v2

||V
2
||

v4
t

fM + · · · , (7.2.1.1)

where q|| is neglected for simplicity. Assuming ε < 1, the
toroidal flow speed is approximately the same as the parallel
flow. Substituting equation (7.2.1.1) into equation (7.1.2.1)
and keeping only the perturbed E × B drift terms yield the
second-order equation [174]

∂h
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+

(
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)
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(
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where
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Because q|| is neglected, it does not appear in the definitions for
qp and qt in equations (7.1.2.9)–(7.1.2.10). Some of the first-
order terms in ρpi/L are kept in equation (7.2.1.2) because
these terms contribute to the residual stress that is proportional
to m − nq ≈ 0 for localized modes.

Equation (7.2.1.2) can be solved in the plateau regime
using the method in section in 7.1.2, and the resonant part of
the solution is

hmn = iπδ
[
ωE

mn + v∥ (m − nq) n · ∇θ
]
Mmn, (7.2.1.3)

where
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The resonant solution is used to calculate the toroidal
component of the stress.

7.2.2. Toroidal momentum equation in neoclassical quasilinear
theory. The toroidal angular momentum equation is, in
tokamak coordinates,

∂

∂t

〈
R2∇ζ · NMV

〉
= −

〈
R2∇ζ · ∇ ·

↔
P

〉
+

1
c

⟨J · ∇χ⟩ .

(7.2.2.1)

As shown in section 4.2, the radial current density ⟨J · ∇χ⟩
is related to ∂⟨E · ∇χ⟩/∂t , and can be neglected because it
is smaller by a factor of (VA/c)2. The flux surface averaged
toroidal stress can be expressed in a conservative form [68]

〈
R2∇ζ · ∇ ·

↔
P

〉
= 1

V ′
d

dχ
V ′

〈
R2∇ζ ·

↔
P · ∇χ

〉
, (7.2.2.2)

where the kinetic definition for the toroidal momentum flux
for the electrostatic fluctuations is [68, 134, 186–188]

〈
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P · ∇χ

〉
=

〈∫
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〉
,

(7.2.2.3)

where vE is the E × B drift velocity. The quantity

⟨R2∇ζ ·
↔
P · ∇χ⟩ is the toroidal angular momentum flux #φ .

Using the resonant solution in equation (7.2.1.3) to evaluate

⟨R2∇ζ ·
↔
P · ∇χ⟩ in equation (7.2.2.3) yields [174, 175]
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The x0 = ωE
mn/vt |m − nq| n̂ · ∇θ . It is obvious that the

magnitude of the ion stress is usually larger than that of
electrons.

The toroidal momentum flux consists of three types of
fluxes [174, 175]. One is the diffusive flux that is proportional
to ∂V||/∂χ [179]. Another is the convective flux driven by V||
[174, 175, 177, 193]. The other is the residual stress that is

independent of V|| [174–176]. The convective flux cannot be
expressed as #an

i V||, a property consistent with experimental
observations. The residual flux is proportional to m − nq,
which is the same as that in the fluctuation driven bootstrap
current. Thus, it changes sign across the mode rational surface.

It is clear that #φ depends on the fluctuation spectrum. For

ωE
mn = −mT B × ∇χ · ∇θ

MB&

(
λp

p′

p
+ λT

T ′

T

)
, (7.2.2.5)

#φ can be expressed as

#φ = −χφ

∂V||

∂χ
− VφV|| + ⟨P1⟩ , (7.2.2.6)

where λp and λT are two parameters to model the mode
frequency, and
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The convective velocity Vφ for this specific frequency is, after
neglecting terms that are either proportional to (m − nq) or
smaller by a factor of Bp/(qB),

Vφ = −χφ

[(
λp − 1

) p′

p
+

(
λT +

5
2

)
T ′

T

]
. (7.2.2.8)
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For different frequencies, the convective velocity will be
different.

The residual stress plays a role similar to the toroidal
momentum source when there are no externally imposed
momentum sources. There are at least two possibilities that
make the residual stress finite [174]. One is the asymmetric
modes and the other is that the fluctuation spectrum has a
radial gradient. They are the same as those that drive a local
bootstrap current discussed in section 7.1.4. Here, both of
these mechanisms drive a local toroidal flow. The magnitude
of the toroidal flow generated from the residual stress is of the
order of

V|| ∼
ρpi

L
vti. (7.2.2.9)

The magnitude of the toroidal flow generated is of the
same order as that by the neoclassical toroidal plasma
viscosity [194].

7.3. Theory for turbulence suppression

As indicated in the quasilinear theory, when there is a change
in the radial electric field profile the fluctuation spectrum must
change accordingly to maintain quasineutrality [21, 173]. This
leads naturally to the development of the theory for turbulence
suppression resulting from the change of the radial electric
profile. The theory was first published in 1988 [17]. It
is primarily motivated by the need to explain the improved
plasma confinement in H-mode in the theory for the L–H
transition [15]. The radial electric field profile is usually
strongly modified inside the pedestal region of the H-mode
and inside the internal transport barriers.

The turbulence suppression theory is not specific for any
particular instability by design. It is a dramatic departure from
the traditional approach to plasma turbulence theories. It is a
generic theory for the consequence of a change in the radial
electric field profile. This type of theory is preferable because
not only specific underlying instabilities in turbulent plasmas
are usually difficult to identify but also turbulence usually
already manifests itself without a discernible quiescent phase
in toroidal plasmas. This motivates the development of the
turbulent suppression theory. The theory is not the same as the
theory for the stabilization of the linear instabilities, because
usually prior to the change in the radial electric field profile,
the plasmas are already turbulent.

7.3.1. De-correlation time The suppression theory is focused
on the change of the de-correlation time when the radial electric
field profile changes resulting from the momentum balance
equation. The fluctuation spectrum and the fluctuation level
will respond accordingly.

The basic physics mechanism for turbulence suppression
does not depend on the toroidal curvature of the magnetic field.
Thus, the theory can be demonstrated in magnetized cylindrical
plasmas using the (r, θ, ζ ) coordinates. The magnetic field is
in the ζ direction. Plasmas are assumed to rotate in the poloidal
angle θ direction. Suppose that there are two fluid elements
located at two positions (r1, θ1, ζ1) and (r2, θ2, ζ2) with a
separation (r−, θ−, ζ−) that is smaller than (k−1

0 , m−1
0 , n−1

0 ).
Here r− = r1−r2, θ− = θ1−θ2, ζ− = ζ1−ζ2, (k−1

0 , m−1
0 , n−1

0 )

are, respectively, the typical radial mode width, and typical

Figure 19. Normalized de-correlation time as a function of the
normalized ω′.

poloidal and toroidal mode numbers. When they are inside the
correlation volume, these two fluid elements do not diffuse
independently [195]. As a matter of fact, the diffusion
coefficient must vanish when (r−, θ−, ζ−) approaches (0, 0, 0).
To simplify the illustration without loss of generality, it is
assumed that there is no de-correlation mechanism in the ζ
direction. Thus, ⟨ζ 2

−⟩ remains constant. The angular brackets
demote ensemble average here. The de-correlation frequency
τ−1

c can be estimated from

τ−1
c

〈
r2
−
〉
= D

(
k2

0

〈
r2
−
〉
+ m2

0

〈
θ2
−
〉)

, (7.3.1.1)

where D is the turbulence diffusion coefficient when
(r−, θ−, ζ−) is outside the correlation volume. The factor
(k2

0⟨r2
−⟩ + m2

0⟨θ2
−⟩) is used to model the effect that when

(r−, θ−) approaches (0, 0) the two fluid elements are correlated
indefinitely. If the plasma rotation frequency ω in the θ
direction has a radial gradient, ⟨θ2

−⟩ is not a constant, and can
be estimated to be

τ−1
c ⟨θ2

−⟩1/2 = ω′⟨r2
−⟩1/2, (7.3.1.2)

where prime denotes d/dr . The de-correlation frequency thus
satisfies a cubic equation

(
τ−1

c

k2
0D

)3

−
(

τ−1
c

k2
0D

)2

−
Dm2

0(
k2

0D
)3 ω′2 = 0. (7.3.1.3)

This equation is first derived using a two-point theory in [17].
However, the heuristic derivation given here is more physically
transparent and is developed in [16]. The dependence of
τ−1

c /(k2
0D) as a function of normalized ω′ is shown in figure 19,

which is also observed in a numerical simulation [196].
The plasma rotation frequency ω can be either poloidal

E × B drift, or E × B drift and diamagnetic flow depending
on the origins of the turbulence [16]. The simplest case is
poloidal E × B drift only. In that case,

ω = cEr

Br
. (7.3.1.4)

When plasmas rotate in the toroidal direction, the roles of θ
and ζ are exchanged, and the frequency becomes [17, 173]

ω = q
cEr

Br
. (7.3.1.5)
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In the limit of Dm2
0ω

′2/(k2
0D)

3
< 1, the de-correlation

frequency has the approximate expression

τc =
(
k2

0D
)2

(
k2

0D
)3 + Dm2

0ω
′2

. (7.3.1.6)

This scaling has stronger effects on the improved plasma
confinement because the de-correlation time decreases as 1/ω′2

[17]. In this limit, the denominator in equation (7.3.1.6) can be
expanded to obtain the expression of τc in [17] exactly. In the
limit, where Dm2

0ω
′2/(k2

0D)
3

> 1, the approximate τc is [197]

τc = 1
(
Dm2

0

)1/3
ω′2/3

. (7.3.1.7)

This scaling has a weaker effect on improving the plasma
confinement due to the ω′−2/3 dependence.

In the derivation of equation (7.3.1.3), the turbulent
diffusion coefficient D is not assumed as a function of ω.
However, in general, D can be a function of ω. This
effect is addressed in [198]. It is shown that in the
limit, where Dm2

0ω
′2/(k2

0D)
3

< 1, the expression for τc in
equation (7.3.1.6) is not affected by whether D is a function
of ω or not. In the limit, where Dm2

0ω
′2/(k2

0D)
3

> 1, τc in
general has stronger than ω′−2/3 dependence if D is a function
of ω. The theory of turbulence suppression used for static
E × B flow can also be applied to time varying flow as long
as the time variation is much slower than the characteristic
fluctuation frequency as shown in [199, 200].

The turbulence suppression theory has often been invoked
to explain the observed improved plasma confinement in not
only toroidal plasmas but also in mirror machines [201].
The theory has been reviewed in [18] as well, although
the work that first presented all the relevant physics, its
implications on plasma confinement, and correct τc in the limit
of Dm2

0ω
′2/(k2

0D)
3

< 1, i.e. [17], is not referenced.

8. Tokamaks with broken toroidal symmetry

Tokamaks are toroidally symmetric in principle. However,
there are always error fields or MHD activities present in real
tokamaks, which break the toroidal symmetry. The broken
symmetry leads to enhanced particle, momentum and energy
transport in tokamaks. The recent development of the theory
for neoclassical toroidal plasma viscosity (NTV) in the low
collisionality regimes in part is motivated by the need to
understand toroidal rotation damping observed in experiments
[38, 202, 203]. The importance of weak broken symmetry on
plasma confinement in other symmetric devices has also been
recognized [204, 205].

Because of the toroidal symmetry, the axisymmetric
neoclassical toroidal plasma viscosity is small; the toroidal
momentum diffusion coefficient is of the order of νiiρ

2
i

[67–69, 180–188]. When the toroidal symmetry is broken,
the neoclassical toroidal plasma viscosity is enhanced. For
perturbed magnetic field δB/B ∼ 10−4 or higher, the toroidal
momentum dissipation associated with the neoclassical
toroidal plasma viscosity can become the dominant mechanism
in determining the toroidal momentum confinement in
tokamaks.

There are two mechanisms that contribute to the |B|
spectrum for tokamaks with broken symmetry. One is the
direct addition [206] and the other is the magnetic surface
distortion [207]. The combination of these two mechanisms
for the non-resonant magnetic field perturbations is first
presented in [208]. Later, a term Lagrangian is used to describe
the same combined mechanisms [209].

When there is a perturbed magnetic field B1 =
B1(V , θ, ζ ) in Hamada coordinates, the |B| spectrum is

|B| = |B0 + B1| , (8.1)

where B0 is the equilibrium magnetic field. If B1 is
perpendicular to B0, the contribution of the direction addition
mechanism to |B| is quite small for being of the order of
(δB/B)2. Such is the case for the perturbed magnetic field that
forms a magnetic island. However, there is another mechanism
that is important for the |B| spectrum when the symmetry is
broken. That is the surface distortion [207]. Neoclassical
transport fluxes are calculated relative to the magnetic surface.
When the flux surface is distorted due to the existence of
the perturbed magnetic field, the transport fluxes are defined
relative to the distorted flux surface. Thus, it is the |B|
spectrum on the distorted magnetic surface that is relevant
to the transport fluxes. This mechanism is important even
when B1 is perpendicular to B0. In the case of the magnetic
island, the contribution to the |B| spectrum due to the surface
distortion mechanism is of the order of

√
δB/B [207], which

is significant even for δB/B ∼ 10−4. For the non-resonant
perturbations, i.e. m ̸= nq, both mechanisms are important.
The |B| on the distorted surface due to surface distortion
mechanism can be approximated as [208]

B = B (V, θ, ζ ) +
∂B

∂V
ξV

d +
∂B

∂θ
ξθ

d +
∂B

∂ζ
ξ

ζ
d , (8.2)

where ξV
d , ξθ

d and ξ
ζ
d are contravariant components of the

plasma displacement vector ξd.
The |B| spectrum in a doubly periodic torus can be

expressed as

B = B0

{
1 −

∑

m,n

[bmnc cos (mθ − nζ )

+bmns sin (mθ − nζ )]
}
. (8.3)

The standard equilibrium ε cos θ harmonic is included in
equation (8.3). The presence of the ζ dependence in |B|
spectrum implies that the toroidal component of the viscous
force is finite. This leads to the damping of the toroidal
flow. Physically, this mechanism is analogous to the fluid flow
damping in corrugated pipes.

Defining

An (θ) =
∑

m

{bmnc cos[(m − nq)θ ] + bmns sin[(m − nq)θ ]},

(8.4)

and

Bn (θ) =
∑

m

{−bmnc sin[(m − nq)θ ] + bmns cos[(m − nq)θ ]}

(8.5)
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Figure 20. Neoclassical toroidal plasma viscosity πt versus collision frequency ν in a log–log plot. The superbanana (Sb), superbanana
plateau (Sb-P), 1/ν, collisional boundary layer (B-L), collisionless detrapping (C-D), plateau, and Pfirsch–Schlüter (P–S) regimes are
shown. The dotted line indicates the bounce-transit and drift resonance.

a more compact form for B

B = B0 (1 − ε cos θ) − B0

∑

n

[An (θ) cos nζ0

+Bn (θ) sin nζ0] (8.6)

is used in the theory to solve the bounce averaged drift kinetic
equation, where ζ0 = qθ − ζ is the field line label.

An alternative form for equation (8.3) is

B = B0

[

1 −
∑

m.n

εmnei(mθ−nζ )

]

, (8.7)

where εmn is the Fourier amplitude of the (m,n) mode. Because
B is real, εmn = ε∗

−m−n, where the superscript * denotes the
complex conjugate.

The theory for neoclassical toroidal plasma viscosity in
tokamaks differs from those for rippled tokamaks [210] and
stellarators [3] in that there is only one class of trapped particle.
To avoid creating new classes of trapped particles, i.e. particles
trapped in the perturbed helical magnetic field, the perturbed
magnetic field strength must be weak enough so that there
should be no new local maxima or minima of B along the
magnetic field line. Thus, the approximate solutions to the
equation B · ∇B = 0 to locate local maximum and minimum
should be θ = 0 or π . For a single (m, n) mode, the creation of
a new class of trapped particles can be approximately prevented
when [211]

αt = ε

|m − nq| bmn

≫ 1, (8.8)

where bmn =
√

b2
mnc + b2

mns . The quantity αt is a simple
extension of αr = ε/(nqδr) in the criterion for local ripple
trapping, i.e. in α∗

r = αrsinθ =1 in rippled tokamaks
[211]. Here, δr is the amplitude of the rippled field B =
B0(1 − ε cos θ − δr cos nζ ). Equation (8.8) can be generalized
to multiple modes to yield

αt = ε

(|m − nq| bmn)M UM
≫ 1, (8.9)

where (|m − nq|bmn)M is the maximum value of |m − nq|bmn

for all modes, UM is the absolute maximum value of the

function

U =
∣∣∣∣
∑

m,n

bmn (m − nq)

(bmn |m − nq|)M

× sin [(m − nq) θ − nζ0 − χmn]
∣∣∣∣, (8.10)

and χmn is a phase factor defined as cos χmn =
bmnc/

√
b2

mnc + b2
mns and sin χmn = bmns/

√
b2

mnc + b2
mns .

Comparing with the parallel viscous forces in axisym-
metric tokamaks, the collision frequency dependence for the
neoclassical toroidal plasma viscosity is rather complex and
is summarized schematically in figure 20. The theory and
the physics involved for each known collisionality regime,
which are extensions of the stellarator transport theory [3], are
reviewed here.

8.1. Bounce averaged drift kinetic equation

In the limit, where ν∗ < 1, it is trapped particles, i.e., bananas
that dominate the transport processes in tokamaks with broken
symmetry. Because the toroidal canonical momentum pζ is no
longer conserved, bananas wobble off the magnetic surface to
form drift orbits. These drift orbits have a typical width that is
of the order of the ⟨vd · ∇V ⟩b/⟨vd · ∇ζ0⟩b. Here, ⟨vd · ∇V ⟩b
and ⟨vd · ∇ζ0⟩b are the bounce averaged radial drift speed
and toroidal drift frequency, respectively. The physics of the
drift orbits dynamics is governed by the bounce averaged drift
kinetic equation [212].

The physics of wobbling bananas induced transport flux
in rippled tokamaks have been reviewed in [210], where
stochastic transport loss [213] and transport fluxes in the 1/ν,
and ν regimes [210, 214, 215] are discussed. However, physics
related to superbanana plateau resonance, superbanana, and
collisional boundary layer has not been addressed. In this
regard, the results reviewed here are also applicable for rippled
tokamaks when local ripple trapping is insignificant. There
is a topical review on the effects of three-dimensional (3D)
magnetic perturbations on toroidal plasmas [217], and a
summary on the neoclassical toroidal plasma viscosity in [218].

The drift kinetic equation is

v∥n · ∇f + vd · ∇f = C(f ). (8.1.1)
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Because ν∗ < 1, trapped particles are basically collisionless
during their bounce motion. Using ν∗ as the small parameter,
the leading order equation for equation (8.1.1) is

v∥n · ∇f0 = 0, (8.1.2)

where the subscript 0 in f indicates the ordering. The solution
to equation (8.1.2) is

f0 = f0 (V , ζ0, E, µ) . (8.1.3)

The next order equation is

v∥n · ∇f1 + vd · ∇f0 = C (f0) . (8.1.4)

Equation (8.1.4) is bounce averaged over the trapped particle
trajectory subject to the reflection boundary conditions at the
turning points of the trapped particles where v∥ = 0, i.e.

f1+ (V , ζ0, θt, E, µ) = f1− (V , ζ0, θt, E, µ) , (8.1.5)

and

f1+ (V , ζ0, −θt, E, µ) = f1− (V , ζ0, −θt, E, µ) , (8.1.6)

to annihilate v∥n · ∇f1 term, where the subscript ±
in f1 indicates the sign of v∥ and ±θt are the turning
points of the trapped particles, i.e. v∥(±θt) = 0.
Applying the bounce average operator, defined as ⟨·⟩b =∑

σ (
∮

dθ(·)B/|v∥|)/(
∮

dθB/|v∥|) to equation (8.1.4) yields

⟨vd · ∇ζ0⟩b
∂f0

∂ζ0
+ ⟨vd · ∇V ⟩b

∂f0

∂V
= ⟨C (f0)⟩b , (8.1.7)

where
∮

dθ =
∫ θt

−θt
dθ . Note that all the P1(v∥/v)fM like terms,

including momentum restoring terms, vanish after bounce
averaging.

A subsidiary ordering is used to solve equation (8.1.7).
A maximum ordering scheme is adopted by ordering
⟨vd · ∇ζ0⟩b∂f0/∂ζ0 ∼ ⟨C(f0)⟩b > ⟨vd · ∇V ⟩b∂f0/∂V . This
implies that the radial width of the drift orbits is much smaller
than Ln. Thus, the transport process is local in radius. The
leading order equation is

⟨vd · ∇ζ0⟩b
∂f00

∂ζ0
= ⟨C (f00)⟩b , (8.1.8)

where the second subscript in f indicates the subsidiary
ordering. The solution to equation (8.1.8) is a Maxwellian
distribution, i.e.

f00 = fM(V ). (8.1.9)

The next order equation in the subsidiary ordering is

⟨vd · ∇ζ0⟩b
∂f01

∂ζ0
+ ⟨vd · ∇V ⟩b

∂fM

∂V
= ⟨C (f01)⟩b , (8.1.10)

where f01 is the first order correction to f00 = fM(V ).
Equation (8.1.10) governs the physics of wobbling trapped

particles and is the equation to be solved to obtain transport
fluxes in the regime where ν∗ < 1. However, the exact analytic
solution to equation (8.1.10) is unattainable for arbitrary
plasma parameters. The asymptotic analysis is employed to
seek its solution.

The explicit expressions for the bounce averaged toroidal
drift frequency, the radial drift speed and the collision operator
are [208]

⟨vd · ∇ζ0⟩b = c.′

χ ′ − cµB0

eχ ′ ε′
[

2E(k)

K(k)
− 1

]
, (8.1.11)

⟨vd · ∇V ⟩b = cµB0

eχ ′
1

4K(k)

×
∑

n

∮
dθ

An(θ)(−n sin nζ0) + Bn(θ)(n cos nζ0)√
k2 − sin2 (

θ
2

) ,

(8.1.12)

and

⟨C(f01)⟩b = νD

εK(k)

∂

∂k2

{[
E(k) − (1 − k2)K(k)

] ∂f01

∂k2

}
,

(8.1.13)

where the prime denotes d/dV , and K(k) is the complete
integral of the first kind. The pitch angle parameter k2 is
defined as

k2 = [E − e. − µB0 (1 − ε)]/(2µB0ε). (8.1.14)

The symbol E without an argument denotes the particle
energy and with an argument k denotes the complete elliptic
integral of the second kind. The pitch angle parameter k2

separates trapped particles that are parametrized by 0 !
k2 ! 1 from circulating particles categorized by k2 "
1. The curvature drift, and effects of magnetic shear and
finite β̄, in equations (8.1.11) and (8.1.12) are neglected by
assuming ε < 1. Thus, µB0 ≈ E. Note that only the pitch
angle scattering operator is needed because it contains an
enhancement factor of 1/ε. The effective collision frequency
νeff is νD/ε as can be seen directly from equation (8.1.13).

Examining the derivation of equation (8.1.10) and the
general property of its solution, several important physics
conclusions can be drawn. It should be noted that the
momentum restoring term in the collision operator vanishes
after bounce averaging. Thus, the parallel flow velocity does
not appear in the bounce averaged collision operator. This also
reflects in the thermodynamic forces where the parallel mass
flow and parallel heat flow do not appear. In addition, this
implies that the solution of the bounce averaged drift kinetic
equation does not contribute to the parallel momentum and
parallel heat flux balance equations. Thus, transport fluxes
derived from the bounce averaged drift kinetic equation only
contribute to the momentum balance in the direction that is not
parallel to the magnetic field. It has been shown rigorously
in a theorem that the solution of the bounce averaged drift
kinetic equation (equation (8.1.10)) does not contribute to

the parallel viscous forces ⟨B · ∇· ↔
π ⟩ and ⟨B · ∇·

↔
1⟩, i.e.

⟨B · ∇· ↔
π ⟩ = 0, and ⟨B · ∇·

↔
1⟩ = 0, because f01 does not

vary along the magnetic field line, i.e. f01 = f01(V , ζ0) [53].
This also implies that ⟨Btt · ∇· ↔

π ⟩ = −⟨Bpp · ∇· ↔
π ⟩, and

⟨Btt · ∇·
↔
1⟩ = −⟨Bpp · ∇·

↔
1⟩, where B = Btt + Bpp for

any two vectors Btt and Bpp. A particular case of interest is
that Btt = Bt = ψ ′∇V × ∇θ , and Bpp = Bp = χ ′∇ζ × ∇V

in Hamada coordinates. This theorem is also valid for f01

that is piecewise constant along the magnetic field line. Thus,
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the solution does not contribute to the bootstrap current. This
implies that to calculate the bootstrap current one must solve
the non-bounce averaged drift kinetic equation [53].

The boundary conditions for equation (8.1.10) are that

f01 = 0 (8.1.15)

at k2 = 1 where particles are barely trapped and that

[
E(k) − (1 − k2)K(k)

] ∂f01

∂k2
= 0 (8.1.16)

at k2 = 0 where particles are trapped at the bottom of the
magnetic well [3]. The boundary condition f01 = 0 at
k2 = 1 is a statement that barely circulating particles do not
wobble off the magnetic surface significantly relative to the
trapped particles after circulating around the torus a few times.
Because the distribution function must be continuous, f01 = 0
for barely trapped particles. At the bottom of the magnetic
well, the flux in the pitch angle space must be continuous when
the pitch angle scattering operator dominates, which implies
[E(k) − (1 − k2)K(k)]∂f01/∂k2 = 0 at k2 = 0.

8.2. Neoclassical toroidal plasma viscosity derived from
bounce averaged drift kinetic equation

Equation (8.1.11) is solved by examining the relative strength
of the toroidal drift frequency and the effective collision
frequency. This leads to several collisionality regimes.
Because the toroidal drift frequency can vanish at a particular
pitch angle parameter k2

r , particles having k2 = k2
r can drift

off the flux surface unbounded. This indicates that there is
a resonance process occurring at k2

r . Thus, the solutions are
categorized in terms of the non-resonant and resonant fluxes.

8.2.1. 1/ν regime. In this asymptotic regime, the transport
fluxes scale as 1/ν. It occurs when the toroidal drift frequency
is much smaller than the collision frequency and can be
neglected. Equation (8.1.10) reduces to

⟨vd · ∇V ⟩b
∂fM

∂V
= ⟨C (f01)⟩b . (8.2.1.1)

Integrating equation (8.2.1.1) over k2 yields

∂f01

∂k2
= ε

νD

∫ k2

0 dk2 ⟨vd · ∇V ⟩b K(k)∂fM/∂V

E (k) −
(
1 − k2

)
K(k)

, (8.2.1.2)

after imposing the boundary condition that ∂f01/∂k2 remains
finite at k2 = 0.

The flux surface averaged particle flux #⃗ is defined as

〈
#⃗ · ∇V

〉
=

∫ 2π

0

dζ

2π

∫ π

−π

dθ

2π

∫
dvf vd · ∇V. (8.2.1.3)

It is convenient to use dv = 2π/M2 ∑
σ dE dµB/|v∥|, and

dµB ≈ −2µB0ε dk2 in performing velocity space integrals
equation (8.2.1.3). Only f01 contributes to the transport fluxes.
Because f01 is not a function of the poloidal angle θ , it only
contributes to the non-axisymmetric flux #na and

#na =
∫ 2π

0

dζ0

π

∫
dE

M2
v−1

∫
2µB0ε dk2 4K(k)√

2ε

× ⟨vd · ∇V ⟩b f01, (8.2.1.4)

Replacing ⟨vd · ∇V ⟩b in equation (8.2.1.4) by ⟨C(f01)⟩b, using
either equation (8.2.1.1) or equation (8.1.10), and imposing the
boundary conditions for f01 yield

#na = − 4√
2ε

∫ 2π

0

dζ0

π

∫
dE

M
vνD

×
∫

dk2

[
E(k) −

(
1 − k2

)
K(k)

]

∂fM/∂V

(
∂f01

∂k2

)2

. (8.2.1.5)

The flux surface averaged particle flux is [208],
after substituting ∂f01/∂k2 in equation (8.2.1.2) into
equation (8.2.1.5),

#na
1/ν = −N

ε3/2

4
√

2π3/2

(
Mc

eχ ′

)2
v4

t

νt
I1/ν

×
[
η1

(
p′

p
+

e.′

T

)
+ η2

T ′

T

]
, (8.2.1.6)

where νt =
√

2πNie
4
i ln//(M

1/2
i T

3/2
i ) for ions, and νt =√

2πNiZ
2
i e

4
e ln//(M

1/2
e T

3/2
e ) for electrons,

I1/ν =
∫ 1

0
dk2 [

E(k) −
(
1 − k2) K(k)

]−1

×
∑

n

n2
[ (∫ θt

−θt

dθ

(
k2 − sin2 θ

2

)1/2

An

)2

+

(∫ θt

−θt

dθ

(
k2 − sin2 θ

2

)1/2

Bn

)2 ]
, (8.2.1.7)

ηj for j = 1–2 is defined as

ηj =
∫ ∞

0
dxx6e−x2

(
x2 − 5

2

)j−1
νt

νD
. (8.2.1.8)

The turning points of the toroidally trapped particles ±θt are
defined as k2 = sin2(θt/2).

In this regime, the heat flux is [208]

qna
1/ν

T
= −N

ε3/2

4
√

2π3/2

(
Mc

eχ ′

)2
v4

t

νt
I1/ν

×
[
η2

(
p′

p
+

e.′

T

)
+ η3

T ′

T

]
, (8.2.1.9)

where η3 is defined in equation (8.2.1.8) with j = 3.
The symbol ηj for j = 1–3 is used to denote the

coefficients in front of the plasma gradients for neoclassical
plasma viscosity in various regimes. Their definitions are valid
only in their specific subsections.

The bounds for this asymptotic regime in the collision
frequency space are ν∗ < 1, but ν/ε > c|.′|/χ ′, if finite ∇B

drift is neglected as is appropriate for ε < 1. The scaling in
this regime can be understood in terms of the random walk
argument. In the 1/ν regime, the drift orbit trajectories are
interrupted by collisions and the step size is 'r ∼ εvdr/ν,
where, vdr is the bounce averaged radial drift speed. The
fraction of particles that participate in the transport process
is of the order of

√
ε, namely, the fraction of bananas. The

de-correlation time is ε/ν. Note that for bananas, the bounce
averaged vdr is proportional to the magnitude of the perturbed
fields. Substituting all these estimates in the random walk
argument leads to the scaling for transport fluxes in the 1/ν

regime.
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8.2.2. Collisional boundary layer ν −
√

ν regime. When
the collision frequency decreases further so that ⟨C(f01)⟩b <

⟨vd · ∇ζ0⟩b, equation (8.1.10) can be solved by a subsidiary
ordering using the small parameter ⟨C(f01)⟩b/⟨vd · ∇ζ0⟩b.
Note that because ⟨vd · ∇ζ0⟩b ̸= 0 for non-resonant transport
fluxes, the ordering is meaningful. The ordered equations are

⟨vd · ∇ζ0⟩b
∂f01,0

∂ζ0
+ ⟨vd · ∇V ⟩b

∂fM

∂V
= 0, (8.2.2.1)

and

⟨vd · ∇ζ0⟩b
∂f01,1

∂ζ0
=

〈
C

(
f01,0

)〉
b , (8.2.2.2)

where the third subscript in the perturbed distribution f

denotes the ordering for this regime.
The solution to equation (8.2.2.1) is [208]

f01,0 = − cµB0

eχ ′ ⟨vd · ∇ζ0⟩b

1
4K(k)

∂fM

∂V

×
∑

n

∮
dθ

An(θ) cos nζ0 + Bn(θ) sin nζ0√
k2 − sin2 (

θ
2

) . (8.2.2.3)

The integration constant f01,0 is found to be zero by solving
the solubility constraint of equation (8.2.2.2). The solution
in equation (8.2.2.3) is adequate to calculate the transport
fluxes by expressing them in terms of the collision operator
as illustrated in equation (8.2.1.5). However, the resultant
fluxes diverge logarithmically as k2 → 1, i.e. approaching the
boundary that separates the trapped and circulating particles
[216]. This unphysical behaviour must be resolved. The

physics origin of the singularity is the logarithmic dependence
in the bounce averaged radial drift ⟨vd · ∇V ⟩b. When f01,0

in equation (8.2.2.3) is substituted into the bounce averaged
collision operator, the ∂f01.0/∂k2 diverges as k2 → 1.
This indicates that the ordering scheme used in obtaining
equations (8.2.2.1) and (8.2.2.2) becomes invalid in the vicinity
of k2 = 1, and implies that the original bounce averaged drift
kinetic equation, i.e. equation (8.1.10) must be solved in the
boundary layer region. The solution in equation (8.2.2.3) is
perfectly acceptable outside the vicinity of k2 = 1. This
leads to the conclusion that the singularity can be resolved
by a collisional boundary analysis [3]. The solution in
equation (8.2.2.3) becomes the outer solution to be matched to
the boundary layer solution. In addition because the ∂f01,0/∂k2

varies slowly relative to the rapid variation of the boundary
layer solution, f01,0 is also an approximate particular solution
to equation (8.1.10). Thus, the boundary layer analysis is to
find the homogeneous solution for equation (8.1.10) that is
localized in the vicinity of k2 = 1.

The homogeneous equation that is valid in the vicinity of
k2 = 1 is

⟨vd · ∇ζ0⟩b
∂f01

∂ζ0
≈ νD

ε

(
ln

4√
1 − k2

)−1
∂2f01

∂(k2)2
. (8.2.2.4)

Because the layer is narrow, only the highest derivative term
∂2f01/∂

(
k2

)2 is kept in ⟨C(f01)⟩b. The complete elliptic
integrals in the vicinity of k2 =1 are also expanded to obtain
equation (8.2.2.4). The (1 − k2) in the argument of the
logarithm can be replaced by the width of the layer because

the value of the logarithm is not sensitive to its argument.
Equation (8.2.2.4) can be cast into a dimensionless form

1
2

∂2f−

∂y2
b

= σω

∂f−

∂ζ0
, (8.2.2.5)

where f− is the distribution function inside the layer, σω =
±1 indicates the direction of the toroidal drift frequency
⟨vd · ∇ζ0⟩b, yb is the stretch variable defined as

yb =
(
1 − k2)

(
νD

νt

)−1/2 [
ν·d/ln

(
16/

√
ν·d

)]−1/2
, (8.2.2.6)

and ν∗d = 4νt/
(
ε|⟨vd · ∇ζ0⟩b|1−'k2

)
. From the definition for

yb, yb = 0 at k2 = 1, and yb becomes large when k2<1 in the
asymptotic limit of the boundary layer analysis where ν∗d < 1.

The width of the layer 'k2 estimated from equa-
tion (8.2.2.5) by setting yb = 1, the edge of the layer, and
νD = νt , i.e. neglecting the energy dependence in νD, is

'k2 =
[
ν·d/ln

(
16/

√
ν·d

)]1/2
. (8.2.2.7)

Note that in defining the stretch variable yb, the width of the
layer in equation (8.2.2.7) is used which in turn is used to
estimate 'k2. This procedure yields an accurate solution in
the asymptotic limit. The iteration procedure may be solved
numerically to yield an accurate value in the transition region
from one asymptotic limit to the other [219, 220].

The layer equation equation (8.2.2.5) is solved in yb that
varies from ∞, the region of trapped particles, to 0, the trapped-
circulating boundary. Fourier analysing the solution f in terms
of sin nζ0and cos nζ0 yields the homogeneous solution

f− =
∑

n

An−e−
√

|n|yb

×
(

cos
√

|n|yb sin nζ0 − σω sin
√

|n|yb cos nζ0

)

+
∑

n

Bn−e−
√

|n|yb

×
(

cos
√

|n|yb cos nζ0 + σω sin
√

|n|yb sin nζ0

)
,

(8.2.2.8)

where An− and Bn− are coefficients to be determined from the
boundary conditions. Two other linearly independent solutions
that diverge as e

√
|n|yb are discarded.

Setting the complete solution, which is the sum of the
outer solution equation (8.2.2.3) evaluated at the edge of the
boundary layer, i.e. k2 = 1 − 'k2, and the layer solution
equation (8.2.2.8), to zero at yb = 0, i.e. k2 = 1, yields

Bn− =
[

cµB0

eχ ′ ⟨vd · ∇ζ0⟩b

1
4K(k)

∮
dθAn(θ)

/√
k2 − sin2 (θ/2)

]

1−'k2

∂fM

∂V
, (8.2.2.9)

and

An− =
[

cµB0

eχ ′ ⟨vd · ∇ζ0⟩b

1
4K(k)

∮
dθBn(θ)

/√
k2 − sin2 (θ/2)

]

1−'k2

∂fM

∂V
, (8.2.2.10)

where the subscript 1−'k2 indicates that the quantities inside
the square brackets are evaluated at the edge of the boundary
layer.
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The solution inside the layer is completely determined.
It consists of the outer solution equation (8.2.2.3) evaluated
at the edge of the boundary layer, the layer solution
equation (8.2.2.8), and the coefficients for the layer solution
equation (8.2.2.9) and equation (8.2.2.10).

The boundary layer solution including both the
homogeneous solution and the particular solution needs to
match to the outer solution given in equation (8.2.2.3) to obtain

f01 = − cµB0

eχ ′ ⟨vd · ∇ζ0⟩b

∂fM

∂V

1
4K(k)

×
{ ∑

n

∮
dθ

√
k2 − sin2 (

θ
2

)

×
[
An(θ)

(
1 − e−

√
|n|yb cos

√
|n|yb

)

+σωBn(θ)e−
√

|n|yb sin
√

|n|yb

]
cos nζ0

+
∑

n

∮
dθ

√
k2 − sin2 (

θ
2

)

×
[
Bn(θ)

(
1 − e−

√
|n|yb cos

√
|n|yb

)

−σωAn(θ)e−
√

|n|yb sin
√

|n|yb

]
sin nζ0

}
. (8.2.2.11)

As yb approaches infinity, f01 in equation (8.2.2.11) reduces
to the outer solution given in equation (8.2.2.3).

Substituting f01 into the expressions for the flux surface
averaged transport fluxes yields [216, 221]

#na
ν−

√
ν

= −N
v4

t

π3/2

(
M

e.′

)2

× νt√
32ε

[
η1

(
p′

p
+

e.′

T

)
+ η2

T ′

T

]
, (8.2.2.12)

and

qna
ν−

√
ν

T
= −N

v4
t

π3/2

(
M

e.′

)2

× νt√
32ε

[
η2

(
p′

p
+

e.′

T

)
+ η3

T ′

T

]
, (8.2.2.13)

where for j =1–3, ηj is defined as

ηj =
∫ xmin

0
dxx6

(
x2 − 5

2

)j−1

×e−x2 νD

νt

∫ 1

0
dk2 [

E(k) −
(
1 − k2) K(k)

] ∑

n

(
α̂2

n + β̂2
n

)
,

(8.2.2.14)

and α̂n and β̂n are defined, respectively, as

α̂n = ∂

∂k2

{∮
dθ

(−1/2)
√

k2 − sin2(θ/2)

×
[
An(θ)(1 − e−

√
|n|yb cos(

√
|n|yb))

+σωBn(θ)e−
√

|n|yb sin(
√

|n|yb)
] Fb

K(k)

}
, (8.2.2.15)

β̂n = ∂

∂k2

{∮
dθ

(−1/2)
√

k2 − sin2(θ/2)

×[Bn(θ)(1 − e−
√

|n|yb cos(
√

|n|yb))

−σωAn(θ)e−
√

|n|yb sin(
√

|n|yb)]
Fb

K(k)

}
, (8.2.2.16)

The factor Fb in equations (8.2.2.15) and (8.2.2.16) is
defined as

Fb = 1

1 − σe.′ x2

x2
min

[
2E(k)
K(k)

− 1
] , (8.2.2.17)

where

x2
min =

∣∣∣∣
c.′

χ ′
eχ ′

Mc

2
v2

t ε
′

∣∣∣∣ . (8.2.2.18)

The energy integral and the pitch angle integral are coupled
even in the case where the energy dependence in yb is
neglected. The maximum of the dimensionless energy integral
xmin is defined so that the toroidal drift frequency does not
vanish. This upper limit defines the non-resonant transport
fluxes.

The asymptotic limit can be defined when the E × B
drift speed is assumed to be much larger than the ∇B drift
speed, which can be satisfied in large aspect ratio tokamaks
or for low energy particles. In this case, the upper limit
of the dimensionless energy integral can be extended to
infinity. Transport fluxes are valid when ν/ε < c|.′|/χ ′ but
(ν/ε)/(c|.′|/χ ′) > [(δB/B)/ε]2 where (δB/B) is the typical
magnitude of the perturbed field, e.g., typical values of |bmnc|or
|bmns |. The fluxes consist of two collision frequency scalings.
One scales as ν resulting from the outer solution and the other
as

√
ν from the boundary layer solution. The boundary layer

contribution usually dominates and the transport fluxes can be
simplified as [216, 221]

#na√
ν
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4
√
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Nv4

t

√
ν∗d

c |d./dχ |
√
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×
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+
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)
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, (8.2.2.19)

and
qna√

ν

T
= − 1

4
√

2π3/2
Nv4

t

√
ν∗d

c |d./dχ |
√

ε

(
Mc

eχ ′

)2

×
[

ln
(

16
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ν·d

)]1/2 ∑
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)]

×
[
η2
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p′

p
+

e.′

T

)
+ η3

T ′

T

]
, (8.2.2.20)

where αn = [4K(k)]−1
∫ θt

−θt
dθAn(θ)/

√
k2 − sin2 (θ/2),

αbn = αn|1−'k2 , βn = [4K(k)]−1 ×
∫ θt

−θt
dθBn(θ)/√

k2 − sin2 (θ/2), βbn = βn|1−'k2 , and for j = 1–3,

ηj =
∫ ∞

0
dx

(
x2 − 5

2

)j−1

x6e−x2
√

νD

νt
. (8.2.2.21)

Both αbn and βbn are evaluated at the edge of the boundary
layer where k2 = 1 − 'k2 if they diverge as k2 → 1 as
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indicated in the subscript, and are evaluated at k2 = 1 if
they are well behaved at k2 = 1. There is a possibility that
αbn and βbn vanish at a particular radius. In that case, the ν

scaling becomes important. For this reason it could be better
to use the expressions in equations (8.2.2.12) and (8.2.2.13)
for modelling purposes.

The transport scaling in this regime can be understood as
follows when E × B drift frequency dominates. The fraction
of particles that participate in the transport process is

√
ε'k2,

the step size is vdr/ωζ0 , where ωζ0 = c|d./dχ | is the angular
E × B drift frequency, and the de-correlation frequency is
(ν/ε)/('k2)2. The 'k2 is given in equation (8.2.2.7). The
scaling of the transport fluxes in this regime follows from the
random walk argument.

8.2.3. Collisionless detrapping/retrapping regime. When
(ν/ε)/(c|.′|/χ ′) < [(δB/B)/ε]2, the collisionless detrap-
ping/retrapping layer becomes wider than the collisional
boundary layer and the transport fluxes are dominated by par-
ticles that undergo detrapping and retrapping processes when
the E ×B drift frequency dominates [3, 28, 222]. The detrap-
ping here means that a toroidally trapped particle, i.e. a banana,
becomes a circulating particle without suffering collisions.
The reverse process is called retrapping. This detrapping-and-
retrapping process is unique to tori without any symmetry. The
trapping state of particles can change even when there are no
collisions involved [3, 28]. This transport mechanism is non-
resonant because the E ×B drift speed is assumed to be much
larger than the ∇Bdrift speed. The transport fluxes scale with
collision frequency in this regime. The particle and heat fluxes
are [222]

#na
ν

= −
√

2ε

π3/2
N

(
M

e.′

)2

v4
t νt(δB/B)M

×
[
η1

(
p′

p
+

e.′

T

)
+ η2

T ′

T

]
, (8.2.3.1)

and
qna

ν

T
= −

√
2ε

π3/2
N

(
M

e.′

)2

v4
t νt(δB/B)M

×
[
η2

(
p′

p
+

e.′

T

)
+ η3

T ′

T

]
, (8.2.3.2)

where

(δB/B)M = Max
{

[4K(kd)]−1

×
∫ θt

−θt

dθ
1

√
k2

d − sin2 θ
2

∑

n

(Ancos nζ0 + Bnsin nζ0)

}
,

(8.2.3.3)

kd is approximately the same as k defined in equation (8.1.14),
and

ηj =
∫ ∞

0
dx

(
x2 − 5

2

)j−1

x6e−x2 νD

νt
, (8.2.3.4)

for j = 1–3. The notation Max[s] in equation (8.2.3.3)
means the maximum value of the argument s along ζ0. The
fluxes in equations (8.2.3.1) and (8.2.3.2) are a simplified
version by approximating an integral as discussed in [222].
This simplified version is easier to implement. The more

complicated version in [222] can be adopted if more accuracy
is preferred.

The random walk argument for this regime is similar
to that for the collisional boundary layer

√
ν regime

except that the layer width is replaced by the collisionless
detrapping/retrapping layer width 'k2

d

'k2
d ∼ δB/B

ε
< 1. (8.2.3.5)

Note that the ratio (δB/B) /ε is a measure of asymmetry in
the |B| spectrum.

8.2.4. Superbanana plateau regime. When the E × B
drift speed is comparable to or smaller than the ∇B drift
speed, these two frequencies can resonate, i.e. the toroidal
drift frequency vanishes, and the radial step size becomes
unbounded if the singularity is unresolved. This leads to the
superbanana plateau regime and the superbanana regime. The
collision frequency is large enough to resolve the singularity
but small enough to prevent the drift orbits from forming in
the superbanana plateau regime where νt < cMv2

t ε
′/(eχ ′),

but ν/ (δB/B0) > (δB/B0)
1/2 ε−1/2cMv2

t ε
′/(eχ ′) [223]. In

the superbanana regime, the singularity is resolved by the non-
linear orbit trajectories [224].

8.2.4.1. Resonance away from the phase space boundary.
When superbanana plateau resonance occurs at a pitch angle
parameter k2

r that is away from either k2 = 1 or 0, the
dependence of the complete elliptic integrals in the toroidal
drift frequency on k2 can be approximated by a Taylor series
expanded in the vicinity of the resonance k2

r . Specifically,

⟨vd · ∇ζ0⟩b ≈ c.′

χ ′ − cµB0

eχ ′ ε′
[

2E (kr)

K (kr)
− 1

]

−cµB0

eχ ′ ε′
(

dG

dk2
r

) (
k2 − k2

r

)
, (8.2.4.1.1)

where G(k) = 2E(k)/K(k) − 1 [66]. From equa-
tion (8.2.4.1.1), the resonance condition that determines the
resonance pitch angle parameter k2

r is

c.′

χ ′ − cµB0

eχ ′ ε′
[

2E (kr)

K (kr)
− 1

]
= 0. (8.2.4.1.2)

In the vicinity of k2
r , the toroidal drift becomes

⟨vd · ∇ζ0⟩b ≈ −cµB0

eχ ′ ε′
(

dG

dk2
r

) (
k2 − k2

r

)
, (8.2.4.1.3)

which describes the collisional resonance broadening. The
collision operator can be approximated as

⟨C(f10)⟩b ≈ νD

ε

[
E (kr)

K (kr)
−

(
1 − k2

r

)] ∂2f01

∂
(
k2

)2 , (8.2.4.1.4)

for a narrow resonance layer in the vicinity of k2
r .

Substituting results in equations (8.2.4.1.1)–(8.2.4.1.4) into
equation (8.1.10) yields the equation that governs the physics
of the superbanana plateau resonance:

−cµB0

eχ ′ ε′ dG

dk2
r

(
k2 − k2

r

) ∂f01

∂ζ0
+ ⟨vd · ∇V ⟩b

∂fM

∂V

= νD

ε

[
E (kr)

K (kr)
−

(
1 − k2

r

)] ∂2f01

∂
(
k2

)2 . (8.2.4.1.5)
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Equation (8.2.4.1.5) can be solved by expanding f01 as

f01 =
∑

n

(
fneinζ0 + f ∗

n e−inζ0
)
, (8.2.4.1.6)

where fn and its complex conjugate f ∗
n are Fourier coefficients.

The equation for the Fourier amplitude fn is

−cµB0

eχ ′ ε′
∣∣∣∣
dG

dk2
r

∣∣∣∣ inyafn + ⟨vd · ∇V ⟩bn

∂fM

∂V

= νD

ε

[
E (kr)

K (kr)
−

(
1 − k2

r

)] ∂2fn

∂y2
, (8.2.4.1.7)

where ya = k2
r − k2,

(
dG/dk2

r

)
= −|dG/dk2

r | because(
dG/dk2

r

)
is negative, and

⟨vd · ∇V ⟩bn = cµB0

eχ ′
1

4K (k)

n

2

∫ θt

−θt

dθ
Bn (θ) + iAn (θ)
√

k2 − sin2 (θ/2)
.

(8.2.4.1.8)

Equation (8.2.4.1.7) can be cast into the standard dimension-
less form for the plateau regime in general [6, 225–227]

∂2gn

∂z2
− zgn = 1, (8.2.4.1.9)

where

fn = −
⟨vd · ∇V ⟩bn

|cµB0ε′n/(eχ ′)|
∣∣dG/dk2

r

∣∣ ν̂
−1/3 ∂fM

∂V
gn, (8.2.4.1.10)

ν̂ = νD

ε

[
E (kr)/K(k)r −

(
1 − k2

r

)]

[cµB0ε′/(|e| χ ′)]
∣∣dG/dk2

r

∣∣ , (8.2.4.1.11)

z = iσ1p̂, and p̂ = ya ν̂
−1/3. The notation σ1 is the combined

sign of the electric charge e and mode number n: σ1 = +1 if e

and n have the same signs otherwise σ1 = −1. The transport
fluxes do not depend on the sign of σ1. Thus, σ1 = +1 is
chosen without loss of generality. The width of the resonance
layer can be estimated by p̂ ∼ 1 and is

'k2 ∼ ν̂1/3. (8.2.4.1.12)

There are two scales in the pitch angle space. One is of the
order of unity associated with the equilibrium such as those in
⟨vd · ∇V ⟩b, and the other is of the order of 'k2 ≈ ν̂

1/3
1 ≪ 1

resulting from the resonance. The goal is to find the short
scale variation, of the order of the width of the resonance
layer, of the perturbed distribution function. Within this
scale, the equilibrium variation of k2 is treated as a parameter.
This approximation is the same as that used in the collisional
boundary layer analysis in section 8.2.2 [216] and is used in
evaluating the transport fluxes.

In the asymptotic limit where ν̂ < 1, the layer variable
z describes the fast variation in the pitch angle parameter k2

space. Because the resonance is far away from k2 = 0 or 1,
the boundary condition for equation (8.2.4.1.8) is that gn → 0
as |p̂| → ∞. The solution for equation (8.2.4.1.9) is then

gn = πHi(z), (8.2.4.1.13)

where πHi(z) =
∫ ∞

0 dtezt−t3/3 [228]. This is the standard
dimensionless solution in the plateau regime when the pitch
angle scattering operator dominates [6, 225–227].

Substituting equations (8.2.4.1.9)–(8.2.4.1.11) into the
definitions for the particle and heat fluxes yields the transport
fluxes in the superbanana plateau regime [223]

#na
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]
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(8.2.4.1.14)

and
qna
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T
= −π

4

√
2ε

2
|ε′|

cM

|e|χ ′
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t

π3/2
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(
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+

e.′

T

)
+ η3

T ′
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(8.2.4.1.15)

The coefficients ηj for j = 1–3 are

ηj =
∫ ∞

xmin

dx2x4
(

x2 − 5
2

)j−1

×e−x2 K(kr)∣∣dG/dk2
r

∣∣
∑

n

|n|(α2
n + β2

n)kr
, (8.2.4.1.16)

where the subscript kr indicates that the quantity is evaluated at
k = kr , the lower integration limit of the energy integral is set
by the resonant condition and is given in equation (8.2.2.18).
Note that all the k dependences inside the energy integral in
equations (8.2.4.1.16) are evaluated at kr . The transport fluxes
are identical to those obtained in [223] using a Krook model
as expected.

When the radial electric field vanishes, k2
r ≈ 0.827 [3],

and fluxes reduce to [223]

#na
sb−p

= −π

4

√
2ε

2
|ε′|

cM

|e|χ ′
Nv2

t

π3/2

[
η1

(
p′

p
+

e.′

T

)
+ η2

T ′

T

]
,

(8.2.4.1.17)

and
qna
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)
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(8.2.4.1.18)

where ηj = Cj 4K(kr)k
2
r (1 − k2

r )
∑

n |n|(α2
n + β2

n)kr
, and Cj

for j = 1–3 is defined in section 6.2.2.
The random walk argument for the superbanana plateau

scaling goes as follows. Balancing the residual∇B drift
frequency ω′

∇B('k2) with the effective collision frequency
(ν/ε)/('k2)2, after evaluating ⟨vd · ∇ζ0⟩b at k = kr ,
determines the width of the layer in the k2 space ('k2) ∼
[(ν/ε)/|ω′

∇B |]1/3, which is basically ν̂1/3, where ω′
∇B =

dω∇B/dk2
r , and the ∇B drift frequency ω∇B is ω∇B =

−[cµB0/
(
eχ ′)]ε′[2E(k)/K(k) − 1]. The step size is 'r ∼

[vdr/
(
|ω′

∇B |'k2
)
], which remains finite due to collisional

resonance broadening. Recognizing that the fraction of
particles that participate in the transport process is

√
ε'k2,

i.e. the particles that are centered around the resonance k2
r ,

and the de-correlation frequency is (ν/ε)/('k2)2, superbanana
plateau scaling is obtained as D ∼

√
εv2

dr/|ω′
∇B |, which

is the same scaling as those given in equations (8.2.4.1.14)
and (8.2.4.1.15).

The theory discussed here is for the superbanana plateau
resonance occurring away from the phase space boundary,
i.e. k2 = 1 or 0. The boundary conditions at the phase
space boundary can be ignored when the resonance pitch angle
parameter k2

r is away from the boundary by more than the
width of the resonance layer 'k2 ∼ ν̂1/3. However, when the
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resonance occurs in the vicinity of the phase space boundary,
the boundary conditions at k2 = 1 or 0 cannot be ignored and
these conditions modify the resonance physics as first noticed
in [219, 220].

8.2.4.2. Resonance in the vicinity of k2 = 1. When resonance
occurs in the vicinity of k2 = 1, the toroidal drift frequency
can be approximated as [66]

⟨vd · ∇ζ0⟩b ≈ c.′

χ ′ − cµB0

eχ ′ ε′

×

⎡

⎣ 2

ln
(

4/
√

1 − k2
) − k2

r +
(
k2
r − k2)

⎤

⎦ .

(8.2.4.2.1)

The proper interpretation of equation (8.2.4.2.1) is that the
resonance k2

r is determined from the resonance condition

c.′

χ ′ − cµB0

eχ ′ ε′

⎡

⎣ 2

ln
(

4/
√

1 − k2
) − k2

r

⎤

⎦ = 0. (8.2.4.2.2)

The 1 − k2 = 'k2 in the argument of the logarithmic function
is the width of the resonance layer to be determined. Thus, in
the vicinity of the resonance,

⟨vd · ∇ζ0⟩b ≈ −cµB0

eχ ′ ε′ (k2
r − k2) , (8.2.4.2.3)

which describes the collisional resonance broadening. For a
narrow resonance layer, the collision operator is approximated
in the vicinity of k2 = 1 as [66]
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ε

1
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[
16/
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)] ∂2f01

∂y2
1

, (8.2.4.2.4)

where y1 = k2
r − k2. Thus, the equation that governs the

resonance in the vicinity of k2 = 1 is

−cµB0

eχ ′ ε′y1
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ε
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∂y2
1

. (8.2.4.2.5)

Using the same procedure in solving equation (8.2.4.1.5), a
dimensionless equation for the Fourier amplitude f1n, defined
in f01 =

∑
n

(
f1neinζ0 + f ∗

1ne−inζ0
)
, is

∂2g1n

∂z2
1

− z1g1n = 1, (8.2.4.2.6)

where z1 = iσ1ν̂
−1/3
1 y1, ν̂1 = (2νD/ε)

[
ln

(
16/'k2

)]−1 ×[
|e| χ ′/

(
cµB0ε

′)], and σ1 is the combined sign of the charge
e and the mode number n as defined previously. The
dimensionless function g1n is defined as

f1n = −
⟨vd · ∇V ⟩bn

ν̂1 |cµB0ε′n/(eχ ′)|
ν̂

2/3
1

∂fM

∂V
g1n. (8.2.4.2.7)

The width of the resonance layer can be estimated from the
definition for z1 to be 'k2 ≈ ν̂

1/3
1 , and can be used in the

argument of the logarithmic function. An accurate numerical
evaluation for the layer width can be made using the iteration
procedure for the best fit to the numerical solution of the bounce
average drift kinetic equation in the transition region [229].

Equation (8.2.4.2.6) is the standard equation for the
plateau resonances derived previously. It is to be solved
subject to the boundary conditions that g1n = 0 at k2 = 1
and vanishes far away from the resonance k2

r , i.e. g1n → 0
when k2 ≪ k2

r . These boundary conditions are different from
those that require the perturbed distribution function vanishes
far away from the resonance for standard plateau resonances
away from the phase space boundary in section 8.2.4.1. There,
the boundary conditions at the phase space boundary are not
important because the resonance layer is narrow.

The solution to equation (8.2.4.2.6) consists of the
particular solution and the homogeneous solution. The
particular solution g1n,p that is compatible with the boundary
condition is [6, 66, 225–227]

g1n,p = πHi (z1) . (8.2.4.2.8)

Note that g1n,p is the standard solution for the plateau
resonances because it satisfies the boundary conditions given
in section 8.2.4.1 and there are no homogeneous solutions
that are compatible with the boundary conditions when the
resonance is away from the phase space boundary. However,
to impose the boundary condition at k2 = 1, homogeneous
solution must be included. For σ1 = +1, the homogeneous
solution that is compatible with the boundary conditions is
Ai

(
z1e−i2π/3

)
. Here, Ai is Airy function [228]. For σ1 = −1,

it is Ai
(
z1ei2π/3

)
. These two functions are mirror images of

each other [228]. Thus, σ1 = +1 is chosen without loss
of the generality. The complete solution compatible with the
boundary conditions is

g1n = Ic1Ai
(
z1e−i2π/3) + πHi (z1) , (8.2.4.2.9)

where Ic1 is a constant determined from the boundary condition
that gn = 0 at k2 = 1 and is

Ic1 = − πHi (z11)

Ai
(
z11e−i2π/3

) , (8.2.4.2.10)

where z11 is defined as z11 = iν̂−1/3
1

(
k2
r − 1

)
.

Substituting the solution into the expressions for the
transport fluxes yields [66]
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and
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where for j = 1–3

ηj =
∫ ∞

xmin

dx2x4
(

x2 − 5
2

)j−1

e−x2
Cp1, (8.2.4.2.13)

and

Cp1 =
∫ ∞

−(1−k2
r )ν̂
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d |z1|Re

{
Hi (z1) −

[
Hi (z11)

Ai
(
z11e−i2π/3

)

Ai
(
z1e−i2π/3)

]}
. (8.2.4.2.14)

53



Nucl. Fusion 55 (2015) 125001 Review Article

Figure 21. The form factor Cp1 as a function of
(
1 − k2

r

)
ν̂

−1/3
1 is shown. When resonance is at k2 = 1, Cp1 ≈ 1/6; when(

1 − k2
r

)
ν̂

−1/3
1 ≫ 1, Cp1 approaches unity.

The factor Cp1 as a function of
(
1 − k2

r

)
ν̂

−1/3
1 is shown in figure

21 [66]. When
(
1 − k2

r

)
ν̂

−1/3
1 ≫ 1, Cp1 = 1, which is the

same value obtained when the resonance occurs away from
phase space boundary discussed in section 8.2.4.1. When
the resonance occurs at k2 =1, Cp1 ≈ 1/6, an indication
that the strength of the resonance is weakened. There is an
overshoot in the transition from the phase space boundary to
the interior. The integrand of Cp1 is shown in figure 22 [66].
The boundary condition at k2 = 1 modifies the shape of the
resonance significantly when

(
1 − k2

r

)
ν̂

−1/3
1 ≪ 1. When the

resonance is away from k2 = 1, the shape of the resonance
becomes centrally peaked.

8.2.4.3 Resonance in the vicinity of k2 = 0. In the vicinity of
k2 = 0, ⟨vd · ∇ζ0⟩b can be expressed as [66]

⟨vd · ∇ζ0⟩b ≈ c.′

χ ′ − cµB0

eχ ′ ε′ [1 − k2
r +

(
k2
r − k2)] .

(8.2.4.3.1)
Thus, the resonance for ⟨vd · ∇ζ0⟩b occurs at

c.′

χ ′ − cµB0

eχ ′ ε′ (1 − k2
r

)
= 0, (8.2.4.3.2)

which is an equation for the resonance k2
r . The residual

⟨vd · ∇ζ0⟩b for the collisional resonance broadening is

⟨vd · ∇ζ0⟩b = −cµB0

eχ ′ ε′ (k2
r − k2) . (8.2.4.3.3)

In the vicinity of k2 = 0, the collision operator can be
approximated as [66]

⟨C(f10)⟩b ≈ νD

2ε

∂

∂k2

(
k2 ∂f10

∂k2

)
. (8.2.4.3.4)

It should be noted that even though the resonance layer is
narrow, the ∂/∂k2 term is of the same order as ∂2/

(
∂k2

)2

because k2 is small. Employing equations (8.2.4.3.3) and
(8.3.4.3.4), the bounce averaged drift kinetic equation in the
vicinity of k2 = 0 that governs the resonance becomes

−cµB0

eχ ′ ε′ (k2
r − k2) ∂f01

∂ζ0
+ ⟨vd · ∇V ⟩b

∂fM

∂V

= νD

2ε

∂

∂k2

(
k2 ∂f10

∂k2

)
, (8.2.4.3.5)

which can be solved by expandingf01 =
∑

n(f0neinζ0 +
f ∗

0ne−inζ0). The function f0n satisfies
cµB0

eχ ′ ε′ (k2 − k2
r

)
inf0n + ⟨vd · ∇V ⟩bn

∂fM

∂V

= νD

2ε

∂

∂k2

(
k2 ∂f0n

∂k2

)
. (8.2.4.3.6)

Defining u = k2
[
σ1ν̂0/(i |n|)

]−1/2 and u0 = k2
r [σ1ν̂0/

(i |n|)]−1/2, equation (8.2.4.3.6) is cast into

∂2f0n

∂u2
+

1
u

∂f0n

∂u
− u − u0

u
f0n = 1

u
⟨vd · ∇V ⟩bn

×∂fM

∂V

(
σ1ν̂0

i |n|

)1/2 1
ν̂0

(
cµB0

|e| χ ′

)−1

, (8.2.4.3.7)

where ν̂0 = (2νD/ε)
[
|e| χ ′/

(
cµB0ε

′)]. Defining gn =
√

uf0n

to remove the first derivative, and then changing variable from
u to w = 2u, equation (8.2.4.3.7) becomes a Whittaker’s
equation [66]:

∂2gn

∂w2
+

(
1

4w2
− 1

4
+

u0/2
w

)
gn =

√
2

4
√

w
⟨vd · ∇V ⟩bn

×∂fM

∂V

(
σ1ν̂0

i |n|

)1/2 1
ν̂0

|e| χ ′

cµB0
. (8.2.4.3.8)

Solving equation (8.2.4.3.8) in terms of Whittaker’s functions
yields

f0n =
⟨vd · ∇V ⟩bn

ν̂0 |cµB0ε′/(eχ ′)|

(
σ1ν̂0

i |n|

)1/2
∂fM

∂V
hn, (8.2.4.3.9)

where

hn = I1
Y1√
w

+ I2
Y2√
w

− Y1

2
√

w

∫ w

0
dw

Y2/
√

w

W (Y1, Y2)

+
Y2

2
√

w

∫ w

0
dw

Y1/
√

w

W (Y1, Y2)
, (8.2.4.3.10)

and I1 and I2 are constants to be determined. The Y1 and Y2

are Whittaker’s functions defined as [228]

Y1 = e−w/2√wM

(
1
2

− λr , 1, w

)
, (8.2.4.3.11)

and

Y2 = e−w/2√wU

(
1
2

− λr , 1, w

)
, (8.2.4.3.12)
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Figure 22. The integrand of the integral Cp1 as a function of |z1|. When
(
1 − k2

r

)
ν̂−1/3 ≪ 1. The boundary condition at k2 = 1 modifies the

resonant integrand significantly. When
(
1 − k2

r

)
ν̂−1/3 ≫ 1, the integrand becomes centrally peaked as expected.

where M (a, b, w) and U (a, b, w) are Kummer’s functions
[228], and λr = u0/2. The W (Y1, Y2) = −1/#(a) is

the Wronskian, and a = (1/2 − λr ). Because Y2 diverges
logarithmically as w → 0, I2 = 0. For localized solution, the
dimensionless function gn → 0 as w → ∞, and the constant
I1 is

I1 = 1
2

∫ ∞

0
dw

Y2/
√

w

W (Y1, Y2)
. (8.2.4.3.13)

The function gn that satisfies boundary conditions is then

gn = Y1

2
√

w

∫ ∞

w

dw
Y2/

√
w

W (Y1, Y2)
+

Y2

2
√

w

∫ w

0
dw

Y1/
√

w

W (Y1, Y2)
,

(8.2.4.3.14)

and f0n is also determined.
The transport fluxes calculated using the solution for f01

are [66]

#na
sb p 0 = −π

4
Nv2

t

π3/2

cM

|e| χ ′
2
√

2ε

ε′

∑

n

|n|
(
α2

n + β2
n

)
k2
r
K (kr)

×
[
η1

(
p′

p
+

e.′

T

)
+ η2

T ′

T

]
, (8.2.4.3.15)

and
qna

sb p 0

T
= −π

4
Nv2

t

π3/2

cM

|e| χ ′
2
√

2ε

ε′

∑

n

|n|
(
α2

n + β2
n

)
k2
r
K (kr)

×
[
η2

(
p′

p
+

e.′

T

)
+ η3

T ′

T

]
, (8.2.4.3.16)

where coefficient ηj is defined as, for j = 1–3,

ηj =
∫ ∞

xmin

dx2x4
(

x2 − 5
2

)j−1

e−x2
Cp0, (8.2.4.3.17)

and the form factor that describes the transition is

Cp0 = 1
2π

∫ ∞

0
d |w|Re

{√
2

2
(1 − i)

# (a)

2

×
[

Y1√
w

∫ ∞eiπ/4

w

dw′ Y2√
w′

+
Y2√
w

∫ w

0
dw′ Y1√

w′

] }
.

(8.2.4.3.18)

Note that Cp0 depends on the parameter λr = u0/2 which is a
function of energy. If thermal quantities are used for the energy

to evaluate λr , Cp0 becomes a function of temperature and can
be taken out of the energy integral. If the energy dependence
in λr is treated rigorously, there can be a different collision
frequency scaling in the transition region.

The factorCp0 as a function ofλr is shown in figure 23 [66].
When the resonance occurs at k2 = 0, Cp0 ≈ 1/4, an indication
that the resonance strength is weakened. When λr ≫ 1,
Cp0 → 1 as expected. There is also an overshoot in the
transition region. The integrand of Cp0 for several values of
λr is shown in figure 24 [66]. When λr ≫ 1, the effects of the
boundary condition at k2 = 0 diminish.

8.2.5. Superbanana regime. In this regime, the singularity
resulting from the resonance between the E×B drift frequency
and the ∇B drift frequency is resolved by the non-linear drift
trajectories, i.e. superbananas, similar to the standard banana
regime. It onsets when the effective collision frequency for
superbananas is less than the superbanana bounce frequency,
i.e. νeff ∼ ν/(δB/B0) < (δB/B0)

1/2ε−1/2cMv2
t ε

′/(|e|χ ′) so
that collisionless drift orbits can form [3, 224].

To solve the bounce averaged drift kinetic equation,
it is necessary to know the toroidal drift frequency for
superbananas. To this end, the constant of motion of the
second adiabatic invariant J2 =

∮
dθ |v∥| is needed, which

is valid when curvature drift like terms and magnetic shear
are neglected. Here, the integral is performed in between the
turning points of the trapped particles, i.e.

∮
dθ =

∫ θt

−θt
dθ ,

where v||(±θt) = 0. Using the magnetic field spectrum for
|B| in equation (8.3) and assuming that |An(θ)|, and |Bn(θ)|
are much smaller than ε yield

J2 = 8

√
µB0ε

M
[E(k) − (1 − k2)K(k)]

+
1
2ε

√
µB0ε

M

∑

n

(Ān cos nζ0 + B̄n sin nζ0), (8.2.5.1)

where Ān =
∮

dθAn(θ)/
√

k2 − sin2(θ/2), and B̄n =∮
dθBn(θ)/

√
k2 − sin2(θ/2).

Because the toroidal symmetry is broken, trapped particles
drift off the flux surface following a constant J2 surface. Thus,
at any two points on the constant J2 surface,

J2(V , ζ0) = J2(V0, ζ00), (8.2.5.2)
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Figure 23. The form factor Cp0 as a function of λr . When resonance at the k2 = 0, Cp0 ≈ 1/4. When the resonance is far away from
k2 = 0, Cp0 approaches unity as expected.

Figure 24. The integrand of the integral Cp0 as a function of |w|. When the resonance occurs at the k2 = 0, the integrand is modified
significantly by the boundary condition. When the resonance is far away from k2 = 0, the integrand approaches a centrally peaked resonant
function.

where (V0, ζ00) are the coordinates of the reference point on
the drift trajectory. Assuming the width of the orbits is smaller
than the radial gradient scale length of J2, equation (8.2.5.2)
can be expanded to obtain an equation for the orbit width
(V − V0) [224]:

1
2

(V − V0)
2 ∂2J̄2

∂V 2
0

+ (V − V0)
∂ J̄2

∂V0

+
1

2ε0

√
µB0ε0

M

∑

n

[Ān(cos nζ0 − cos nζ00)

+B̄n(sin nζ0 − sin nζ00)] = 0, (8.2.5.3)

where J̄2 =8
√

µB0ε/M[[E(k) − (1 − k2)K(k)], and the
additional subscript ‘0’ is to indicate the quantity is evaluated
at (V0, ζ00). Solving equation (8.2.5.3) yields the orbit width

(V − V0) =
[

− ∂ J̄2

∂V0
±

{(
∂ J̄2

∂V0

)2

− ∂2J̄2

∂V 2
0

1
ε0

√
µB0ε0

M

×
∑

n

[Ān(cos nζ0 − cos nζ00)

+B̄n(sin nζ0 − sin nζ00)]
}1/2][

∂2J̄2/∂V 2
0

]−1

. (8.2.5.4)

The toroidal angular velocity ωtb can now be calculated. The
bounce averaged toroidal drift velocity can be written as

ωtb = ⟨vd · ∇ζ0⟩b = −Mc

eχ ′
∂J2/∂V

M∂J2/∂E
, (8.2.5.5)

Because M∂J2/∂E appears in all terms in the bounce averaged
drift kinetic equation, it is not necessary to perform any
operation on it. Expanding ∂J2/∂V in the numerator of
equation (8.2.5.5) in the vicinity of V0 yields

ωtb ≈ ω0 + ω′
0 (V − V0) , (8.2.5.6)

where ω0 = ⟨vd · ∇ζ0⟩b evaluated at V0. To obtain
equation (8.2.5.6), it is noted that the variation of ωtb on a
given flux surface is much weaker than that of ωtb on the
drift surface. Substituting the width of the superbanana given
in equation (8.2.5.4) into equation (8.2.5.6) yields a simple
expression for ωtb on the drift surface [224]

ωtb = σsbω̂tb

√
k̂2 − F(ζ0), (8.2.5.7)

where σsb denotes the sign of ωtb,

ω̂tb =
∣∣∣∣
Mc

eχ ′

∣∣∣∣

[

2
∂2J̄2

∂V 2
0

δB/B0

2ε

(
µB0ε

M

)1/2
]1/2

× 1
2K(k)

(
µB0ε

M

)1/2

, (8.2.5.8)
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the effective pitch angle parameter is

k̂2 =
(
∂ J̄2/∂V0

)2

2
∣∣∣ ∂2J̄2

∂V 2
0

∣∣∣ δB/B0
2ε

(
µB0ε
M

)1/2 , (8.2.5.9)

the effective magnetic well is

F(ζ0) = σj

δB/B0

∑

n

[Ān(cos nζ0 − cos nζ00)

+B̄n(sin nζ0 − sin nζ00)], (8.2.5.10)

the normalized perturbed magnetic field strength is
δB

B0
=

∑

n

[Ān(cos nζ0M − cos nζ0m)

+B̄n(sin nζ0M − sin nζ0m)], (8.2.5.11)

ζ0M is the angle at which
∑

n

(
Ān cos nζ0M + B̄n sin nζ0M

)

is the global maximum, ζ0m is the angle at which∑
n

(
Ān cos nζ0m + B̄n sin nζ0m

)
is the global minimum, and

σj denotes the sign of ∂2J̄2/∂V 2
0 . The angle ζ00 is chosen

according to the sign of ∂2J̄2/∂V 2
0 . If ∂2J̄2/∂V 2

0 > 0, i.e.
σj = +1, ζ00 = ζ0m, otherwise ζ00 = ζ0M. Thus, superbananas
can be trapped either on the side of ζ0m or on the side of ζ0M

depending on the sign of ∂2J̄2/∂V 2
0 . There is a possibility

that the quantity
∑

n

(
Ān cos nζ0 + Bn sin nζ0

)
can have local

maxima and minima. In that case, there can be multiple
trapping regions. The function F(ζ0) is an effective magnetic
field well that can trap bananas to form superbananas. The
effective pitch angle for the superbananas is k̂2. Because
F(ζ0) ! 1, k̂2 ! 1 for superbananas, and k̂2 " 1 for
circulating drift bananas.

The superbanana orbits have ω0 ≈ 0, i.e. the E × B
and ∇B drifts almost cancel each other. In order for the
cancellation to occur, the normalized energy x2 = v2/v2

t must
be larger than x2

min. Note that the resonant condition ω0 ≈ 0
can be satisfied for any species regardless of the electric charge
of the species and the sign of the radial electric field.

The typical magnitude of ω̂tb is of the order of
(δB/B0)

1/2 ε−1/2|ωt|, whereωt is the typical angular frequency
of the circulating drift bananas

ωt ∼
∣∣∣∣
cµB0

eχ ′ ε′
∣∣∣∣ . (8.2.5.12)

Thus, the onset of the superbanana regime is when νeff ∼
ν/ (δB/B0) < (δB/B0)

1/2 ε−1/2|ωt|. The collisions are
so infrequent that trapped particles can complete their drift
trajectories before suffering collisions. The fraction of the
superbananas fsb can be inferred from the definition of ω̂tb. It is
the fraction of the banana particles

√
ε times the fraction of the

superbananas among the bananas, which is (δB/B0)
1/2 ε−1/2,

and fsb ∼ (δB/B0)
1/2.

The bounce averaged drift kinetic equation is solved using
the same method used to calculate transport fluxes caused by
orbits with finite width such as the drift orbits in bumpy tori,
the potato orbits, and squeezed banana orbits in tokamaks in
section 6 [110, 111, 120].

The linear bounce averaged drift kinetic equation for
trapped particles is

⟨vd · ∇ζ0⟩b
∂f01

∂ζ0
+ ⟨vd · ∇V ⟩b

∂f01

∂V
+ ⟨vd · ∇V ⟩b

∂fM

∂V

= ⟨C(f01)⟩b . (8.2.5.13)

The normally higher order ⟨vd · ∇V ⟩b∂f01/∂V term must
be kept because ∂f01/∂V ∼ ∂fM/∂V . In the
superbanana regime, equation (8.2.5.13) is solved by
a subsidiary expansion exploring the small parameter
[ν/ (δB/B0)]/[(δB/B0)

1/2 ε−1/2|ωt|] < 1. The leading order
equation is

⟨vd · ∇ζ0⟩b
∂f01,1

∂ζ0
+ ⟨vd · ∇V ⟩b

∂f01,1

∂V
+ ⟨vd · ∇V ⟩b

∂fM

∂V
= 0,

(8.2.5.14)

and the next order equation is

⟨vd · ∇ζ0⟩b
∂f01,2

∂ζ0
+ ⟨vd · ∇V ⟩b

∂f01,2

∂V
=

〈
C(f01,1)

〉
b ,

(8.2.5.15)

where the second set of the subscript denotes the subsidiary
ordering. Changing independent variables from (V , ζ0, E, µ)
to (J2, ζ0, E, µ), equations (8.2.5.14) and (8.2.5.15) become

⟨vd · ∇ζ0⟩b
∂f01,1

∂ζ0
+ ⟨vd · ∇V ⟩b

∂fM

∂V
= 0, (8.2.5.16)

and
⟨vd · ∇ζ0⟩b

∂f01,2

∂ζ0
=

〈
C(f01,1)

〉
b , (8.2.5.17)

Equation (8.2.5.16) is solved either by integrating it directly
or utilizing the fact that J2 is a constant on the drift surface
[212, 224]. Because J2 is constant on the drift trajectory,

dJ2 = ∂J2

∂V
dV +

∂J2

∂ζ0
dζ0 = 0. (8.2.5.18)

Since ⟨vd · ∇V ⟩b is proportional to ∂J2/∂ζ0, and ⟨vd · ∇ζ0⟩b is
proportional to ∂J2/∂V , equation (8.2.5.16) can be integrated
to obtain, utilizing equation (8.2.5.18),

f01,1 = −'V
∂fM

∂V
+ CV , (8.2.5.19)

where 'V is the width of the orbits, and CV is an integration
constant. Using (V − V0) in equation (8.2.5.4) and expressing
it in terms of ωtb yield

f01,1 = −ωtb

ω′
0

∂fM

∂V
+ gsb, (8.2.5.20)

where gsb is an integration constant with ∂gsb/∂ζ0 = 0. To
determine gsb, the constraint equation of equation (8.2.5.17) is
solved so that f01,2 is periodic. For superbananas, gsb vanishes,
i.e. gsb = 0, because of the reflection boundary condition at
the turning points and ∂gsb/∂ζ0 = 0. To determine gsb for
circulating bananas, an explicit form for the collision operator
is needed.

The approximate collision operator in equation (8.1.13) is
appropriate for ⟨C(f01,1)⟩b in equation (8.2.5.17). Changing
variable from k to ωtb, and expressing it in terms of k̂ yield
〈
C(f01,1)

〉
b ≈ νD

ε

[
E(k)

K(k)
− (1 − k2)

]

×
(

∂ωtb

∂k2

)2
ωtb

k̂ω̂2
tb

∂

∂ k̂

ωtb

k̂ω̂2
tb

∂f01,1

∂
∧
k

. (8.2.5.21)

The physical meaning is that the dominant effect of collisions
is to scatter particles across the boundary marked by
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ωtb ≈ ω0 ≈ 0. The effective collision frequency deduced from
equation (8.2.5.21) scales as νD/ (δB/B0).

Substituting f01,1 in equation (8.2.5.20) into the constraint
equation for equation (8.2.5.17), i.e.

∮
dζ0⟨C(f01,1)⟩b/ωtb = 0,

yields
∂gsb

∂ k̂
= Cg

k̂ω̂2
tb

⟨ωtb⟩ζ0

, (8.2.5.22)

where Cg is an integration constant, and ⟨A⟩ζ0 =
∮

dζ0A/2π .
The constant Cg is determined from the condition that
∂f01,1/∂ k̂ →0 as k̂ → ∞. Thus,

∂f01,1

∂ k̂
= −

k̂ω̂2
tb

ω′
0

(
1

ωtb
− H(k̂ − 1)

⟨ωtb⟩ζ0

)
∂fM

∂V
, (8.2.5.23)

where H (k̂−1) is the step function. There is a boundary layer
between the trapped and circulating bananas in the vicinity of
k̂ = 1. This leads to a modification to the transport fluxes and
the plasma viscosity that scales as

√
ν. Such a modification

is neglected here. With ∂f01,1/∂ k̂, the transport fluxes in the
superbanana regime can be calculated.

The transport fluxes must be radially averaged besides
the usual flux surface average because the width of the orbits
is finite as discussed in section 6. Thus, the particle flux is
defined as

⟨# · ∇V ⟩V =
〈∫

dvf vd · ∇V

〉

V

, (8.2.5.24)

where the angular brackets denote both the flux surface and
the radial averages:

⟨A⟩V =
∫

dV

'V

∫
dθ

2π

∫
dζ

2π
A. (8.2.5.25)

Expressing the particle flux in terms of the collision operator
and using ∂f01,1/∂ k̂ given in equation (8.2.5.23) yield [224]

#na
sb = −8

√
2

π3/2

Nνt

ε

√
δB/B0

[
η1

(
p′

p
+

e.′

T

)
+ η2

T ′

T

]
,

(8.2.5.26)

and
qna

sb

T
= −8

√
2

π3/2

Nνt

ε

√
δB/B0

[
η2

(
p′

p
+

e.′

T

)
+ η3

T ′

T

]
,

(8.2.5.27)

where the coefficients ηj for j = 1–3 are defined as

ηj =
∫ ∞

xmin

dx
νD

νt

x2
(

x2 − 5
2

)j−1

e−x2

√
ε√

δB/B0
Ik

×
{[

E(k) − (1 − k2)K(k)
] ∣∣∣∣

∂ω0

∂k2

∣∣∣∣
ω̂tb

(∂ω0/∂V )2

}
,

(8.2.5.28)

and all terms inside the curly brackets are evaluated at ω0 = 0.
Specifically, k2 is determined from ω0 = 0 equation in terms
of the energy and the radial electric field. After that, the energy
integral is performed. The pitch angle integral Ik appeared in
equation (8.2.5.28) is defined as

Ik =
∫ ∞

0
dk̂

[

k̂

(〈
ω̂tb

|ωtb|

〉

ζ0

− H
ω̂tb

⟨|ωtb|⟩ζ0

)]

, (8.2.5.29)

where |ω̂tb/ωtb| = 1/

√
k̂2 − F(ζ0).

The transport fluxes in the superbanana regime can be
understood as follows. The superbanana orbit width scales as

('r)sb ∼ r
√

(δB/B) /ε, (8.2.5.30)

which only depends on the geometry. Strong magnetic
field strength cannot reduce the step size. The fraction of
superbananas is estimated to be fsb ∼

√
(δB/B). Thus, the

scaling for the transport coefficients is [3, 224]

D ∼ ν

√
(δB/B)

ε
r2, (8.2.5.31)

which can be significant even for small δB/B. It should be
noted that superbananas discussed here are an ideal rendition
of the real orbit trajectories, which can be more complicated.
However, superbanana transport scaling becomes relevant to
plasma confinement when the tips of the superbananas exist
inside the confined region because they experience the largest
radial drift in the vicinity of those tips.

It should be emphasized that the same transport fluxes in
the superbanana plateau regime can also obtained by solving
equation (8.2.5.13) as demonstrated in [230]. By including
the radial motion in the theory, the mirror like force that pulls
the drift orbits back from the resonance positions in the phase
space becomes explicit. Neglecting the mirror like force sets
the lower bound in the collision frequency domain for the
superbanana plateau regime.

8.2.6. Approximate analytic expression for neoclassical toroidal
plasma viscosity. The results presented in sections 8.2.1–
8.2.5 are the asymptotic limits for not only the transport fluxes
but also the neoclassical toroidal viscosity from the flux–force
relation in section 4. Knowing these limits a formula that
joins all of them together can be constructed. There is only
one requirement for the formula that is that it reproduces all
the analytic asymptotic expressions in the appropriate limits.
The rational approximation inside the energy integral that has
been used to join neoclassical transport fluxes in tokamaks and
stellarators is adopted [6, 7, 105, 231].

Three non-resonant regimes, namely, 1/ν, collisional
boundary layer ν−

√
ν, and collisionless detrapping/retrapping

ν regimes are joined by defining energy dependent kernels for
these regimes [218],

k1/v = ε

νD
I1/ν, (8.2.6.1)

kν−
√

ν = νt

ε

(
χ ′

c.′

)2
νD

νt

∫ 1

0
dk2 [

E(k) −
(
1 − k2) K(k)

]

×
∑

n

(
α̂2

n + β̂2
n

)
(8.2.6.2)

and

kν = 8νD

(c.′/χ ′)2 (δB/B)M. (8.2.6.3)

The deflection frequency νD = ν ii
D for ions and νD = νee

D +
νei

D for electrons. The logarithmic function ln
(
16/

√
ν∗d

)
,

causing unphysical result in the transition region between the
collisional boundary layer regime and the 1/ν regime when
ν∗d ≫ 1, is modified to ln

[
16/

√
ν∗d/(1 + ν∗d)

]
[218]. The

reason for this approximation is that the slope in lnν at the
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transition region is determined by the asymptotic limit, which
can be extrapolated to the transition region. This is a proper
procedure as evidenced by the excellent agreement between the
connection formula and the numerical results shown in [219].

The factor Fb in α̂2
n and β̂2

n is modified slightly to
accommodate the possible singularity in the expression. The
modified form is [221]

Fb =
x2

min

{
x2

min − σe.′x2 [2E(k)/K(k) − 1]
}

{
x2

min − σe.′x2 [2E(k)/K(k) − 1]
}2 +

(
'k2

)2 ,

(8.2.6.4)

where 'k2 is the width of the layer for the superbanana plateau
resonance and can be approximated as 'k2 ≈ ν̂1/3 defined in
equation (8.2.4.1.12).

Using these kernels, a single expression that joins three
non-resonant regimes to obtain the flux surface averaged non-
resonant particle flux #non is [218]

#non = −N
ε1/2

4
√

2π3/2

(
Mc

eχ ′

)2

v4
t

×
[
λ1

(
p′

p
+

e.′

T

)
+ λ2

T ′

T

]
, (8.2.6.5)

and the corresponding Onsager symmetric heat flux qnon is

qnon

T
= −N

ε1/2

4
√

2π3/2

(
Mc

eχ ′

)2

v4
t

×
[
λ2

(
p′

p
+

e.′

T

)
+ λ3

T ′

T

]
, (8.2.6.6)

where for j =1–3

λj =
∫ xmin

0
dxx6

(
x2 − 5

2

)j−1

e−x2

×
kν−

√
ν(

1 + kν−
√

ν/kν

) (
1 + kν−

√
ν/k1/v

) . (8.2.6.7)

Note that the upper limit of the energy integral is xmin, which
is unambiguously defined in equation (8.2.2.18). The reason
for the limit is because only normalized energy less than xmin
can participate in the non-resonant transport processes.

The resonant transport fluxes, including superbanana
plateau and superbanana regimes, are also joined in the same
way. However, because the 1/ν regime is the collisional end of
the superbanana plateau regime, it should also be included in
the single expression for the resonant transport fluxes. Two
kernels for the superbanana plateau regime ksb−p and the
superbanana regime ksb can be defined and they are [66]

ksb−p = 8π

ε′ cM
|e|χ ′ v

2
t x

⎧
⎨

⎩

[
1 − e−(1−k2

r )/ν̂1/3
]

∣∣dG/dk2
r

∣∣ + Cp1e−(1−k2
r )/ν̂1/3

⎫
⎬

⎭

×K(kr)
∑

n

|n|(α2
n + β2

n)|kr
(8.2.6.8)

for 0.827 ! k2 ! 1,

ksb−p = 8π

ε′ cM
|e|χ ′ v

2
t x

Cp0K(kr)
∑

n

|n|(α2
n + β2

n)|kr
(8.2.6.9)

for 0 ! k2
r ! 0.827, and

ksb = 64
ε

(
eχ ′

Mcv2
t x

)2

νDIk

{ [
E(k) − (1 − k2)K(k)

]

×
∣∣∣∣
∂ω0

∂k2

∣∣∣∣
ω̂

(∂ω0/∂V )2

}
. (8.2.6.10)

Of course, quantities inside the curly brackets and Ik should be
evaluated at ω0 = 0 as indicated in the theory for the transport
fluxes in the superbanana regime.

Using the same rational approximation procedure, a single
expression for the flux surface averaged resonant particle flux
#res is [218]

#res = −N
ε1/2

4
√

2π3/2

(
Mc

eχ ′

)2

v4
t

×
[
λ1

(
p′

p
+

e.′

T

)
+ λ2

T ′

T

]
, (8.2.6.11)

and the Onsager symmetric resonant heat flux qres is

qres

T
= −N

ε1/2

4
√

2π3/2

(
Mc

eχ ′

)2

v4
t

×
[
λ2

(
p′

p
+

e.′

T

)
+ λ3

T ′

T

]
, (8.2.6.12)

where for j = 1–3

λj =
∫ ∞

xmin

dxx6
(

x2 − 5
2

)j−1

e−x2

×
ksb−p(

1 + ksb−p/ksb
) (

1 + ksb−p/k1/v

) . (8.2.6.13)

The lower limit for the energy integral is xmin because only
particles with energy higher than xmin can contribute to the
resonant transport processes. In the collisional limit of the
resonant transport fluxes, the asymptotic limit of the 1/ν

regime is reproduced. The interval of the energy integral in
the collisional limit of the combined resonant and non-resonant
fluxes is from 0 to ∞ as expected to reproduce the asymptotic
limit of the 1/ν regime.

The overall flux surface averaged transport fluxes, and
thus neoclassical toroidal plasma viscosity, derived from the
solutions of the bounce averaged drift kinetic equation, are the
sum of both the resonant and the non-resonant transport fluxes,
i.e. [218]

# = #non + #res (8.2.6.14)

and
q

T
= qnon

T
+

qres

T
. (8.2.6.15)

Because typical magnitude for the perturbed fields δB/B

resulting from the error fields or MHD activities is of the
order of 10−3 or smaller in experiments, the collisionless
detrapping/retrapping regime and the superbanana regime are
not usually accessible for most tokamak plasmas. In that case,
one could choose to neglect both of these regimes and simplify
equations (8.2.6.14) and (8.2.6.15) by setting quantities(
1 + kν−

√
ν/kν

)
in equation (8.2.6.7) and

(
1 + ksb−p/ksb

)

in equation (8.2.6.13) to unity. These simplified analytic
expressions reproduce the asymptotic limits accurately as
shown in [229].

The accuracy of the connection formula can be further
improved by determining the layer widths in the theories for the
collisional boundary layer and superbanana plateau resonance
using iterative procedures following their definitions as is done
in [229].
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8.2.7. Implications on the modelling of toroidal flow and
steady-state intrinsic toroidal flow. The non-axisymmetric
particle flux #na is proportional to the toroidal plasma viscosity
⟨Bt · ∇· ↔

π ⟩ from the flux–force relation in equation (4.1.1.6).
Thus, it can be responsible for the toroidal flow damping
observed in experiments when the perturbed magnetic field
strength is of the order of 10−4 or larger.

Except in the 1/ν regime, the transport fluxes depend on
the radial electric field non-linearly. The resonant transport
fluxes decrease exponentially when the magnitude of the radial
electric field increases. The non-resonant transport fluxes,
on the other hand, decrease algebraically. These non-linear
dependences can cause the toroidal momentum equation to
have bifurcated solutions for the radial electric field [208], as
demonstrated in [229].

The steady-state solution of the toroidal momentum
equation determines the radial electric field that makes plasmas
ambipolar. If the ion particle flux dominates, the radial electric
field is negative and is [208], approximately,

(
p′

i

pi
+

ei.
′

Ti

)
= −η2i

η1i

T ′
i

Ti
. (8.2.7.1)

The radial electric field is positive when the electron particle
flux dominates and is approximately [208]

(
p′

e

pe
+

ee.
′

Te

)
= −η2e

η1e

T ′
e

Te
. (8.2.7.2)

When electron and ion particle fluxes are comparable, there
can be multiple solutions just like the bifurcated solutions in
the L–H transition theory.

The thermodynamic forces can also be expressed in terms
of the components of the plasma flows. Using the radial force
balance equations in the Hamada coordinates [208]

(
p′

p
+

e.′

T

)
= − e

cT

(
χ ′V ζ − ψ ′V θ

)
(8.2.7.3)

all the transport fluxes presented in sections 8.2 can be
expressed in terms of the components of flow velocity. The
existence of the ambipolar radial electric field implies a steady-
state intrinsic toroidal flow. The poloidal flow V θ can be
determined from the parallel component of the momentum
equation as shown in section 6. The intrinsic steady-state
toroidal flow is, when ion viscous force dominates [208],

V ζ = qV θ +
η2i

η1i

cTi

eiχ ′
T ′

Ti
. (8.2.7.4)

When electron viscous force dominates, V ζ can reverse the
direction and becomes [208]

V ζ = qV θ +
η2e

η1e

cT

eeχ ′
T ′

e

Te
+

P ′

Neeχ ′ . (8.2.7.5)

In between these two limits, the toroidal flow can have
bifurcated solutions. The magnitude of the intrinsic steady-
state toroidal flow is of the order of vtρpi/Ln [208], which is
the same as that determined from the residual stress discussed
in section 7.

From the flux–force relation, the transport fluxes derived
from the bounce averaged drift kinetic equation can be
employed in modelling the toroidal flow damping when there
are error fields or MHD activities present in tokamaks. This
can be accomplished when the neoclassical toroidal plasma
viscosity is implemented in the NCLASS code [89].

8.3. Neoclassical toroidal plasma viscosity derived from the
drift kinetic equation

When ν∗ > 1, the collision frequency is high enough to
interrupt collisionless orbits, the proper equation to solve for
the neoclassical plasma viscosity is the drift kinetic equation
shown in equation (6.4.6). There are two regimes in this limit.
One is the Pfirsch–Schlüter regime and the other is the plateau
regime. The plateau regime is the resonance between the
parallel particle motion v||n and the

(
V||n + VE

)
. The results

of these two regimes can be unified with a judiciously chosen
collision frequency in the Krook model [135].

In the limit of ν∗ < 1, the toroidal drift frequency can
resonate either with the bounce frequency of the trapped
particles [232–236], or with the transit frequency of the
circulating particles [236]. These resonances result in a
toroidal viscosity that is independent of the collision frequency
similar to that in the plateau regime. The magnitude is also
similar. Theory for the superbanana formation and its transport
consequences for the resonance between the bounce frequency
and the toroidal drift frequency has also been developed in
detail in [233, 234], and a superbanana transport scaling
similar to D in equation (8.2.5.31) has been obtained.

8.3.1. Plateau–Pfirsch–Schlüter regime. The perturbed
distribution function in this regime can be obtained by solving
equation (6.4.6) with a Krook model, where the collision
frequency νT is chosen to be νT = 3νD + νE . The resultant
components of the viscous forces in Hamada coordinates
are [135]
〈
Bp · ∇· ↔

π
〉
=

√
π

4
NMvtB

×
{

∑

m,n

[
I (1)
mn

(
b2

mnc + b2
mns

)
m

(
mV θ − nV ζ

)]

+
∑

m,n

[
I (2)
mn

(
b2

mnc + b2
mns

)
m

2
5p

(
mqθ − nqζ

)]
}

,

(8.3.1.1)

〈
Bt · ∇· ↔

π
〉
=

√
π

4
NMvtB

×
{

∑

m,n

[
I (1)
mn

(
b2

mnc + b2
mns

)
(nq)

(
−mV θ + nV ζ

)]

+
∑

m,n

[
I (2)
mn

(
b2

mnc + b2
mns

)
(nq)

2
5p

(
−mqϑ + nqζ

)]
}

,

(8.3.1.2)

and
〈
B · ∇· ↔

π
〉
=

√
π

4
NMvtB

×
{

∑

m,n

[
I (1)
mn

(
b2

mnc + b2
mns

)
(m − nq)

(
mV θ − nV ζ

)]

+
∑

m,n

[
I (2)
mn

(
b2

mnc + b2
mns

)
(m − nq)

2
5p

(
mqθ − nqζ

)]
}

,

(8.3.1.3)
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whereRmn = νT /[(mωθ − nωζ )
2 + ν2

T ], ωθ = (v|| + V||)χ
′/B+

VE · ∇θ , ωζ = (v|| + V||)ψ
′/B + VE · ∇ζ , and

I (j)
mn = (2/π)

∫ ∞

0
dxx5e−x2 (

x2 − 5/2
)j−1

×
∫ 1

−1
dy

(
1 − 3y2)2 (

vχ ′/B
)
Rmn, (8.3.1.4)

for j = 1 and 2. The expressions for ⟨Bp · ∇·
↔
1⟩, ⟨Bt · ∇·

↔
1⟩

and ⟨B · ∇·
↔
1⟩ are the same as the corresponding viscous

forces except replacing I (1)
mn by I (2)

mn and I (2)
mn by I (3)

mn , with I (3)
mn

is defined in equation (8.3.1.4) with j = 3. The non-linear
viscous forces in equations (8.3.1.1)–(8.3.1.4) are valid for an
arbitrary magnetic field spectrum in a doubly periodic torus,
including stellarators. It should be emphasized that the mirror
force terms for all modes are neglected by the definition for
the plateau resonances.

It is important to note that the upper limit for the energy
integral in I

(j)
mn is ∞. This indicates that I

(j)
mn is the asymptotic

limit of the plateau–Pfirsch–Schlüter regime. For practical
applications, it is often chosen to limit the upper limit to
(ν

(mn)m
∗ )1/4, where νmn

∗ = νRq/(vtε
3/2
mn |m − nq|) and ν

(mn)m
∗ is

the minimum value of νmn
∗ for all (m, n) modes [237]. Thus,

for particles with normalized energy x2 < (ν
(mn)m
∗ )1/2 are

in the plateau–Pfirsch–Schlüter regime; while particles with
x2 > (ν

(mn)m
∗ )1/2 are in the low collisionality regime for that

particular (m, n) mode. This is an approximation to model a
torus with complicated magnetic field spectrum.

The components of the viscous forces are a non-linear
function of the radial electric field. The generic dependence
on the radial electric field is similar to that in the non-linear
plasma viscosity for the axisymmetric tokamaks. The only
possible difference is that as the magnitude of the radial electric
field increases, viscous forces can have more than one local
maximum as demonstrated in [238]. They can have several
local maxima and minima depending on the magnetic field
spectra. This can lead to bifurcated solution for the radial
electric field.

8.3.2. Bounce-transit and drift resonance. When ν∗ < 1,
either the bounce frequency of the trapped particles or the
transit frequency of the circulating particles can resonate
with the toroidal drift frequency. The physics of bounce
and drift resonance on plasma transport has been discussed
for tandem mirrors [232]. The resonance between the
bounce frequency and toroidal drift frequency has been found
to enhance transport loses for energetic particles in rippled
tokamaks [233, 234]. The theory includes not only the
superbanana plateau like scaling but also the superbanana
like scaling. The same mechanism is used in the context of
the theory for neoclassical toroidal plasma viscosity. This
leads to the plateau-like neoclassical toroidal plasma viscosity
[235, 236]. However, because the bounce averaged toroidal

drift frequency is smaller than the bounce-transit frequency by
a factor of ρ/Ln, the magnitude of the superbanana plateau
fluxes is larger than that resulting from the bounce-transit and
drift resonance scaling wise.

The bounce averaged drift kinetic equation cannot
describe the resonance between the characteristic frequency
of the bounce motion and the toroidal drift frequency. The

drift kinetic equation is used for this purpose. The standard
approach is to solve the drift kinetic equation by integrating
along the unperturbed orbit, i.e. by following the banana orbits
[93, 239, 240]. This is Lagrangian in nature. In this approach,
only a Krook model can be used when collisional dissipation
becomes important. An Eulerian approach is developed to
complement the Lagrangian approach [236]. The advantage
of the Eulerian approach is that it can treat dissipation using a
realistic collision operator. The method can be used to describe
transit and drift resonance as well.

The kinetic part of equation (6.4.6) is two dimensional
when toroidal symmetry is broken. Changing variables from
(θ, ζ ) to (θ, ζ0) in the low collisionality regime yields
[(

v∥ + V||
)
n + VE

]
· ∇h =

(
v∥ + V||

B
χ ′ + VE · ∇θ

)
∂h

∂θ

+
c.′

χ ′
∂h

∂ζ0
. (8.3.2.1)

To focus on the bounce-transit and drift resonance, equa-
tion (8.3.2.1) is simplified by neglecting

(
V||χ

′/B + VE · ∇θ
)

term. This term is related to the effects of orbit squeezing
[110] and the shift of the tips of the bananas to higher energy
that leads to non-linear plasma viscosity [135].

The drift kinetic equation to be solved for the bounce-
transit and drift resonance is then

v∥

B
χ ′ ∂h

∂θ
+

c.′

χ ′
∂h

∂ζ0
− C(h) = 2

v2

v2
t

(
1
2

− 3
2

v2
∥

v2

)

fM

×
(

V · ∇B

B
− 2

5
L

(3/2)
1

q · ∇B

Bp

)
, (8.3.2.2)

where magnetic drift is neglected assuming ε < 1.

8.3.2.1. Bounce and Drift Resonance. For the bounce and
drift resonance to occur, the two terms in the kinetic part
of equation (8.3.2.2) must be comparable. In the Eulerain
approach, the Jacobian elliptic function is used in solving
equation (8.3.2.2). The parallel particle speed

∣∣v∥
∣∣ can be

expressed as

∣∣v∥
∣∣ = 2

√
µB0ε

M

(
k2 − sin2 θ

2

)1/2

. (8.3.2.1.1)

The pitch angle parameter k2 is the same as that in
equation (8.1.14); for trapped particles, k2 < 1, and for
circulating particles, k2 > 1.

For trapped particles, an angle η is defined such that [236]

η = π

2K(k)

∫ ϕ

0

dx
(
k2 − sin2 x

)1/2 = π

2K(k)

F

(
sin−1

(
sin ϕ

k

)
, k

)
, (8.3.2.1.2)

where F(φ, k) is the elliptic integral of the first kind, and
ϕ = θ/2 [241]. When trapped particles complete their full
bounce trajectories, i.e. particles make a round trip from one
turning point to the other and back, η goes from −π to π . Thus,
in terms of η, trapped particles are periodic with a period of 2π .
Using the angle η, the operator

∣∣v∥
∣∣ ∂/∂θ in equation (8.3.2.2)

can be cast as

∣∣v∥
∣∣ ∂

∂θ
= π

2

√
µB0ε

M

1
K(k)

∂

∂η
. (8.3.2.1.3)
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The magnetic field variations also need to be expressed in
terms of η. Using Fourier series, ∂B/∂θ and ∂B/∂ζ0 become

1
B

∂B

∂θ
= −

∑

m,n

i(m − nq)εmnei[(m−nq)θ+nζ0] =
∑

n,l

anlei(lη+nζ0),

(8.3.2.1.4)

and

1
B

∂B

∂ζ0
= −

∑

m,n

inεmnei[(m−nq)θ+nζ0] =
∑

n,l

bnlei(lη+nζ0).

(8.3.2.1.5)

The complete θ dependence in |B| spectrum is expanded in
terms of the angle η, because the poloidal mode number m

is not a good quantum number. Since anl and bnl are Fourier
coefficients of real quantities, anl = a∗

−n−l and bnl = b∗
−n−l .

The sin θ term resulting from the equilibrium magnetic field
is excluded in equation (8.3.2.1.4) because it only yields the
standard transport fluxes and does not contribute to the toroidal
plasma viscosity.

In the bounce-drift plateau regime, the role of the
collisions is to remove the singularity in the kinetic part of the
drift kinetic equation and the details of the collision operator
are not important after the momentum conservation property
of the collision operator is taken into account. For this reason,
the Krook model is adopted, i.e. C(h) = −νh.

Equation (8.3.2.2) is solved by expanding the perturbed
distribution function h as

h =
∑

n,l

hnlei(lη+nζ0), (8.3.2.1.6)

where hnls are Fourier coefficients. For each (n,l) mode, hnl

satisfies

iσ lωbhnl + inωEhnl + νhnl = 2
v2

v2
t

(
1
2

− 3
2

v2
∥

v2

)

fM

×
(
anlDθ + bnlDζ

)
, (8.3.2.1.7)

where ωb = (π/2)
√

µB0ε/M
(
χ ′/B

)
[K(k)]−1, Dθ = V θ −

(2/5) L
(3/2)
1 qθ/p, and Dζ = V ·∇ζ0 − (2/5) L

(3/2)
1 q · ∇ζ0/p.

If bounce average had been performed over the trapped particle
trajectory, the driving term Dθ would have been averaged to
zero and only Dζ would have survived as evidenced in the
bounce averaged drift kinetic equation discussed in section 8.1.
The solution to equation (8.3.2.1.7) is

hnl = 2
v2

v2
t

(
1
2

− 3
2

v2
∥

v2

)

fM
−i (σ lωb + nωE + iν)

(σ lωb + nωE)2 + ν2

×
(
anlDθ + bnlDζ

)
, (8.3.2.1.8)

which contains both the resonant and non-resonant parts. Only
the resonant part contributes to the flux surface averaged
transport quantities. The resonant part of hnl , denoted as
hnl,r , is

hnl,r = 2
v2

v2
t

(
1
2

− 3
2

v2
∥

v2

)

fM
ν

(σ lωb + nωE)2 + ν2

×
(
anlDθ + bnlDζ

)
. (8.3.2.1.9)

Because the transport fluxes are even moments of v∥ of the
distribution function, an even function hnl,re is defined:

hnl,re = v2

v2
t

(
1
2

− 3
2

v2
∥

v2

)

fM
(
anlDθ + bnlDζ

)

×
[

ν

(σ lωb + nωE)2 + ν2
+

ν

(−σ lωb + nωE)2 + ν2

]
.

(8.3.2.1.10)

Only one term inside the square brackets in hnl,re can resonate
for a given set of parameters in the bounce-drift resonance
plateau regime. Both terms contribute when all the (n,l)
modes are summed. In the asymptotic limit of the bounce-
drift resonance plateau regime, i.e. ν →0 so that ν/ε < |l|ωb,
hnl,re becomes

hnl,re = π
v2

v2
t

(
1
2

− 3
2

v2
∥

v2

)

fM
(
anlDθ + bnlDζ

)

× [δ(σ lωb + nωE) + δ(−σ lωb + nωE)] . (8.3.2.1.11)

Substituting hnl,re into the definitions for the viscous
forces yields [236]
〈
Bt · ∇· ↔

π
〉
= NM

〈
B2〉

×
[
µp1V

θ + µt1V
ζ +

2
5
µp2

qθ

p
+

2
5
µt2

qζ

p

]
, (8.3.2.1.12)

and
〈
Bt · ∇·

↔
1

〉
= NM

〈
B2〉

×
[
µp2V

θ + µt2V
ζ +

2
5
µp3

qθ

p
+

2
5
µt3

qζ

p

]
, (8.3.2.1.13)

where the viscous coefficients are defined as, for j = 1–3,
(

µpj

µtj

)
= vt

√
π

2
ψ ′

Bχ ′

×
∑

n,l

1
|l|

∫ ∞

xmin

dx2x5e−x2 K (k0)

π/2
(x − 5/2)j−1
∣∣dGnl/dk2

r

∣∣

×
(

−
(
anlb−n−l + q|bnl|2

)

|bnl|2
)

kr

, (8.3.2.1.14)

and the subscript kr indicates the quantities are evaluated at
the resonant pitch angle kr for a given energy. The resonant kr

is defined as the zero of the function G determined from the
argument of δ(s) and is

Gnl(k) =
|n| c|

∣∣.′∣∣

χ ′

√
2B

|l| x
√

εχ ′vt
− π/2

K (k)
. (8.3.2.1.15)

Thus, the resonant pitch angle kr satisfies

Gnl (kr) = 0. (8.3.2.1.16)

Because 1 " (π/2)/K(k) "0, equation (8.3.2.1.16) can be
satisfied if

x " xmin =
(∣∣∣∣

n

l

c.′

χ ′

∣∣∣∣

√
2
ε

B

χ ′
1
vt

)

. (8.3.2.1.17)

The v2
∥/v

2 factor is neglected in evaluating the viscosity as is
appropriate for ε < 1.
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8.3.2.2. Transit-drift resonance. The characteristic frequency
of the circulating particles can also resonate with the toroidal
drift frequency [236]. There is a difference between the non-
linear plasma viscosity and the transit-drift resonance viscosity
to be discussed in this subsection. In the plateau regime of the
non-linear plasma viscosity, the collision frequency is high
enough to prevent the particle trapping inside the equilibrium
and perturbed magnetic fields from occurring. Thus, the mirror
force is neglected completely, and each individual mode is
independent from each other. For the transit-drift resonance
viscosity only the mirror force of the equilibrium magnetic
field is included. The role of the mirror force is to modulate
the parallel particle speed of the circulating particles. For
circulating particles having k > 1, a different angle [236]

ξ = πk

K(1/k)

∫ ϕ

0

dx
(
k2 − sin2 x

)1/2 = π

K(1/k)
F (ϕ, 1/k) ,

(8.3.2.2.1)

is defined. When a circulating particle goes from −π to π ,
so does ξ . The operator |v∥|∂/∂θ in equation (8.3.2.2) can be
written as

∣∣v∥
∣∣ ∂

∂θ
= 2

√
µB0ε

M
k

π/2
K(1/k)

∂

∂ξ
. (8.3.2.2.2)

Using the same solution procedure for the bounce-drift
resonance, the perturbed distribution for circulating particles is

hnl = 2
v2

v2
t

(
1
2

− 3
2

v2
∥

v2

)

fM
−i (σ lωtr + nωE + iν)

(σ lωtr + nωE)2 + ν2

×
(
cnlDθ + dnlDζ

)
, (8.3.2.2.3)

where ωtr = 2
√

µB0ε/Mk (π/2)
(
χ ′/B

)
[K(1/k)]−1 is the

transit frequency for circulating particles, and cnl and dnl are
Fourier coefficients defined as
1
B

∂B

∂θ
= −

∑

m,n

i(m − nq)εmnei[(m−nq)θ+nζ0]

=
∑

n,l

cnlei(lξ+nζ0), (8.3.2.2.4)

and
1
B

∂B

∂ζ0
= −

∑

m,n

inεmnei[(m−nq)θ+nζ0]

=
∑

n,l

dnlei(lξ+nζ0). (8.3.2.2.5)

The difference between the solution for the trapped particles
and that for the circulating particles is that the bounce
frequency ωb of the trapped particles is replaced by the transit
frequency ωtr of the circulating particles and the Fourier
coefficients anl and bnl are substituted by cnl and dnl .

Only the resonant part of the solution that is even in |v|||
contributes to the flux surface averaged transport quantities,
and it is

hnl,re = v2

v2
t

(
1
2

− 3
2

v2
∥

v2

)

fM
(
cnlDθ + dnlDζ

)

×
[

ν

(σ lωtr + nωE)2 + ν2
+

ν

(−σ lωtr + nωE)2 + ν2

]
.

(8.3.2.2.6)

Taking ν → 0 limit, which corresponds to ν < |l|ωtr , yields

hnl,re = v2

v2
t

(
1
2

− 3
2

v2
∥

v2

)

fM
(
anlDθ + bnlDζ

)

×π [δ(σ lωtr + nωE) + δ(−σ lωtr + nωE)] . (8.3.2.2.7)

The transit-drift resonance toroidal plasma viscosity calculated
using hnl,re has the same form as those for the bounce-drift
resonance except the viscous coefficients are different and they
are [236]
(

µpj

µtj

)
vt

√
π

ψ ′

Bχ ′

∑

n,l

1
|l|

∫ ∞

xmin

dx2x5e−x2

×K (1/kr)

π/2
(x − 5/2)j−1 k2

r F (kr)

dHnl/d(1/k2
r )

×
(

−
(
cnld−n−l + q |dnl|2

)

|dnl|2
)

kr

, (8.3.2.2.8)

where

Hnl(k) =
|n| c|.′|

χ ′
B

|l|
√

xχ ′vt
− π/2

K (1/k)

√
2εk2

2εk2 + (1 − ε)
,

(8.3.2.2.9)

F (kr) =
√

2εk2
r[

2εk2
r + (1 − ε)

]3/2

[
1
2

− 3
2

2εk2
r

2εk2
r + (1 − ε)

]2

,

(8.3.2.2.10)

and

xmin =
(∣∣∣∣

n

l

c.′

χ ′

∣∣∣∣
B

χ ′
1
vt

)
. (8.3.2.2.11)

The subscript kr indicates that the quantity is evaluated at kr

which is the zero of the function Hnl(k), i.e.

Hnl (kr) = 0. (8.3.2.2.12)

The origin of xmin is from the fact that the term involves
K (1/k) in Hnl(k) is bounded between 0 and 1 when k

varies from 1 to ∞, and to have solution for Hnl (kr) = 0,
the dimensionless energy parameter x must be equal or
greater than xmin. The xminfor circulating particles shown in
equation (8.3.2.2.11) is smaller than that for trapped particles
given in equation (8.3.2.1.17) by a factor of

√
ε. Thus, particles

need to have higher energy to have bounce-drift resonance.
The poloidal angle variation in |v||| is neglected when

evaluating [(1/2) − (3/2)
(
v∥/v

)2] approximately to obtain
viscous coefficients. The terms inside the large square brackets
of F (kr) are results of such an approximation. The qualitative
behaviour of these terms is consistent with the expectation. In
the limit, where kr → ∞ for very circulating particles, the
factor (3/2)

(
v∥/v

)2 approaches (3/2). When kr →1, namely,

at the trapped-circulating boundary, (3/2)
(
v∥/v

)2 approaches
(3/2)(2ε) in the large aspect ratio limit.

8.3.2.3. Validity and relation to non-linear plasma viscosity.
For trapped particles to contribute to the plasma viscosity in
the bounce-drift resonance plateau regime, ν/ε < |l|ωb. In
this asymptotic limit, both trapped particles and circulating
particles contribute. When ν/ε > |l|ωb but ν < |l|ωtr , only
circulating particles contribute to transit-drift resonance. If
resonances overlap, particle trajectories in the phase space
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become chaotic, and bounce-transit and drift resonance plateau
regime persists. If the resonances do not overlap, the bounce-
transit and drift resonance plateau regime ends when the closed
collisionless non-linear trajectories in the phase space form.
This is similar to the superbanana regime [224, 233, 234].
When ν > |l|ωt , the plasma viscosity enters the Pfirsch–
Schlüter regime [236].

Viscous coefficients for bounce-transit and drift resonance
have a similar scaling to that for the non-linear viscosity in
the plateau regime, because the physics mechanisms involved
are similar. The difference is only in the treatment of the
parallel particle speed in the drift kinetic equation. Thus,
when the bounce-transit and drift resonance viscosity becomes
important, the non-linear plasma viscosity should be important
as well.

When the radial electric field vanishes, the resonance
occurs at kr = 1 and the neoclassical toroidal plasma
viscosity in the bounce-transit and drift resonance plateau
regime vanishes in the approximation adopted here. In that
case, the superbanana plateau regime becomes important.

8.4. Neoclassical toroidal plasma viscosity in the vicinity of a
magnetic island

Symmetry breaking effects in tokamaks are most pronounced
in the vicinity of a magnetic island. Because the perturbed
magnetic field is perpendicular to the equilibrium magnetic
field, the surface distortion mechanism dominates [207]. The
magnitude of the perturbed |B| on the island magnetic surface
scales as

√
δB/B0. Thus, even for δB/B0 ∼ 10−4, the

symmetry breaking effects are significant. This leads to the
enhanced neoclassical plasma viscosity, and the corresponding
increases in particle, energy and momentum losses in the
vicinity of magnetic islands. The most interesting feature of
the enhanced neoclassical plasma viscosity is that it determines
a radial electric field in the vicinity of the magnetic islands that
can suppress turbulence fluctuations and improve confinement.
This provides an explanation as to why plasma confinement
is improved in the vicinity of the magnetic island observed
in experiments or in the vicinity of the low-order rational
surface [207, 242].

8.4.1. |B| on the island magnetic surface. Because transport
processes are defined on the magnetic surface, when the
magnetic surface is distorted, transport fluxes are calculated
on the distorted magnetic surface. In low β̄ plasmas, the
perturbed magnetic field resulting from the magnetic island
can be described by the perturbed poloidal flux δχ = χ̃ cos ξI .
Here, χ̃ is the amplitude of the perturbed poloidal flux, ξI =
θ − ζ/qs for a static magnetic island, and qs is the safety factor
at the rational surface χs where the island resides. The island
magnetic surface can be described by a helical flux function
@, where

@ = − q ′
s

2qs
(χ − χs)

2 + χ̃ cos mξI , (8.4.1.1)

and q ′
s = dq/dχ |χs [243]. All the transport fluxes are now

defined on the constant @ contours.
The |B| on the constant @ surface can be obtained from

the equilibrium magnetic field B = B0 (1 − ε cos θ) by Taylor

expansion of the radial dependence in the vicinity of the
magnetic island, i.e.

B

B0
= 1 −

[ rs

R
± rw

R

(
@̄ + cos mξI

)1/2
]

cos θ, (8.4.1.2)

where rs is the minor radius at χs, normalized helical flux
function @̄ = −@/χ̃ , and rw =

[
2q2

s χ̃/
(
q ′

sB0rs
)]1/2 is

proportional to the island width [207]. The ± sign in
equation (8.4.1.2) is chosen to be ‘+’ for χ > χs and ‘−’
for χ < χs. In general, for a finite aspect ratio tokamak, |B|
on the island magnetic surface can be obtained is

B = Bs + (∂B/∂χs) (χ − χs) . (8.4.1.3)

8.4.2. Transport fluxes in the vicinity of a magnetic island and
implications on plasma confinement. It is most convenient to
solve the drift kinetic equation (equation (8.1.1)) in (@, θ, ξI )
coordinates for the perturbed distribution. For ν∗ < 1, the
bounce averaged drift kinetic equation is [207](

1 − q

qs

)
∂f01

∂ξI

H (µc − µ) + ⟨vd · ∇ξI⟩b
∂f01

∂ξI
+ ⟨vd · ∇@⟩b

×∂f00

∂@
= ⟨C (f01)⟩b , (8.4.2.1)

where f00 = fM(@), f01 is the correction to fM(@), H is
the step function, and µc is the critical magnetic moment that
separates trapped particles from circulating particles.

When the collision frequency is larger than the ⟨vd · ∇ξ⟩b,
it is in the 1/ν regime. The particle flux in this regime is [207]

#na
I = −CI

2
(In · ∇θ)2

&2

(
q ′

s

qs
rW

)2

m2δ2
wε3/2

s
FI

(
@̄

) √
1 + @̄

K (kI )

×
∫

dw̄
w̄5/2

νD

∂fM

∂@̄
, (8.4.2.2)

where #na
I = ⟨NV · ∇@⟩I is the particle flux that is

averaged over the island magnetic surface, CI = 0.684,
FI

(
@̄

)
=

∮
dξI sin2 mξI ('/εs)

3/2/
√

@̄ + cos mξI , ' =
εs ± δw

√
@̄ + cos mξ I , εs = rs/R, δw = rw/R, and k2

I =
2/

(
1 + @̄

)
. This flux is valid outside the island separatrix

where k2
I < 1. It is assumed that ∂fM/∂@ vanishes inside

the island. However, this does not have to be the case. The
gradients inside the island separatrix can be maintained by
good plasma confinement due to turbulence suppression by
the steep gradient of the radial electric field.

If both electrons and ions are in the 1/ν regime,∑
j #na

Ij = 0 determines a radial electric field
(

p′
i

pi
+

ei.
′

Ti

)
= −2.37

T ′
i

Ti
, (8.4.2.3)

where prime denotes d/d@. The radial electric field in
equation (8.4.2.3) is well known for the 1/ν regime in rippled
tokamaks and stellarators [3, 210, 211, 244].

The non-axisymmetric flux #na
I in the collisional boundary

layer regime has also been calculated [245]. The particle flux
from the outer solution has been used to demonstrate that there
can be bifurcated states for the radial electric field similar to the
L–H transition processes [242]. The resultant radial electric
field can suppress turbulence fluctuations and improve plasma
confinement according to the turbulence suppression theory in
section 7 because it has a scale length of the order of the width
of the island.

64



Nucl. Fusion 55 (2015) 125001 Review Article

9. Neoclassical transport theory for stellarators

The |B| spectrum for real stellarators does not possess any
symmetry even with modern optimization [27]. In the low
collisionality regimes, particle dynamics, especially that of the
trapped particles, is crucial to the solution of the linear drift
kinetic equation. Particles can be trapped either inside the
toroidal magnetic field well or inside one of the many helical
magnetic wells as shown in figure 5. Thus, in stellarators
there can be at least two or more classes of trapped particles.
This makes the development of an analytic transport theory
for stellarators in the low collisionality regimes much more
difficult. However, in relatively collisional regimes, there are
analytic theories for arbitrary magnetic field spectrum at least
in the large aspect ratio limit.

Because there does not exist a unique configuration, it
is more difficult to develop a neoclassical theory that is
valid for all collisionality regimes for all stellarators currently
operating around the world. Some of the gross features of the
transport consequences of the neoclassical theory, however,
might have been observed in all stellarators. One such
example is the transition of the radial electric field from a
negative value to a positive value when the electron loss
rate dominates the ion loss rate as the collision frequency
decreases [246–249]. The other is that neoclassical losses can
be reduced by manipulating the |B| spectrum in stellarators

[249, 250]. When neoclassical theory is applicable, the
machine performance is more predictable. The goal here
is to discuss the basic physics involved in each asymptotic
limit where an analytic treatment is possible. As the collision
frequency decreases, the analytic model for |B| becomes
simpler and is less able to describe subtler physics.

9.1. Pfirsch–Schlüter regime

In this regime, collisions are frequent enough to dominate the
kinetic part in the linear drift kinetic equation. Following
the expansion scheme developed for calculating the plasma
viscosity in the Pfirsch–Schlüter regime for axisymmetric
tokamaks and using |B| = B(θ, ζ ) yield

−2
v2

v2
t

(
1
2

− 3
2

v2
||

v2

) (
V · ∇B

B
− 2

5p
L

(3/2)
1

q · ∇B

B

)
fM

= C (h) . (9.1.1)

The difference between equations (9.1.1) and (6.2.3.1) is
that besides the θ dependence |B| spectrum also has the ζ

dependence in stellarators.
Equation (9.1.1) can be solved either by expanding h in

terms of Laguerre and Legendre polynomials or approximating
the collision operator by a Krook model, i.e. C(h) = −νT h

[7]. The later approach is chosen here to obtain

h = 2ν−1
T

v2

v2
t

(
1
2
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2

v2
||

v2

)

×
(

V · ∇B

B
− 2

5p
L

(3/2)
1

q · ∇B

B

)
fM. (9.1.2)

Substituting h into the definitions for the parallel components
of the viscous forces yields〈
B · ∇· ↔

π
〉
= NM

〈
B2〉

×
[〈

∂B/∂θ

B

B · ∇B

B

〉 (
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2
5
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5
µ2

qζ
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)]
(9.1.3)

and〈
B · ∇·

↔
1

〉
= NM

〈
B2〉

×
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B
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)
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, (9.1.4)

where parallel viscous coefficients are

µj = 8
5
√

π
v2

t
1〈
B2

〉
[∫ ∞

0
dxx6

(
x2 − 5

2

)j−1

e−x2 1
νT

]

,

(9.1.5)
for j = 1–3. The geometric factors can also be absorbed
into the definitions of the viscous coefficients, and viscous
coefficients become

µjp = µj ⟨[(∂B/∂θ)/B] [(B · ∇B)/B]⟩ , (9.1.6)

and

µj t = µj ⟨[(∂B/∂ζ )/B] [(B · ∇B)/B]⟩ . (9.1.7)

Similarly, the toroidal components of the viscous forces are〈
Bt · ∇· ↔

π
〉
= NM

〈
B2〉

×
[〈

∂B/∂θ

B

Bt · ∇B

B

〉 (
µ1V

θ +
2
5
µ2

qθ

p

)

+
〈
∂B/∂ζ

B

Bt · ∇B

B

〉 (
µ1V

ζ +
2
5
µ2

qζ
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)]
, (9.1.8)

and〈
Bt · ∇·

↔
1

〉
= NM

〈
B2〉

×
[〈

∂B/∂θ

B

Bt · ∇B

B

〉 (
µ2V

θ +
2
5
µ3

qθ

p

)

+
〈
∂B/∂ζ

B

Bt · ∇B

B

〉 (
µ2V

ζ +
2
5
µ3

qζ

p

)]
. (9.1.9)

In Hamada coordinates, Bt = ψ ′∇V × ∇θ . The poloidal
components of the viscous forces have the same forms as
the toroidal components except that Bt is replaced by Bp =
χ ′∇ζ×∇V in equations (9.1.8) and (9.1.9). The more accurate
viscous coefficients obtained by inverting the collision operator
can be found in [7, 53, 236]. The components of the viscous
force obtained here are the parallel viscosity with coefficient η0
in terms of Braginskii’s classification except that the heat flow
is included as an independent variable [1]. The same viscous
components are also obtained in [251, 252].

The importance of the components of the viscous forces
is that they determine the flow damping and, thus, the steady-
state radial electric field and the components of plasma flow
velocity in stellarators. The viscous driven particle and heat
fluxes are subdominant in this regime for large aspect ratio
stellarators.
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9.1.1. Plasma flows and radial electric field. Because the
radial electric field and parallel flow are neglected in the
kinetic part of the kinetic equation, the viscous forces are
linear functions of the radial electric field and the parallel
flow. The magnitudes of the ion viscous forces are larger
than those of electron viscous forces by a factor of

√
Mi/Me.

The large aspect ratio assumption is not needed to conclude
that V||i ≈ V||e ≈ V||, q||i ≈ 0 and q||e ≈ 0 because the
collision frequency is larger than the particle transit frequency
for each mode. Thus, the approximate solutions to the parallel
momentum and heat flux balance equations yield the common
equilibrium parallel flow. From

∑
j ej#

bp
j = 0, which implies

the relaxation of the parallel momentum equation [60, 61],
〈
V||B

〉
〈
B2

〉 = −Gps
cTi

ei
〈
B2

〉
(

p′
i

pi
+

ei.
′

Ti
+

µ2i

µ1i

T ′
i

Ti

)
, (9.1.1.1)

where the geometric factor Gps is

Gps =
⟨(n · ∇B) (1/B) ∂B/∂θ⟩

〈
(n · ∇B)2〉 ⟨B × ∇V · ∇θ⟩

+
⟨(n · ∇B) (1/B) ∂B/∂ζ ⟩

〈
(n · ∇B)2〉 ⟨B × ∇V · ∇ζ ⟩ . (9.1.1.2)

The geometry factor Gps is valid for tori with arbitrary
symmetry property and depends only on the |B| spectrum.

For a classic |B| spectrum for stellarators given in
equation (1.2.1) in Hamada coordinates, Gps can be evaluated
explicitly and is

Gps = F

χ ′
1 + m (m − nq) ε2

h/ε
2
t + (G/F) n (m − nq) ε2

h/ε
2
t

1 + (m − nq)2 ε2
h/ε

2
t

.

(9.1.1.3)

If εh = 0,

Gps = F

χ ′ , (9.1.1.4)

which is the standard result for axisymmetric tokamaks. If
εt = 0, which corresponds to a helically symmetric torus,

Gps = F

χ ′
m + (G/F) n

m − nq
. (9.1.1.5)

The direction of the parallel flow reverses when nq > m. If
m = 0, which corresponds to a rippled tokamak,

Gps = F

χ ′
1 − (G/F) qn2ε2

h/ε
2
t

1 + (nq)2 ε2
h/ε

2
t

. (9.1.1.6)

The direction of V|| and the symmetry property of |B| spectrum
can be understood in terms of the viscous damping [53].
For simplicity, the heat flow is neglected in the discussion.
When the system is toroidally symmetric, parallel viscous
forces damp the poloidal flow due to the bumpiness of the
magnetic field strength in the poloidal direction. However, the
diamagnetic flow, which is perpendicular to the magnetic field,
always has a poloidal component. In order for the poloidal
component of the flow velocity to vanish, i.e. V ·∇θ = 0, there
must be a parallel flow V||n so that the poloidal component
of V||n cancels that of the diamagnetic flow. During the
damping processes, the toroidal component of the flow remains
approximately constant due to the weakness of the toroidal
viscous force when compared with the parallel viscous force.

Figure 25. Schematic diagram for plasma flow in a toroidally
symmetric torus.

Figure 26. Schematic diagram for plasma flow in a
non-axisymmetric torus.

What really happens is that the radial electric field adjusts to
make V ·∇θ = 0, at the same time keeping the toroidal angular
momentum constant. A simple physics picture for the process
discussed is shown in figure 25.

When the toroidal symmetry is broken, the bumpiness of
|B| in the toroidal direction also damps the toroidal component
of the flow. In this case, the plasma flows approximately on
the constant |B| contour to minimize the viscous damping.
This can be seen by casting the viscous forces in the following
forms:
〈
B · ∇· ↔

π
〉
= NM

〈
B2〉 µ1

〈
B · ∇B

B

V · ∇B

B

〉
, (9.1.1.7)

and
〈
Bt · ∇· ↔

π
〉
= NM

〈
B2〉 µ1

〈
Bt · ∇B

B

V · ∇B

B

〉
, (9.1.1.8)

when the heat flow is neglected. This flow pattern in between
toroidal and poloidal symmetry is shown in figure 26.

When the toroidal bumpiness increases further so that the
torus is almost poloidally symmetric, the plasma can now flow
freely in the poloidal direction and the toroidal flow is damped
by the viscous forces. In this case, the toroidal component
of the diamagnetic flow must be cancelled by the toroidal
component of the parallel flow. The resultant parallel flow
is in the direction opposite to that of the toroidally symmetric
tori and the magnitude of the flow is smaller by a factor of
(Bp/B)2. This process is shown in figure 27.

The toroidal component of the viscous force damps the
parallel flow eventually. The issue is if there is a steady-state
parallel flow after damping. This is manifest in the solution of
the equation for the radial electric field. To completely specify
the plasma flow velocity, the radial electric field must also be
determined. This is accomplished by setting

∑
j ej#

na
j = 0
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Figure 27. Schematic diagram for plasma flow in a poloidally
symmetric torus.

[60, 61]. Because ion viscous coefficients are larger than
electron viscous coefficients by a factor of

√
Mi/Me, the

approximate equation for the radial electric field is
〈
Bt · ∇· ↔

π i

〉
= 0, (9.1.1.9)

and the solution is

p′
i

pi
+

ei.
′

Ti
+

µ2i

µ1i

T ′
i

Ti
= 0. (9.1.1.10)

Thus, at the steady state,
〈
V||B

〉
〈
B2

〉 = 0. (9.1.1.11)

After the parallel flow ⟨V||B⟩ and the radial electric field .′

are determined, the plasma flow on the magnetic surface is
specified completely, or explicitly,

V θ = − cTiF

ei
〈
B2

〉 µ2i

µ1i

T ′
i

Ti
, (9.1.1.12)

and

V ζ = cTiG

ei
〈
B2

〉 µ2i

µ1i

T ′
i

Ti
. (9.1.1.13)

The components of the residual flow are driven by the
temperature gradient. The source of the momentum is the
non-cancellation of the particle momenta from neighbouring
orbits [194].

9.1.2. Particle and heat fluxes. In this regime, the friction
forces driving particle and heat fluxes dominate. Friction
forces can be evaluated using a set of more accurate numerical
coefficients for this purpose [253]. It is obvious that V θ and
V ζ do not contribute to the Pfirsch–Schlüter fluxes. Only the
diamagnetic flows contribute.

The ambipolar particle flux is, for electron–proton
plasmas [6, 253],

#ps = −
(

c

eχ ′

)2

peMeνei

(
0.675

P ′

pe
− 0.56

T ′
e

Te

)

×
(〈

I 2
h

B2

〉
−

⟨Ih⟩2

〈
B2

〉
)

, (9.1.2.1)

where P ′ = p′
i + p′

e, and Ih = B ·∇V ×∇θ . The electron and
ion heat fluxes are

q
ps
e

Te
= −

(
c

eχ ′

)2

peMeνei

(
1.97

T ′
e

Te
− 0.56

P ′

pe

)

×
(〈

I 2
h

B2

〉
−

⟨Ih⟩2

〈
B2

〉
)

, (9.1.2.2)

and

q
ps
i

Ti
= −1.13

(
c

eiχ ′

)2

piMiνii
T ′

i

Ti

(〈
I 2
h

B2

〉
−

⟨Ih⟩2

〈
B2

〉
)

.

(9.1.2.3)

The electron particle and heat fluxes are Onsager symmetric.
The bootstrap current and Ware pinch flux in this regime

scale as ν−2 and are not significant except perhaps in unity
aspect ratio stellarators.

9.2. Plateau regime

As discussed in section 6, all plateau regimes are caused by the
singularity or the resonance in the kinetic part of the kinetic
equation when the mirror force can be neglected [46, 103].
The only difference here is that there are multiple resonances
in stellarators because there can be multiple classes of trapped
particles. When all modes are in the plateau regimes, compact
analytic expressions for transport fluxes can be obtained. It
should be emphasized that the mirror forces for all the modes
have to be negligible for the analytic theory to be valid. In that
case, the equation to be solved is

v||n · ∇h − C (h) = 2
v2

v2
t

(
1
2

− 3
2

v2
||

v2

)

×
(

V · ∇B

B
− 2

5p
L

(3/2)
1

q · ∇B

B

)
fM. (9.2.1)

Using a Krook model for C(h) = −νh, equation (9.2.1) can be
easily solved to obtain the components of the plasma viscosity
in the plateau asymptotic limit [46, 67]
〈
B · ∇· ↔

π
〉
= NM

〈
B2〉

×
(

µ1pV
θ + µ1tV

ζ +
2
5
µ2p

qθ

p
+

2
5
µ2t

qζ

p

)
, (9.2.2)

and
〈
B · ∇·

↔
1

〉
= NM

〈
B2〉

×
(

µ2pV
θ + µ2tV

ζ +
2
5
µ3p

qθ

p
+

2
5
µ3t

qζ

p

)
, (9.2.3)

where parallel viscous coefficients are

µjp =
√

π

2
Cj

∑

m,n

〈
∂Bmn

∂θ

B · ∇B

B

〉
vt

B0 |mχ ′ − nψ ′| ,

(9.2.4)

µjt =
√

π

2
Cj

∑

m,n

〈
∂Bmn

∂ζ

B · ∇B

B

〉
vt

B0 |mχ ′ − nψ ′| ,

(9.2.5)
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and Cj for j = 1–3 is defined in section 6. Similarly, the
toroidal components of the viscous forces are〈
Bt · ∇· ↔

π
〉
= NM

〈
B2〉

×
(

µ1tpV
θ + µ1ttV

ζ +
2
5
µ2tp

qθ

p
+

2
5
µ2tt

qζ

p

)
, (9.2.6)

and〈
Bt · ∇·

↔
1

〉
= NM

〈
B2〉

×
(

µ2tpV
θ + µ2ttV

ζ +
2
5
µ3tp

qθ

p
+

2
5
µ3tt

qζ

p

)
, (9.2.7)

where toroidal viscous coefficients are

µj tp =
√

π

2
Cj

∑

m,n

〈
∂Bmn

∂θ

Bt · ∇B

B

〉
vt

B0 |mχ ′ − nψ ′| ,

(9.2.8)

and

µj tt =
√

π

2
Cj

∑

m,n

〈
∂Bmn

∂ζ

Bt · ∇B

B

〉
vt

B0 |mχ ′ − nψ ′| ,

(9.2.9)

for j =1–3. The magnetic field strength is expressed as B =
B0[1 +

∑
m,n Bmn(V, θ, ζ )]. The poloidal components of the

viscous and heat viscous forces can be easily obtained by taking
the difference between the parallel and toroidal components of
the forces, i.e. ⟨Bp · ∇· ↔

π ⟩ = ⟨B · ∇· ↔
π ⟩ − ⟨Bt · ∇· ↔

π ⟩.
Comparing the components of the viscous forces in the

Pfirsch–Schlüter regime and those in the plateau regime, it is
noted that as the collision frequency decreases, the feature of
each individual mode appears. This is because the particle
dynamics become important when collisions become less
frequent. In the plateau regime, the collision frequency is small
enough so that resonance for each individual mode appears in
the viscous coefficients.

9.2.1. Plasma flows and radial electric field. From the parallel
momentum and heat flux balance equations, the standard
results on the parallel flows and heat flows for large aspect
ratio tori are still valid, i.e. V||i ≈ V||e ≈ V||, q||i ≈ 0, and
q||e ≈ 0. The reason for this is that friction forces are larger
than viscous forces in the electron force balance equations
and in the ion heat flux balance equation. This implies
that the equilibrium parallel flow is, from

∑
j ej#

bp
j = 0, or

equivalently,
∑

j ⟨B · ∇· ↔
π j ⟩ = 0,

〈
V||B

〉
〈
B2

〉 = −Gp
cTi

ei
〈
B2

〉
(

p′
i

pi
+

ei.
′

Ti
+

µ2i

µ1i

T ′
i

Ti

)
,

(9.2.1.1)

where µ2pi/µ1pi = µ2ti/µ1ti = µ2i/µ1i = 1/2, and the
geometric factor Gp is

Gp =
µ1pi ⟨B · ∇V × ∇θ⟩ + µ1ti ⟨B · ∇V × ∇ζ ⟩

µ1piB · ∇θ + µ1tiB · ∇ζ
.

(9.2.1.2)

For classic stellarators,

Gp = F

χ ′
[
ε2
t + m (m − nq) ε2

h/|m − nq|

+ (G/F) n (m − nq) ε2
h/|m − nq|

][
ε2

t + |m − nq| ε2
h

]−1
.

(9.2.1.3)

The factor Gp differs from Gps for classic stellarators because
of the resonances in the plateau regime. If εh = 0, i.e. an
axisymmetric tokamak,

Gp = F

χ ′ . (9.2.1.4)

For a helically symmetric torus, εt = 0, and

Gp = 1
χ ′

mF + nG

m − nq
. (9.2.1.5)

Thus, the direction of the parallel flow again reverses if
nq > m. For a straight bumpy torus, εt = 0, and m = 0,

Gp = − 1
χ ′

G

q
. (9.2.1.6)

The geometric factor Gpin a rippled tokamak, i.e. m = 0, is

Gp = F

χ ′
ε2

t − (G/F) nε2
h

ε2
t + nqε2

h

. (9.2.1.7)

The radial electric field determined from
∑

j ej#
na
j = 0, i.e.

∑
j ⟨Bt · ∇· ↔

π j ⟩ = 0, is, approximately,

p′
i

pi
+

ei.
′

Ti
+

µ2i

µ1i

T ′
i

Ti
= 0, (9.2.1.8)

to the leading order in
√

Me/Mi ordering.
The parallel flow is damped by the toroidal viscous force.

The steady-state parallel flow is
〈
V||B

〉
〈
B2

〉 = 0, (9.2.1.9)

and the corresponding poloidal and toroidal flows are

V θ = − cTiF

ei
〈
B2

〉 µ2i

µ1i

T ′
i

Ti
, (9.2.1.10)

and

V ζ = cTiG

ei
〈
B2

〉 µ2i

µ1i

T ′
i

Ti
. (9.2.1.11)

Thus, the steady-state flows in the plateau regime are similar
to those in the Pfirsch–Schlüter regime except the ratio of
the viscous coefficients is different. The components of the
residual flow are again driven by the ion temperature gradient.

9.2.2. Transport fluxes in the plateau regime and examples.
With the knowledge of the components of the viscous forces,
and the steady-state plasma flows, the viscous force driven
transport fluxes can be then evaluated using the flux–force
relation [46].

The ambipolar banana–plateau particle flux #
bp
e is

#bp
e = − c2 ⟨Ih⟩

e2
〈
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〉
χ ′ NeMeTe

×
(
µ1pe ⟨B · ∇V × ∇θ⟩ + µ1te ⟨B · ∇V × ∇ζ ⟩

)

×
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P ′
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+

1
2

T ′
i + ZT ′

e

ZTe

)
, (9.2.2.1)
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and non-axisymmetric particle flux #na
e is

#na
e = − c2

e2χ ′ψ ′ NeMe

×
(
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)
. (9.2.2.2)

The total ambipolar particle flux #e is

#e = #bp
e + #na

e . (9.2.2.3)

The ion heat fluxes are

q
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and
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µ2tpi ⟨B · ∇V × ∇θ⟩ + µ2tti ⟨B · ∇V × ∇ζ ⟩

) T ′
i

Ti
.

(9.2.2.5)

The electron heat fluxes are
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and
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The total heat flux for each species is

qj

Tj

=
q

bp
j

Tj

+
qna

j

Tj

, (9.2.2.8)

where j = i for ions and j = e for electrons. The bootstrap
current is
〈
j||bB

〉
= −σsMe
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. (9.2.2.9)

The Ware pinch flux can be inferred from the bootstrap current
because they are Onsager conjugates of each other.

To gain physical insights on the transport fluxes in non-
axisymmetric tori, it is helpful to have explicit expressions

for these quantities for a classic stellarator using approximate
cylindrical coordinates [46]. The ambipolar particle fluxes are
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where the subscript r denotes the quantity is evaluated in
(r, θ, ζ ) coordinates, nq > m has been used, and prime denote
d/dr in transport fluxes that have subscripted by r . The total
ambipolar particle flux is
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. (9.2.2.12)

The ambipolar particle fluxes in rippled tokamaks can be
obtained by setting m = 0. Thus, the total particle flux is the
same as that in axisymmetric tokamaks. The toroidal magnetic
field ripples have no effect on the total ambipolar particle flux
in the plateau regime. The total ion heat flux is
(
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and the total electron heat flux is
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The toroidal magnetic field ripples again do not affect the heat
transport for both ions and electrons in the plateau regime. The
bootstrap current is
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. (9.2.2.15)

The bootstrap current in this regime is smaller than that in the
banana regime by a factor of the order of 1/ν∗. The 1/ν like
scaling is often observed in DKES code results [108] when
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the collision frequency decreases so that one mode becomes
collisionless and the current increases towards its collisionless
value [254]. Just like the parallel flow, the bootstrap current
can reverse direction when mε2

h > ε2
t in stellarators. Toroidal

magnetic field ripples have little effects on the bootstrap current
in this regime.

9.2.3. Additional remarks. The analytic expression for the
transport fluxes in this regime are in agreement with the
numerical results obtained using the DKES code [108, 255].
However, when not all modes are in the plateau regime, the
prediction based on all modes being in the plateau regime
presented here is obviously not applicable. An example of
such is given in [159], where mirror force from one mode
becomes non negligible. Thus, not all modes are in the plateau
regime in that case. Because the mirror force terms depend on
the poloidal and toroidal angles non-linearly, distinguishing
individual mode from one another is difficult. The analytic
treatment for such a situation is not known.

9.3. Parallel plasma viscosity and bootstrap current in the low
collisionality regime

In the low collisionality regime, i.e. when particles’ bounce
motion is not interrupted by collisions, particle dynamics
becomes important in solving the drift kinetic equation. In
non-axisymmetric tori, there is no compact analytic description
for particle trajectories. Thus, parallel plasma viscous forces
in this regime cannot be calculated as accurately as those in
the plateau–Pfirsch–Schlüter regime. However, because of the
importance of the bootstrap current to plasma confinement
in stellarators, it is useful at least to obtain an approximate
expression for the parallel viscosity in the collisionless regime.

As discussed in section 9.2.3, it is difficult to treat
analytically the case where only a few modes are collisionless.
However, when all modes are collisionless, it is possible to
obtain an approximate solution.

9.3.1. Parallel plasma viscosity. One way to calculate the
parallel plasma viscosity approximately is to demand that the
expression is exact, in the sense of the gyro-radius ordering,
in any symmetric limit. To this end, the radial drift speed is
decomposed as [257]

vd · ∇V = v||

B
B · ∇

(
1
2

v||

&
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1
2

v||

&

B2H2

χ ′ψ ′

)

+
v||

B

[
∂

∂θ

(
v||

&χ ′ RB2
)

− ∂

∂ζ

(
v||

&χ ′ SB2
)]

, (9.3.1.1)

where

H1 = ψ ′B × ∇V · ∇θ + χ ′B × ∇V · ∇ζ

ψ ′χ ′ , (9.3.1.2)

H2 =
〈
(∂B/∂θ)2〉 − q2

〈
(∂B/∂ζ )2〉

〈
(∂B/∂θ + q∂B/∂ζ )2〉 , (9.3.1.3)

R =
⟨(∂B/∂θ) (∂B/∂ζ )⟩ + q

〈
(∂B/∂ζ )2〉

〈
(∂B/∂θ + q∂B/∂ζ )2〉 , (9.3.1.4)

and

S =
〈
(∂B/∂θ)2〉 + q ⟨(∂B/∂θ) (∂B/∂ζ )⟩

〈
(∂B/∂θ + q∂B/∂ζ )2〉 . (9.3.1.5)

The purpose of the representation in equation (9.3.1.1) is to
separate the axisymmetric part from the non-axisymmetric part
of the radial drift speed. The axisymmetric part, valid for any
torus that possesses certain symmetry in the |B| spectrum, is
the term that involves B · ∇. The terms that involve R and
S are the non-axisymmetric part and vanish in any symmetric
torus. The decomposition of the drift velocity is motivated by
the solution of the density conservation law [257].

The equation to be solved is the linear drift kinetic
equation, i.e. equation (5.2). In the collisionless regime, the
solution is complex and depends on the details of the solution of
the linear bounce averaged drift kinetic equation for stellarators
[3, 53]. However, the solution of the bounce averaged drift

kinetic equation does not contribute to the parallel viscosity
as proven rigorously in [53]. To approximate, the linear
drift kinetic equation is solved as if the torus is symmetric.
In this approximation, the solution becomes exact in any
symmetric limit. Because there are infinite but countable
number of symmetric tori, this imposes a powerful constraint
on the solution of the linear drift kinetic equation. This
provides a plausible explanation for the reasonable agreement
between the bootstrap current calculated analytically based on
the approximate parallel plasma viscosity and that calculated
numerically using DKES [254]. The method of solution to be
discussed, which follows from that in [254, 257], is different
but equivalent to the original method developed in [53].
This method utilizes Fourier series in solving the magnetic
differential equation instead of integrating along the magnetic
field line.

The linear drift kinetic equation in the collisionless regime
is solved by expanding it, using a small parameter νeff/ωtb,
where ωtb is the typical bounce frequency for all relevant
trapped particles, to obtain the leading order equation

v||n · ∇f10 + vd · ∇V
∂fM

∂V
= 0, (9.3.1.6)

and the next order equation

v||n · ∇f11 + ev||n · E(A) ∂fM

∂E
= C (f10) , (9.3.1.7)

where the second subscript in f1 indicates the order
in the auxiliary expansion. The difference between
equations (9.3.1.6) and (9.3.1.7), and equations (6.2.1.1) and
(6.2.1.2) is that n · ∇ is a two-dimensional operator for non-
axisymmetric tori such as stellarators. The advantage in
expressing vd · ∇V in equation (9.3.1.1) becomes transparent.
Using equation (9.3.1.1), equation (9.3.1.6) can be integrated
to obtain

f10 = − v||

2&
H1

∂fM

∂V
− v||

2&

B2H2
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∂V

+
v
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qBBM
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+ gst (V ) , (9.3.1.8)

where gst(V ) is an integration constant,

h̃ = −σ
∑

m,n̸=0

mR + nS

m − nq
αmn

[
ei(mθ−nζ ) − ei(mθM−nζM)

]
,

(9.3.1.9)
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(θM, ζM) are the coordinates of BM where B is the global
maximum on the magnetic surface, σ denotes the sign of v||,

αmn = 1
4π2

∫ 2π

0
dθ

∫ 2π

0
dζ

B

BM

(
1 − λB

BM

)1/2

e−i(mθ−nζ ),

(9.3.1.10)

and λ = µBM/(Mv2/2). The integration constant gst(V ) is
determined using the same method that is used in calculating
the parallel viscosity in [7]. As a result, the flux surface
averaged parallel plasma viscosity is
⎛

⎝

〈
B · ∇· ↔

π
〉

〈
B · ∇·

↔
1

〉

⎞

⎠ = NM
〈
B2〉

(
µ1 µ2

µ2 µ3

) (
V̄ θ

2
5

q̄θ

p

)

,

(9.3.1.11)

where

V̄ θ = V||

B

+
v2

t

4

(
H1

B&
+

BH2

&χ ′ψ ′ − 1
ft

qB

&χ ′ψ ′
3
2

∫ 1

0
dλ

λW (λ)〈∣∣v∥
∣∣/v

〉
)

×
(

p′

p
+

e.′

T

)
, (9.3.1.12)

q̄θ

p
= q||

pB
+

5
2

v2
t

4

×
(

H1

B&
+

BH2

&χ ′ψ ′ − 1
ft

qB

&χ ′ψ ′
3
2

∫ 1

0
dλ

λW (λ)〈∣∣v∥
∣∣/v

〉
)

T ′

T
,

(9.3.1.13)

W (λ) =
∑

m,n

mR + nS

m − nq

×
[

− 2
∂αmn

∂λ

〈∣∣v||
∣∣

v
ei(mθ−nζ )

〉

+
1
fc

〈
B2

〉

B2
M

ei(mθM−nζM)

(
3αmn (1)

2
+ dmn

) ]
, (9.3.1.14)

and

dmn = 1
4π2

∫ 2π

0
dθ

∫ 2π

0
dζ

(
1 − B

BM

)3/2

e−i(mθ−nζ ).

(9.3.1.15)

The definitions for fc and ft are the same as those for the
axisymmetric tokamaks in equation (6.2.1.12) except that
B and BM are different. The expressions for the viscous
coefficients µj s are cast into forms that are the same as those
for axisymmetric tokamaks in equation (6.2.1.11) except that
the magnetic field spectrum |B| used is different.

9.3.2. Parallel flow and bootstrap current. Having the
information of the parallel viscous forces, the parallel flow
and the bootstrap current in this regime can be obtained.

In the large aspect ratio limit, there is a common parallel
flow as shown in section 6 and [6, 7]. Using the parallel viscous
forces in this regime, the common parallel flow is [53, 254]
〈
V||B

〉
〈
B2

〉 = −Gb
cTi

ei
〈
B2

〉
(

p′
i

pi
+

ei.
′

Ti
+

µ2i

µ1i

T ′
i

Ti

)
, (9.3.2.1)

where µ2i/µ1i = −1.17 and the geometric factor Gb is

Gb =
⟨H1⟩

2
+

〈
B2

〉
H2

2χ ′ψ ′ − 3
4

1
ft

q
〈
B2

〉

χ ′ψ ′

∫ 1

0
dλ

λW (λ)〈∣∣v∥
∣∣/v

〉 .

(9.3.2.2)

If the doubly periodic tori possess any symmetry property in
the |B| spectrum, the geometric factor simplifies to

Gb =
⟨H1⟩

2
+

〈
B2

〉
H2

2χ ′ψ ′ . (9.3.2.3)

For a helically symmetric torus,

Gb = 1
χ ′

mF + nG

m − nq
, (9.3.2.4)

which is the same as Gps and Gp. For axisymmetric tokamaks,
m = 1 and n = 0, and for the poloidally symmetric tori,
m = 0. For a helically symmetric torus, the parallel flow is in
the opposite direction to that of a tokamak if m < nq.

The bootstrap current is

J||b = −2.96ftc
GbB〈
B2

〉
[
P ′

(
1 +

le
12

le
22

µ2e

µ1e

)
+

(
1 +

µ2e

µ1e

le
12

le
22

)

×µ2i

µ1i
NT ′

i +
(

µ2e

µ1e
+

le
12

le
22

µ3e

µ1e

)
NT ′

e

]
. (9.3.2.5)

The direction of the bootstrap current is controlled by the
geometric factor Gb. The bootstrap current in stellarators is
often in the opposite direction to that in tokamaks and has a
smaller magnitude. Even though there is no ohmic current in
stellarators in principle, the existence of the bootstrap current
can modify the q profile and thus MHD stability property
[258, 259]. It is necessary to include it in the MHD equilibrium
and stability calculations [260–264]. The bootstrap current
in stellarators also depends on the radial electric field in the
transition from the plateau regime to the banana regime, and
in the case where ions and electrons are in different regimes
[254, 265, 266].

In practical application, a connection formula for the
bootstrap current that joins all the asymptotic limits is needed.
However, such a formula is not available. From the numerical
results for the bootstrap current from DKES for a classic
stellarator [254], it seems that mode-by-mode transition might
be a way to join various asymptotic limits. As the collision
frequency decreases, one mode becomes collisionless first, i.e.
enters the plateau regime. The bootstrap current increases
according to the 1/ν scaling for the bootstrap current in the
plateau regime, and trying to reach the asymptotic value of
that particular mode in the collisionless regime until the other
mode becomes collisionless. The asymptotic value in the
collisionless regime is approximately the bootstrap current in
the symmetric limit for that single mode. After both modes
become collisionless, the bootstrap current strives to reach the
approximate asymptotic value calculated here. The collision
frequency scaling during the transition may follow the scaling
from the boundary layer analysis [267].

9.3.3. Neoclassical modification of electrical conductivity. As
in axisymmetric tokamaks, when there are trapped particles,
the electrical conductivity along the magnetic line is reduced.
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The reduced conductivity can be obtained from the solution
of the parallel momentum and heat flux balance equations.
In the low collisionality regime where all trapped particles
are collisionless, the modified conductivity σeff in stellarators
is σeff = (Nee)

2leb
22/[leb

11l
eb
22 − (leb

12)
2], where leb

11 = le
11 +

NeMeµ1e, leb
12 = le

12 − NeMeµ2e and leb
22 = le

22 + NeMeµ3e.
The σeff has exactly the same form as that for tokamaks
in equation (6.2.1.36) except that the details of the viscous
coefficients are defined differently. The expression for σeff is
also valid in the plateau and Pfirsch–Schlüter regimes. When
all modes are either in the plateau regime or in the Pfirsch–
Schlüter regime, µje in σeff is replaced by µjpeχ

′ + µj teψ
′ for

j = 1–3 with the corresponding viscous coefficients defined
in equations (9.1.6), (9.1.7), (9.2.4) and (9.2.5).

9.3.4. Transport fluxes in helically symmetric tori and
isomorphic transformation. Transport fluxes in helically
symmetric tori are similar to those for tokamaks in the
banana regime because symmetric tori are isomorphic [268].
The isomorphic transformation is to replace I in tokamaks
with (mF + nG)/(m − nq), and to calculate ft using the
appropriate |B| spectrum. The Hamada coordinates are used
here, i.e. the prime denotes d/dV .

For example, in the banana regime the parallel flow in
helically symmetric tori is
〈
V∥B

〉
〈
B2

〉 +
(mF + nG) cTi

(m − nq) eiχ ′
〈
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〉 ei.
′
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(m − nq) eiχ ′
〈
B2

〉
(

p
′

i

pi
+

µ2i

µ1i

T
′

i

Ti

)

, (9.3.4.1)

and ion heat conductivity is

q
bp
i

Ti
= −NiMi

c2

e2
i

(mF + nG)2

(m − nq)2 χ ′2
〈
B2

〉µ3i

(
1 −

µ2
2i

µ1iµ3i

)
dTi

dV

(9.3.4.2)

using the flux–force relation for helically symmetric tori in
section 4, and transport fluxes in section 6. The electron
ambipolar particle flux and heat flux are

#bp
e = −NeMe

c2

e2

(mF + nG)2
i

(m − nq)2 χ ′2
〈
B2

〉µ1e

×
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+

µ2e
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′
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1
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′
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)
, (9.3.4.3)

and

q
bp
e

Te
= −NeMe

c2

e2
i

(mF + nG)2
i

(m − nq)2 χ ′2
〈
B2

〉µ2e

×
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Ne
+

µ3e

µ2e
T

′

e +
µ2i

µ1i

1
Z

T
′

i

)
. (9.3.4.4)

A scaling the same as the one in the particle flux shown
in equation (9.3.4.3) is also obtained in [269]. The Ware
pinch fluxes can also be obtained by applying the isomorphic
transformation to results in section 6 if the inductive electric
field does not vanish in helically symmetric tori. The effects of
orbit squeezing can also be included when the orbit squeezing
factor is transformed to [270]

S = 1 +
(mF + nG)2

(m − nq)2 χ ′2&2

e.
′′

0

M
, (9.3.4.5)

using the isomorphic transformation. The transport fluxes in
the vicinity of the magnetic axis including the effects of orbit
squeezing for helically symmetric tori have been calculated in
[270]. The results can be obtained by applying the isomorphic
transformation to the potato transport fluxes in tokamaks.

9.4. Bounce averaged drift kinetic equation and 1/ν regime

The radial electric field is not yet determined in the low
collisionality regime in equation (9.3.2.1). Modern efforts
to optimize stellarator configurations are to minimize or even
to eliminate the symmetry breaking components in the |B|
spectrum to reduce the radial drift speed of trapped particles
[27]. However, symmetry breaking components always exist

in real configurations with meaningful magnitudes, i.e. typical
δB/B is larger than 10−3, regardless of the optimization goals.
Thus, the radial electric field is determined by the toroidal
component of the viscous force resulting from trapped particles
drifting off the magnetic surface. In stellarators, it is usually
the helically trapped particles that dominate the transport
processes.

The |B| spectrum in real stellarators is complex and in
general the drift kinetic equation is not amenable to analytic
treatment in the low collisionality regime for arbitrary |B|
spectrum. However, there is one class of the |B| spectrum
for which analytic transport theory can be developed. That
class of the |B| spectrum consists of one helical harmonic
with multiple poloidal sidebands [271]:

B

B0
= 1 + εt cos θ + εd cos jθ +

∞∑

l=−∞
ε(l) cos (lθ + α),

(9.4.1)

where α = mθ −nζ is the main helical harmonic, ε(l) denotes
the amplitude of the lth harmonic of the poloidal sideband, εd

and εt are the amplitudes of the cos jθ and cos θ harmonics.
In this model, arbitrary numbers of the poloidal side bands can
be kept. Using the identity cos(±lθ + α) = cos lθ cos α ∓
sin lθ sin α, equation (9.4.1) can be cast into [271]

B

B0
= 1 + εt cos θ + εd cos jθ +

(
C2 + D2)1/2

×
[

C
(
C2 + D2

)1/2 cos α − D
(
C2 + D2

)1/2 sin α

]

, (9.4.2)

where C = ε(0) + [ε(+1) + ε(−1)] cos θ + [ε(+2) + ε(−2)] cos 2θ

and D = [ε(+1) − ε(−1)] sin θ + [ε(+2) − ε(−2)] sin 2θ when
only two lth-harmonics are kept. It is obvious that the same
procedure can be used when there are arbitrary numbers
of poloidal sidebands in the magnetic field spectrum. An
angle ς can be defined such that cos ς = C/(C2 + D2)1/2,
and sin ς = D/(C2 + D2)1/2, and equation (9.4.2) can be
simplified to [271]

B

B0
= 1 + εT + εH cos (α + ς) , (9.4.3)

where εT = εt cos θ + εd cos jθ and εH = (C2 + D2)1/2. The
expression in equation (9.4.3) can be reduced to a model

B

B0
= 1 − εt cos θ − εh (1 − σM cos θ) cos α, (9.4.4)
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used in [272] to improve plasma confinement in stellarators,
by setting ε(+1) = ε(−1), and ε(+2) = ε(−2) = 0, where σM is a
parameter.

The main difference between the theory for stellarators
and that for neoclassical toroidal plasma viscosity in tokamaks
is that there are, at least, two classes of trapped particles in
stellarators. Trapped particles can be roughly classified as
toroidally trapped particles that are trapped in the εt cos θ

variation and the helically trapped particles that are trapped
in the helical variation εH cos(α + ς). The helical harmonic
in stellarators usually has the property that nq > m. With
this property, the bounce frequency for the helically trapped
particles is higher than that of the toroidally trapped particles by
a factor of |m − nq| ∼ nq ≫ 1 for comparable magnitudes of
εT and εH. Thus, as the collision frequency decreases, helically
trapped particles become collisionless first. For this reason,
when the effective collision frequency νeff ∼ ν/|εH| is less
than the bounce frequency of the helically trapped particles
ωbh ∼ vt

√
|εH||m − nq|/(Rq), helically trapped particles can

complete their collisionless bounce motions. For the model
presented in equation (9.4.3), the only analytic formulas for
transport fluxes developed so far are for 1/ν [271, 272], and
the superbanana plateau regimes [230].

9.4.1. Bounce averaged drift kinetic equation for helically
trapped particles. Similar to the theory for the neoclassical
toroidal plasma viscosity in the low collisionality regimes in
tokamaks discussed in section 8, the drift orbit dynamics is
governed by the bounce averaged drift kinetic equation for
helically trapped particles when ν/|εH| < ωbh.

It is convenient to choose spatial coordinates as (V , θ0, ζ )

in Hamada coordinates where θ0 = θ − ζ/q is the label for the
field line and ζ is the coordinate along the field line. Obviously,
B · ∇θ0 = 0.

In the low collisionality regimes, the drift kinetic equation
can be expanded using the small parameter νeff/ωbh < 1.
Because the bounce frequency of the helically trapped particles
is larger than the drift frequencies and collision frequency, the
leading order equation is

v||n · ∇ζ
∂f0

∂ζ
= 0, (9.4.1.1)

where f0 is the leading particle distribution function. The
solution to equation (9.4.1.1) is

f0 = f0 (V , θ0) . (9.4.1.2)

The next order equation is

v||n · ∇ζ
∂f0,1

∂ζ
+ vd · ∇θ0

∂f0

∂θ0
+ vd · ∇V

∂f0

∂V
= C (f0) ,

(9.4.1.3)

where f0,1 is the perturbed particle distribution function to f0.
To guarantee that f0,1 is periodic in ζ , equation (9.4.1.3) is
bounce averaged over the trajectories of the helically trapped
particles and results in the bounce averaged drift kinetic
equation

⟨vd · ∇θ0⟩bh

∂f0

∂θ0
+ ⟨vd · ∇V ⟩bh

∂f0

∂V
= ⟨C (f0)⟩bh .

(9.4.1.4)

The bounce average operation ⟨A⟩bh is defined as ⟨A⟩bh =∑
σ (

∫ ζt

−ζt
dζAB/|v|||)/(

∫ ζt

−ζt
dζB/|v|||), where the turning

points ±ζt are defined as v||(±ζt) = 0. Of course, bounce
average operation also annihilates the momentum restoring
term in the collision operator as discussed in section 8.

As in the theory for neoclassical toroidal plasma viscosity
in tokamaks, there are resonant and non-resonant transport
processes categorized by whether ⟨vd · ∇θ0⟩bh vanishes. For
the non-resonant transport processes, equation (9.4.1.4) can be
further expanded by assuming that the poloidal drift frequency
is comparable to the collision frequency and much larger than
the radial drift frequency to allow for the local transport theory.
The leading order equation is then

⟨vd · ∇θ0⟩bh

∂f00

∂θ0
= ⟨C (f00)⟩bh , (9.4.1.5)

where the second subscript indicates the subsidiary ordering.
The solution to equation (9.4.1.5) is

f00 = f00 (V ) = fM. (9.4.1.6)

The next order equation is

⟨vd · ∇θ0⟩bh

∂f01

∂θ0
+ ⟨vd · ∇V ⟩bh

∂fM

∂V
= ⟨C (f01)⟩bh .

(9.4.1.7)

Equation (9.4.1.7) is the linear bounce averaged equation to be
solved for the non-resonant transport processes.

For the resonant transport processes, the linear drift kinetic
equation to be solved is

⟨vd · ∇θ0⟩bh

∂f01

∂θ0
+ ⟨vd · ∇V ⟩bh

∂f01

∂V
+ ⟨vd · ∇V ⟩bh

∂fM

∂V

= ⟨C (f01)⟩bh . (9.4.1.8)

The radial drift term ⟨vd · ∇V ⟩bh∂f01/∂V describing the radial
motion of the drift orbit must be kept to complete the drift
trajectories for the resonant helically trapped particles, because
∂f01/∂V is comparable to ∂fM/∂V for resonant transport
processes [111, 230].

To calculate the bounce averaged drift velocity, it
is assumed that nq > m so that helical angle α =
[mθ0 + (m/q − n)ζ ] ≈ mθ0 − nζ . The difference between
θ and θ0 is also neglected because of the assumption that
nq > 2π . With these approximations, using the model
magnetic field in equation (9.4.3) yields [271]

⟨vd · ∇θ⟩bh = c.′

ψ ′ − cµB0

eψ ′

{[
2E (kh)

K (kh)
− 1

]
∂εH

∂V
− ∂εT

∂V

}
,

(9.4.1.9)

and

⟨vd · ∇V ⟩bh = cµB0

eψ ′

{[
2E (kh)

K (kh)
− 1

]
∂εH

∂θ
− ∂εT

∂θ

}
,

(9.4.1.10)

where the pitch angle parameter k2
h is defined as

k2
h = E − e. − µB0 (1 + εT − εH)

2µB0εH
. (9.4.1.11)
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The bounce averaged collision operator is

⟨C (f01)⟩bh = νD

εH

1
K (kh)

∂

∂k2
h

×
{[

E (kh) −
(
1 − k2

h

)
K (kh)

] ∂f01

∂k2
h

}
, (9.4.1.12)

where the energy scattering operator is neglected as is
appropriate for large aspect ratio tori.

The solution of the bounce averaged drift kinetic equation
does not contribute to the flux surface averaged parallel viscous
forces as discussed in section 8. It does not have any direct
effects on the bootstrap current, nor does it modify the electrical
conductivity.

9.4.2. 1/ν regime. The 1/ν regime is the most studied
collisionality regime in the transport theory for non-
axisymmetric tori and in particular in stellarators in part
because transport coefficients scale unfavourably as T 7/2 for
high-temperature plasmas [3, 246, 271, 272, 273–275]. If the
scaling persists it could make stellarators a much less viable
candidate as thermonuclear fusion reactors [276].

In this regime, collisions are infrequent so that one class
of the trapped particles can complete their bounce motions.
Complicated analytic expressions for the transport fluxes for a
realistic magnetic field spectrum have been derived [273, 275].
To illustrate physics of the theory, the magnetic field model
in equation (9.4.3) is used to obtain relative simple transport
fluxes in this regime.

In the 1/ν regime, the effective collision frequency is larger
than the poloidal drift frequency. The transport process is non-
resonant. The equation to be solved is then

⟨vd · ∇V ⟩bh

∂fM

∂V
= ⟨C (f01)⟩bh . (9.4.2.1)

Integrating equation (9.4.2.1), and imposing the boundary
condition at k2

h = 0, i.e. [E(kh) − (1 − k2
h)K(kh)]∂f01/∂k2

h =
0, yield

∂f01

∂k2
h

= εH

νD

cµB0

eψ ′
∂fM

∂V

[ ∫ k2

0
dk2

h

{
[2E (kh) − K (kh)]

× (∂εH/∂θ) − K (kh) (∂εT/∂θ)

}]

×
[
E (kh) −

(
1 − k2

h

)
K (kh)

]−1

. (9.4.2.2)

Knowing ∂f01/∂k2
h is adequate to calculate transport fluxes,

and they are [271]
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and
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)
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]
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where ηj for j = 1–3 is the same as the one defined in
equation (8.2.1.8),

Is,1/ν =
∫ 2π

0
dθε

3/2
H

[
G1

(
∂εT

∂θ

)2

− 2G2
∂εT

∂θ

∂εH

∂θ

+G3

(
∂εH

∂θ

)2 ]
,

G1 = 16/9, G2 = 16/15 and G3 = 0.684. Both the
particle and normalized heat fluxes scale as T 7/2. This
unfavourable temperature scaling can have significant impact
on the confinement for fusion-born alpha particles [276].
The difference between stellarator transport fluxes and the
neoclassical toroidal viscosity in the 1/ν regime is that the
role of the toroidal magnetic field variation has changed. In
stellarators, helically trapped particles drift off the magnetic
surface as a result of the toroidal magnetic field variation. In
the theory of neoclassical toroidal viscosity, particles trapped
in the toroidal magnetic field variation drift off the magnetic
surface due to the helically perturbed magnetic field.

Another difference between the transport fluxes for the
stellarators and those for tokamaks with broken symmetry is
the mode number dependences. There are no explicit mode
number dependences for stellarator transport fluxes, while the
mode number dependences for neoclassical toroidal plasma
viscosity are important. The reason for the difference lies in
the approximation nq > m used in the theory for stellarators.

The radial electric field is not determined yet in the low
collisionality regime. In the 1/ν regime, the radial electric
field can be determined by setting

∑
j ej#

na
s,1/ν,j = 0, which is

equivalent to
∑

j ⟨Bt · ∇· ↔
π j ⟩ = 0, or

∑
j ⟨Bp · ∇· ↔

π j ⟩ = 0,
because the solution of the bounce averaged drift kinetic
equation does not contribute to ⟨B · ∇· ↔

π ⟩ [53]. Thus, the
radial electric field is [3, 211]

ei.
′

Ti
= −

p′
i

pi
+

η2i

η1i

T ′
i

Ti
, (9.4.2.5)

after neglecting the electron contribution because
√

Me/Mi < 1.
Together with the parallel flow in equation (9.3.2.1), the plasma
flows are completely determined in this regime.

9.4.3. Other low collisionality regimes. When the collision
frequency is even lower, boundary layer

√
ν regime,

collisionless detrapping/retrapping regime, superbanana
plateau regime and superbanana regime will become important
for plasma confinement in stellarators [3]. For a classic
stellarator, transport fluxes in all these regimes can be
calculated following the asymptotic analysis developed for the
theory for neoclassical toroidal plasma viscosity in section 8
and the physics reviewed in [3].

The collisional boundary layer
√

ν regime is too narrow
in the collision frequency domain for comparable magnitudes
of εt and εh, to be meaningful for asymptotic analysis as
demonstrated in [277] using the DKES code. Indeed,
a connection formula without including

√
ν scaling fits

numerical results better. However, in the limit where εh ≫ εt ,
the physics of the collisional boundary layer can be important.
The asymptotic boundary layer analysis is to make the outer
solution vanish at the trapped-circulating boundary. This leads
to the

√
ν scaling [3].
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The collisional boundary layer solution for the bounce
averaged drift kinetic equation in the regime where ν/εh <
c|.′|/ψ ′ but (ν/εh)/(c|.′|/ψ ′) > (εt/εh)

2 has been given in
[3]. Details of the analytic method are shown in section 8.

The transport fluxes are
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4
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√
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where ν∗dh = 4(νt/εh)|c.′/ψ ′|−1, and ηj for j = 1–3 is
defined in equation (8.2.2.21). It can be seen that when the
magnitudes of εt and εh are comparable the region in the
collision frequency domain for the

√
ν scaling is too narrow to

render a valid asymptotic analysis. Thus, it is not very useful
to insert a

√
ν scaling in the connection formula that joins all

the asymptotic limits.
The transport fluxes in the superbanana plateau regime

for the spectrum in equation (9.4.3) have been obtained in
[230]. The same analysis can be extended to calculate transport
fluxes in the superbanana regime. It should be emphasized
that the superbanana plateau transport fluxes can be obtained
with or without ⟨vd · ∇V ⟩bh∂f01/∂V in equation (9.4.1.8) as
demonstrated in [224, 230].

The DKES code [108] has been used to calculate the
plasma viscosity and to determine the radial electric field in
stellarators using the moment approach [278, 279]. It can
describe almost all relevant transport physics in stellarators
except that the superbanana plateau resonance is excluded in
the formulation. Thus, it is perfectly suited in the region where
the value of the radial electric field is finite, which is true
for most plasmas. Besides DKES, several numerical codes
are devoted to calculate the transport matrix for a variety of
stellarator configurations [280–288]. The benchmark of the
transport coefficients from all these codes is given in [289].

A connection formula for a classic stellarator, with εh > εt

and nq > m, has been constructed to join 1/ν, collisionless
detrapping, superbanana plateau and superbanana regimes
following the physics reviewed in [3]. It can be casted in
a form as, when νR/(vtnε

3/2
h ) ≪ 1,
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where ωE = cEr/(Br), and ω∇B = −cT ε′
hx/(eBr) [231].

The pitch angle dependence in ω∇B is neglected. Thus, the
resonance can only exist in one of the plasma species for a
given sign of the radial electric field. This is in contrast to
the connection formula for the neoclassical toroidal plasma
viscosity in section 8 where the pitch angle dependence is not
neglected. Note that there are no parallel plasma flows in the
thermodynamic forces because (#na)r is calculated from the
solution of the bounce averaged drift kinetic equation.

The Er for the ambipolar state is determined by∑
j ej (#

na
j )r = 0. This equation has bifurcated solutions

because the equation is a non-linear function of Er [290, 291].
When ion particle transport dominates, Er is negative. This
is called the ion root. The radial electric field is positive,
when the electron particle flux dominates. This is called
the electron root. In between these two roots, there can be
multiple solutions. Some of the roots are unstable. The
stability of the roots can be classified according to the extremes
of the generalized heat production rate [231]. The stable
roots are at the minima of the heat production rate and the
unstable roots correspond to the maximum production rate.
The transition of ion root to electron root or vice versa can be
a mechanism for the formation of the improved confinement
region in stellarators. There are other bifurcation mechanisms
that could be responsible for the L–H in the edge region of
stellarators [237].

9.4.4. H-mode. High confinement mode also exists in
stellarators. In the edge region of the stellarators besides
the orbit loss mechanism, the bifurcation can be triggered by
(#na)r in equation (9.4.2.3) together with the non-linear plasma
viscosity in the plateau–Pfirsch–Schlüter regime in section 8.
The dimensionless steady-state poloidal momentum balance
equation for a classic stellarator in cylindrical coordinates is
[237]

− 32
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where νh
∗ = νRq/(vtε

3/2
h |m − nq|), Mp = cEr/(vtBp),

Up,p = −cp′/(NevtBp), Up,T = −cT ′/(NevtBp), νcx =
Nn⟨σv⟩cx is to denote charge exchange frequency, Nn

is the density for neutral particles, ⟨σv⟩cx is the charge
exchange cross section, I

(j)
1/ν =

∫ ∞√
νh
∗

dx2x9(x2 − 5/2)j e−x2

by approximating the energy dependence in the collision
frequency as x−3, and
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×e−x2
∫ 1

−1
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Rmnvχ ′/B, (9.4.4.2)

for j = 1, and 2. The coupling between Mp and V||/vt is
neglected in equation (9.4.4.1) by assuming that |V||/vt| ≪ 1
for simplicity. The definition for I

(j)
mn is the same as that in
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Figure 28. The graphic solution for Mp in L-mode plasmas with
ν∗ = 15, and Up,p = Up,T = 0.25. The dashed line is for the term on
the left-hand side of equation (9.4.4.1) and the solid line is the
non-linear plasma viscosity from the right-hand side of
equation (9.4.4.1).

equation (8.3.1.4) except that the upper integration limit is
(νh

∗ )1/4 instead of ∞ to account for the fact that particles with
normalized speed faster than (νh

∗ )1/4 are not in the plateau–
Pfirsch–Schlüter regime. It is assumed that these higher speed
particles are in the 1/ν regime and is modelled on the left-hand
side of equation (9.4.4.1).

The steady-state solutions for equation (9.4.4.1) are found
using a graphic method for a given set of parameters: εt =
0.053, εh = 0.025, q = 1.92, m = 2, n = 5, νcxRq/vt = 0.01
and Up,p = Up,T = 0.25 [237]. In figure 28, ν∗ = 15, there
is only one solution, which is the L-mode solution. There
are two local maxima in the non-linear plasma viscosity when
Mp is positive. The first local maximum, which is slightly
larger than 1, is from the Pfirsch–Schlüter regime associated
with the (1, 0) toroidal mode. The second local maximum
is from the (2,5) helical mode that is in the plateau regime.
As ν∗ decreases to 0.75 and Up,p = Up,T = 0.50, there are
three solutions as shown in figure 29. The one in the middle
is unstable. The new solution with higher value of Mp is
the H-mode solution. When ν∗ decreases further to 0.70 and
Up,p = Up,T = 0.55, there is only one solution which is the
H-mode solution (figure 30). The turbulence is suppressed
according to the turbulence suppression theory in section 7,
and confinement is improved.

The L–H transition theory in equation (9.4.4.1) is also
applicable for a rippled tokamak. In that case, only (1,0)
toroidal mode contributes to the non-linear plasma viscosity.
The (0,n) ripple mode contributes to the 1/ν transport flux.
The 1/ν transport flux in a rippled tokamak differs from those
in stellarators and tokamaks with broken symmetry in that the
new class of ripple trapped particles exists only in part of the
(r, ϑ) plane [211]. Thus, there is an additional geometric factor
in the 1/ν transport flux [211].

The generic non-linear behaviour for the bifurcated
solutions for the momentum equation is similar for tokamaks

Figure 29. Multiple solutions for Mp with ν∗ = 7.5, and
Up,p = Up,T = 0.50. The dashed and solid lines are from the left-
and right-hand sides of equation (9.4.4.1) respectively.

Figure 30. The H-mode solution for Mp with ν∗ = 7.0, and
Up,p = Up,T = 0.55.

and stellarators as expected. The important physics is the non-
linearity in the plasma viscosity, which is derived from the
solution of the drift kinetic equation. It should be noted that
when the poloidal plasma flow is sonic, a shock can form and
plasma viscosity will be greatly enhanced [132].

In many aspects, the confinement of H-mode plasmas in
stellarators is similar to that in tokamaks. However, there
is one significant difference. In tokamaks, orbit squeezing
leads to reduced neoclassical transport losses. However, orbit
squeezing can increase the neoclassical losses in stellarators.
For example, in the 1/ν regime, ion transport loss is increased
as a result of the increased fraction of trapped particles due
to orbit squeezing [292]. In this regard, the confinement
improvement factor in H-mode in stellarators may not be as
large as that in tokamaks.
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9.4.5. Non-linear plasma viscosity driven fluxes. From the
flux–force relation, the non-linear plasma viscosity in section 8
also drives transport fluxes in the plateau and Pfirsch–Schlüter
regimes in stellarators. The magnitudes of the transport fluxes
are usually smaller than the friction force driven fluxes in
the Pfirsch–Schlüter regimes. Because both parallel flow
speed and radial electric field appear in the viscous forces,
the viscous force driven transport fluxes can be obtained after
these quantities are determined from the coupled non-linear
force balance equations. The procedure is the same as that
demonstrated in sections 9.1 and 9.2.

10. Neoclassical toroidal viscosity: experimental
results from stellarators and implications to ITER

10.1. Parallel viscosity

In general, neoclassical parallel viscosity plays a role only
in the poloidal direction in flow damping and there is no
neoclassical toroidal (CGL) viscosity in an axisymmetric
system (in tokamaks). Neoclassical toroidal (CGL) viscosity
appears only when the toroidal symmetry is broken by a
perturbation magnetic field. Therefore, the neoclassical
toroidal viscosity is tested by comparing the response of
the plasma rotation to the perturbation magnetic field. In
stellarators, the neoclassical parallel viscosity plays a role
both in the toroidal and poloidal directions and plasma tends
to flow along the symmetric direction where the parallel
viscosity is minimum when there is no toroidal torque input.
In the non-axisymmetric system both toroidal and poloidal
flows (not just the toroidal flow) are compared with that
predicted by neoclassical theory for a 3D magnetic structure
in a stellarator [46, 108].

Parallel viscosity is the mechanism of flow damping due to
collisions between trapped particles and transit particles. The
parallel viscosity due to collisions with banana orbit particles
appears in the poloidal direction as poloidal viscosity in a
tokamak, while the parallel viscosity due to collisions with
helical ripple trapped particles appears in the poloidal and
toroidal directions in helical systems. When there is a magnetic
island in the plasma, the magnetic flux surface loses toroidal
symmetry even in a tokamak, and this symmetry breaking
causes additional viscosity in the plasma. In experiment, the
parallel viscosity in a helical system and the viscosity due to
symmetry breaking such as by a magnetic island have been
investigated.

10.1.1. Toroidal viscosity. In helical plasmas, there is no
symmetry in the toroidal direction. Therefore, the toroidal
flow tends to damp due to the non-axisymmetric magnetic
field. This is the damping mechanism due to collisions
between the trapped particles and passing particles, which is
called the parallel viscosity. The parallel viscosity becomes
important only in the poloidal flow in an axisymmetric
magnetic configuration such as in a tokamak.

In contrast, the parallel viscosity becomes important both
in toroidal and poloidal flows in the cases where the toroidal
symmetry is broken such as by a magnetic island or in a
helical device. In general, both toroidal and poloidal flows
are determined by the balance between the damping force and

the driving force. The driving force in the poloidal direction is
dominated only by the non-ambipolar flux, while the driving
force in the toroidal direction can be dominated by the toroidal
torque from a tangentially injected neutral beam (NB).

In the compact helical system (CHS), the toroidal flow
profiles were measured in the plasma with tangentially injected
NB in order to compare the parallel viscosity evaluated
experimentally to that predicted by neoclassical theory
[293, 294]. Since the magnitude of the parallel viscosity
depends on the magnitude of the ripple, it can be significantly
changed by the magnetic axis shift in a Heliotron configuration.
In the configuration with an outer axis shift, where the parallel
viscosity is large enough, the toroidal torque injected by
NBI is balanced by the neoclassical parallel viscosity and the
parallel viscosity experimentally determined agrees with the
neoclassical prediction within a factor. In contrast, when the
parallel viscosity becomes small in the configuration with an
inner axis shift, the toroidal rotation observed in the plasma
is much smaller than that predicted by neoclassical parallel
viscosity. This is due to the flow damping due to anomalous
perpendicular viscosity. Figure31(a) shows the radial profiles
of the neoclassical toroidal viscosity coefficient [295, 296],
µ||, calculated by including all magnetic field Fourier spectral
components of the finite β̄ equilibrium in the plateau regime in
the CHS. Here the toroidal viscosity coefficient is defined as

µ∥ = 2
√

2eTi/MiF

λPLζRBζ

, (10.1.1.1)

where 2πF is the poloidal current outside the flux surface
and N , Mi and Ti, are ion density, mass and temperature,
respectively. In CHS, ions are in the plateau collisionality
regime and λPLζ is defined as
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where m and n are the poloidal and toroidal period numbers
of the magnetic field spectrum, and Mt is the toroidal field
periodicity in the helical device. By replacing the terms of the
Fourier series with 1/(m(ι/2π) + Mtn)(n̂ · ∇B/B), making
the approximation of single helicity (n = 1, m = 2, then
Mt ≫ m (i/2π)), ignoring the difference between parallel
and toroidal viscosity (Bζ ≈ B and (Bζ · ∇B)/B ≈ n̂ · ∇B),
and taking the large aspect ratio limit (F ≈ BζR) with
no net current (G = 0), this formula is approximated to
be (1/2)(

√
πRγ 2)/Mt . Then the viscosity coefficient is

simplified as µ∥ ≈
√

πγ 2(R/Mt)/
√

2eTiMi . This formula
is identical to the Shaing formula [81] by replacing ωti with
ωhi = (νthMt/R).

The toroidal viscosity coefficient increases very rapidly
towards the plasma edge, which gives strong damping of the
toroidal rotation velocity. As the magnetic axis, Rax is shifted
outward, the toroidal viscosity coefficient increases even near
the plasma centre. The increase of the toroidal viscosity
coefficient by shifting the plasma from 89.9 cm, where there
is negligible ripple, to 97.4 cm, where the helical ripple is
more than 2%, is one order of magnitude near the plasma
centre. As seen in figure 31(b), the central inverse parallel
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Figure 31. (a) Radial profile of the toroidal viscosity coefficient in
the CHS torsatron/heliotron for the vacuum magnetic axes of
Rax = 89.9, 94.9 and 97.4 cm and (b) inverse central parallel
viscosity derived from the measured central parallel viscosity,
density and momentum input as a function of the central modulation
of magnetic field strength. The dashed line is an estimate by the
neoclassical parallel viscosity and the solid line shows the
radial-diffusion-of-momentum effect on the measurements (from
figures 2 and 4 in [294]).

viscosity evaluated from the torque input from tangential
NBI and toroidal rotation measured with charge exchange
spectroscopy decreases as the modulation of the magnetic
field strength γ3D increases. Here γ3D is defined as γ 2

3D =
µ∥/(

√
2πeTi/Mi(R/Mt)). When the γ3D is less than 0.3 m−1,

the damping of toroidal rotation due to the perpendicular
viscosity (transport of momentum) becomes comparable to
the damping due to the parallel viscosity. The perpendicular
viscosity is evaluated to be 2 m2 s−1 in the plasma with γ3D ∼ 0
and assumed to be unchanged for all configurations with
different γ3D. By adopting the parallel viscosity predicted
by the neoclassical value, the experimental data show good
agreement with predictions. Therefore, the experiment in CHS
clearly demonstrates that the neoclassical prediction [46, 81]
agrees with the measurements.

A comparison of parallel viscosity between the
experimental results and neoclassical prediction was made in
the helically symmetric experiment (HSX). The plasma flow is

Figure 32. Measured spin-up rate of parallel flow after the onset of
electrode bias in the QHS configuration and mirror configuration.
The theoretical rates predicted by neoclassical theory are also
indicated with νF (from figure 1 in [297]).

driven by the J ×B force due to the radial current drawn by an
electrode inserted inside the last closed magnetic surface. The
plasma flow is measured with Mach probes. The magnitude
of the parallel viscosity can be decreased by changing the
configuration from a mirror configuration to a quasi-helically
symmetric (QHS) configuration [297, 298]. The spin-up and
decay rates of the parallel flow are measured with the Mach
probe after the onset and turn-off of the electrode pulse. As
seen in figure 32, the spin-up and decay rate is 1–3 kHz (0.3–
1 ms) near the plasma periphery (r/a = 0.7–1.0) and the spin-
up rate is higher for the mirror configuration than the QHS
configuration. The spin-up rate for both configurations shows
good agreement with the neoclassical prediction. Significant
reduction of the damping rate of flow in the QHS configurations
is observed as predicted by neoclassical theory. The time scale
of the spin-up rate of the flow at the onset of electrode voltage
is consistent with the neoclassical prediction. However, the
rate at which the flows are damped is not consistent with
neoclassical theory; the measured damping dates are much
larger than the prediction by a factor of approximately 10
for the QHS configuration and 5 for the mirror configuration.
One of the candidates causing the fast damping of flow after
the electrode voltage is turned off is the viscosity due to the
collision with neutrals.

The experiment in HSX contrasts with the experiment
in CHS. The magnitude of parallel viscosity is decreased by
changing the configuration towards the increase of toroidal
symmetry in CHS and helical symmetry in HSX. The driving
force was the toroidal torque from NBI in CHS, while it is
the J × B force from the electrode. The plasma flows were
measured with Doppler shift of the impurity line in CHS,
while it is with Mach probe in HSX. In both experiments,
the plasma flow is consistent with the neoclassical prediction,
but some mechanism increasing the viscosity in the plasma
was pointed out, which is anomalous perpendicular viscosity
in CHS and neutral drag in HSX. In both experiments, the
observation shows reasonable agreement with the prediction
from neoclassical parallel viscosity [81].
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Figure 33. Measured parallel flow velocities (a) as a function of the
magnetic ripple strength and (b) as a function of the external
momentum input in the three mirror configurations at r = 0.07 in
Heliotron-J (from figures 9 and 10 in [299]).

The offset of rotation in the counter-direction was
observed in Heliotron-J [299]. The parallel velocities are
measured with charge exchange spectroscopy in the plasmas
with both for co- and counter-NBI for high, standard and
reversed mirror configurations, where the magnetic ripple
strength changes from 0.073, 0.031 to 0.027 m−1. As
seen in figure 33(a), the measured parallel flow decreases
as the magnetic ripple strength, γ , is increased. This γ

dependence of parallel flow observed is quite consistent with
the previous results reported in CHS. It is interesting that
the offset of rotation (non-zero parallel flow and the zero
external momentum input) is observed in this experiment
as seen in figure 33(b), which was not identified in CHS
experiments. The offset parallel flow is recognized as
the neoclassical toroidal viscosity torque, which has been
discussed in tokamaks [300].

10.1.2. Poloidal viscosity. In stellarators both poloidal and
toroidal viscosities are important to determine the flow pattern
in the plasma. According to neoclassical theory, when the
poloidal rotation velocity exceeds critical values, the poloidal

Figure 34. The dependence of (a) poloidal driving force, FJ×B , and
momentum damping force, Fdamp, and (b) the ion viscosity, Fvisc, on
poloidal Mach number, Mp, at r = 0.56. The line with closed
diamonds shows the calculation data for ion viscosity applied to the
Rozhansky and Tendler model and that with closed squares to the
Shaing model. The closed symbols in the experimental results
correspond to the data in the negative resistance region. The local
maximum of the ion viscosity at Mp ∼ 2 was observed both for the
theoretical prediction and the experimental results (from figure 7
in [302]).

Mach number, Mp = (Bζ/Bθ )(VE×B/vth) of unity, the
neoclassical parallel viscosity starts to decrease and therefore
a large sudden increase in poloidal rotation velocity and radial
electric field is expected. The poloidal viscosity is measured
in the biasing experiment with an emissive polarization probe
in the Tohoku Heliac [301, 302]. Figure 34(a) shows the
damping force due to the poloidal viscosity and friction with
neutral particles. The solid lines and dashed lines are the
neoclassical ion viscous damping forces including the friction
term with neutral particles predicted by the Shaing model [237]
and the Rozhansky and Tendler model [303].

Because of the low edge temperature, the friction with
neutral particle can be significant in this experiment. The
damping force increases more or less linearly as the poloidal
Mach number is increased and the peak near the poloidal
Mach number −Mp of ∼2 is due to the contribution of the
neoclassical poloidal viscosity. Figure 34(b) shows the ion
poloidal viscosity as a function of the poloidal Mach number.
Here the friction with neutral particles is subtracted in order to
compare the experimental results with the neoclassical poloidal
viscosity. The viscosity drops to zero in the Rozhansky and
Tendler model, while the Shaing model gives finite viscosity
at higher poloidal Mach numbers −Mp > 3. The poloidal
viscosity measured starts to decrease when the poloidal Mach
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Figure 35. Experimental radial current, jr , as a function of radial
electric field, Er . The open circles are plotted every 64 µs (modified
from figure 3 in [305]).

number −Mp = 1 − 2 but does not completely drop to zero,
which is more consistent with the Shaing model.

The biasing experiment can be done only near the plasma
edge, where the effects of neutral cannot be neglected. Since
the radial current due to the ion non-ambipolar flux is cancelled
by the electron radial current, the net radial current is always
zero in the steady state in the core plasma. Therefore, it is
not easy to evaluate the ion non-ambipolar flux in experiment.
However, a radial current, which produces the J × B force to
make the plasma rotate can be evaluated from the change in
the radial electric field, because the time scale of the transition
of the radial electric field is connected to the magnitude of
the radial current [304]. The radial current which drives the
poloidal flow and the radial electric field can be evaluated
in the transient phase where the radial electric field changes
rapidly at the events of the transition from an L-mode plasma
to an ITB plasma and back transitions. Figure 35 shows the
radial current evaluated from the time derivative of the radial
electric field at the formation and termination of the ITB, where
the large positive radial electric field is produced. The radial
current measured is consistent with the neoclassical prediction
[305, 306], which also supports the idea that the poloidal

viscosity is close to that predicted by neoclassical theory.
The poloidal viscosity is expected to drop in the plasma

with higher temperature and/or low neutral density as the
poloidal Mach number exceeds unity. Therefore, the spin-
up of the poloidal rotation due to the reduction of poloidal
viscosity is one of the candidates of the L- to H-mode transition
[15]. The reduction of the poloidal viscosity near the critical

poloidal Mach number well explains the poloidal rotation
profiles at the L-mode to H-mode transition in JFT-2M [307].
The width of the large poloidal flow region is determined by
the neoclassical poloidal viscosity and turbulent perpendicular
viscosity. The study of the H-mode boundaries in W7-AS gave
strong evidence of the role of neoclassical poloidal damping
for the H-mode transition conditions [308, 309]. Figure36
shows the neoclassical poloidal damping due to specific field

Figure 36. Poloidal viscosity versus edge rotational transform for
W7-AS vacuum field conditions. The maxima are linked to the edge
island chains which vary in this iota range from 5/11 to 5/10 to 5/9.
The H-mode windows are linked to the periodic field structure. Two
windows are located at the viscosity minima (from figure 16
in [308]).

Fourier coefficients, which compose the field structure at the
edge of W7-AS. The H-mode can be realized in W7-AS at a low
power threshold but only in isolated iota windows. Apart from
the high-iota window, the quiescent H-modes develop at the
minima of poloidal damping. These windows are periodically
linked to the island chains 5/11, 5/10 and 5/9 whose associated
chain of natural islands establishes the inner separatrix.

In Heliotron-J, the transition from the L-mode to the
H-mode is observed in a wide range of iota window. However,
there are iota windows for the good H-mode discharges.
HISS95-factors exceed 1.3 in the regions where the ι/(2π)

values are close to the low order of resonances of n/m = 4/8,
4/7 and 12/22 [310]. In LHD, the transition from L-mode to the
H-mode is observed only in the configuration with an outward
magnetic axis shift ofRax = 3.9−4.1 m, where the low order of
resonances of n/m = 1/1 are located in the stochastic region
near the plasma edge. There is no L- to H-mode transition
observed in the standard and inner shifted configuration (Rax >

3.9 m), where the n/m = 1/1 resonance surface is located in
the interior region of the plasma [311]. The relation between
ELM activity and rational surfaces is also investigated in LHD.
The ELM activity vanishes with a small change of the edge
rotational transform. A precise profile measurement of the
edge density bursts confirmed that ELM activity occurs at the
ι/(2π) = 1 position [312]. These experiments suggest the
importance of poloidal viscosity damping and the magnetic
structure of the rational surfaces and the magnetic island, which
will be discussed in section 10.3.

10.2. Plasma flow along minimum viscosity

10.2.1. Parallel flow in the plasma with large radial electric
field. In helical plasmas, both toroidal and poloidal flows are
affected by the damping process due to parallel viscosity. The
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symmetric direction, where the parallel viscosity is minimum,
is between the toroidal and poloidal directions. In a tokamak,
this symmetric direction is the toroidal direction and the
toroidal flow is parallel to the ⟨Er × Bθ ⟩ drift direction.
However, in helical plasmas, the toroidal flow anti-parallel to
the ⟨Er × Bθ ⟩ drift direction is observed because of the pitch
angle of the symmetric direction is larger than the averaged
pitch angle of the magnetic field [313].

Plasma flow along the symmetric direction is observed
in HSX [314] and CHS, when a large electric field exists
in the plasma and the plasma flow is mainly determined
by the intrinsic flow. The reversal of the toroidal flow is
observed when the second electron cyclotron heating (ECH)
pulse is applied to the NBI plasma and the electron temperature
gradient and poloidal rotation velocity in the ion diamagnetic
direction becomes large (hot electron mode) as shown in
figure 37(a). The poloidal and toroidal rotations for the
discharges without the second ECH pulse are also plotted as
a reference. The electron temperature increases up to 2 keV
(hot electron mode), while it is only 0.2 keV when there is no
second ECH pulse. During the second ECH pulse, the electron
collisionality is low enough to make the plasma to be in the
electron root (positive electric field), which is consistent with
neoclassical prediction. The positive radial electric field is
mainly contributed by the poloidal flow in the ion diamagnetic
direction. Figure 37(b) shows the contours of the magnetic
field strength on the magnetic flux surface at r = 0.3. The
minimum ∇B direction is roughly parallel to the pitch angle of
the helical coils of θ/ζ = 4, where θ and ζ are the poloidal and
toroidal angles, respectively. On the other hand, the averaged
pitch of the magnetic field is only 0.7. The flow reversal in the
plasma with ECH shows that the plasma tends to flow along
the minimum ∇B direction rather than the direction of the
⟨Er ×Bθ ⟩ drift. In contrast, in the NBI heated plasma without
a second ECH, the radial electric field and poloidal flow are
small and the toroidal flow is parallel to the direction of the
torque input from the NBI. In LHD, the flow in the core region
is dominated by the flow driven by the NBI torque. However,
the toroidal flow anti-parallel to the ⟨Er × Bθ ⟩ drift direction
is also observed near the plasma periphery in LHD [315].

Plasma flow parallel to the symmetry direction is more
pronounced in the HSX plasma which has more complete
helical symmetry. Flow velocity profiles are shown in
figure 38(a) for 50 kW and 100 kW ECH input power. The
symmetry flow increases across almost the entire plasma radius
when the input power is increased. The cross symmetry
flow did not change measurably. This is because the parallel
viscosity has a minimum in the symmetry direction and plasma
tends to flow along the minimum viscosity direction. The
neutral beam is injected perpendicular to the plasma and there
is no external torque and flows indicated in this figure are
considered to be intrinsic plasma flows. Viscosity in the
direction perpendicular to the direction of symmetry leads
to the appearance of a large parallel flow. If the viscosity
in the direction of symmetry was exactly zero, the sum of
the parallel and perpendicular flows would produce a net
flow that moved completely in the direction of symmetry,
as shown in figure 38(b). These experiments show that the
strong coupling between the toroidal and poloidal flows is
important in a stellarator because the symmetry direction,

Figure 37. (a) Time evolution of toroidal rotation velocity for the
L-mode plasma without a second ECH and the hot electron mode
plasma with a second ECH where the large electron temperature
gradient is produced and (b) contours of magnetic field strength on
the magnetic flux surface at ρ = 0.3 (from figure 11.1 in [313] and
figure 3 in [316]).

where the neoclassical parallel viscosity becomes minimum,
is tilted from the toroidal direction. Therefore, both toroidal
and poloidal viscosities should be taken into account to predict
the flow structure.

10.2.2. Comparison of flow structure between a stellarator and
a tokamak. Because of the 3D effect of viscosity, there is
a strong coupling between the toroidal and poloidal flows (or
the radial electric field) especially in helical plasmas. This
effect drives the ‘toroidal flow due to the radial electric field’
and can be large enough to exceed the toroidal torque driven
by neutral beams and cause a reversal of the toroidal flow.
In experiment, the reversal of the toroidal flow is observed
in the CHS in the plasma with an electron internal transport
barrier, where the strong positive radial electric field and the
poloidal flow appear [313]. In this experiment, the toroidal
flow is in the co-direction in the NBI heated plasma with a
small negative radial electric field. After the onset of the ECH
pulse, a large poloidal flow in the ion diamagnetic direction
and a positive radial electric field appears in the whole plasma.
After a significant increase in the poloidal flow, the toroidal
flow in the co-direction (parallel to the current increasing
the rotational transform produced by external coil currents)
decreases and finally the plasma flow reverses direction in
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Figure 38. Flow components: (a) the measured flow in HSX is
primarily in the symmetry direction with a small cross symmetry
flow. The flow increases with increasing heating power; ◦: 100 kW
heating, ×: 50 kW heating. (b) Idealized flow component vectors
are plotted over magnetic field strength contours and selected
magnetic field lines (from figure 13 in [314]).

the counter-direction (anti-parallel to the current increasing
the rotational transform). This experiment clearly shows the
strong coupling between the poloidal flow and the toroidal
flow. Since the pitch of the helical symmetry (the direction
of minimum parallel viscosity) is larger than the pitch of
the magnetic field averaged over a magnetic flux surface, the
poloidal flow in the ion diamagnetic direction (positive radial
electric field) contributes to the toroidal flow in the counter-
direction. This is in contrast to the poloidal flow in the electron
diamagnetic direction (negative electric field) contributing to
the toroidal flow in the counter-direction in a tokamak, where
there is almost zero parallel viscosity in the toroidal direction
because of toroidal symmetry. The differences in the direction
of the toroidal flow driven by this mechanism are discussed
based on observations in CHS and the JFT-2M tokamak [316].

The spontaneous toroidal flow observed in the plasma in
CHS is anti-parallel to the direction of the Er × Bθ drift.
This is in contrast to the spontaneous toroidal flow in the
direction parallel to the direction of the Er × Bθ drift in
tokamak plasmas, which is clearly demonstrated in figure 39.
Here the spontaneous toroidal flow is given by the difference
of magnitude of toroidal flow velocity between co-injection
and counter-injection with a similar magnitude of momentum
input. In general, the toroidal flow in a Heliotron plasmas is
much smaller than that in a tokamak, because of the toroidal

Figure 39. Spontaneous toroidal flow velocity as a function of
Er/Bθ at ρ = 0.4 for tokamak and helical plasmas. The solid lines
are best fits for the measured data and δVφ = −1.5(Er/Bθ ) − 0.79
for a heliotron plasma and δVφ = 1.34(Er/Bθ ) + 22.3 for a tokamak
plasma. The positive slope shows the flow parallel to the ⟨Er × Bθ ⟩
drift direction and the negative slope shows the flow anti-parallel to
the ⟨Er × Bθ ⟩ direction (from figure 7 in [316]).

viscosity due to helical ripple [298] which does not exist in
tokamak plasmas. However, the spontaneous flow observed in
CHS is comparable to that observed in the JFT-2M tokamak.
This is because the radial electric field in the CHS plasma
with an internal transport barrier is much larger than that in the
L-mode plasma in the JFT-2M tokamak. It should be noted that
the ratio of the spontaneous flow velocity to the radial electric
field normalized by the poloidal field in CHS is 0.15, which
is much smaller than that observed in a tokamak (∼1.34) by
an order of magnitude. At the internal transport barrier in a
tokamak, a spontaneous toroidal flow larger by one order of
magnitude than that observed in CHS is expected.

10.3. Damping of poloidal flow inside the magnetic island

The plasma flow inside the magnetic island is an important
issue because it affects the growth or healing of the magnetic
island. When the magnetic island rotates with the E ×B flow,
there is no flow shear at the boundary of the magnetic island.
However, when the magnetic island stops or rotates with a
speed different from the E ×B velocity, the flow shear should
appear at the boundary of the magnetic island. Figure 40
shows the radial profile of poloidal flow measured with high
resolution charge exchange spectroscopy in LHD [317, 318].

A magnetic island in a helical plasma usually does
not rotate although there is a finite poloidal flow in the
plasma. The poloidal flow inside the magnetic island was
measured and it was found that the poloidal flow is zero
inside the magnetic island, which indicates a flat space
potential inside the magnetic island for small and medium
sized magnetic islands. Then the strong flow shear appears
at the boundary of the magnetic island and it may contribute to
the reduction of transport near the boundary of the magnetic
island through turbulence suppression by E × B shear. The
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Figure 40. Radial profiles of poloidal rotation velocity for various
currents of n/m = 1/1 external perturbation coils. The last closed
surface is at R = 4.10 m at the vertically elongated cross section.
The major radius for the centre of the magnetic island, Ri, is
indicated with a line as a reference. The dashed lines are profiles of
poloidal velocity fitted to the measured values (from figure 2
in [317]).

Er shear at the boundary of the magnetic island exceeds a
few hundred kV m−2, where the turbulence suppression is
expected, although the shear region is narrow (1–2 cm). The
scale length of the Er shear is similar to that observed in a
zonal flow while the magnitude of shear is much larger than
that of a zonal flow [319, 320]. Therefore, the Er shear at the
boundary of the magnetic island should have a strong impact on
the transport. In a tokamak, the magnetic island is believed to
rotate at the same speed as the E × B rotation. However,
it is not clear whether there is a ‘slip’ of the rotation. It
should be noted that the difference in plasma flow between
inside and outside of the magnetic island observed in LHD
is only 2 km s−1, which is masked by the uncertainty of the
flow measurements in many cases. The width of this island
is controlled by external coils and can be varied between 0%
and 20% of the minor radius. As a result of the finite ion
temperature in LHD, the profile flattening inside the island
gives rise to a jump in the ion drift velocity across the separatrix.
To satisfy the no-slip condition, this jump is compensated by

a discontinuity in the electric field, which may contribute to
turbulence suppression. Because the region of Er shear is
narrow even a small jump in the radial electric field may be
enough to affect the transport. The interaction of turbulence
and magnetic islands is an important issue and theoretical
research for this issue has been reported [321].

A theory to determine the radial electric field in the vicinity
of a magnetic island based on the island-induced symmetry-
breaking transport flux is proposed (see section 8.4) [207]. In
this model, the radial electric field is governed by a non-linear
equation that can have multiple equilibrium solutions as plasma
parameters change (see section 8.4.2) [242]. This results in a
bifurcated state of the radial electric field which is observed in
the experiments in LHD, when the size of the magnetic island
becomes large enough. This theory predicts an important role
in the plasma confinement in the vicinity of the lower order
rational surfaces and may explain the plasma confinement
improvement in the vicinity of the lower order rational surfaces
observed in the stellarator and tokamak experiments [322–
324]. The mechanism of the transport reduction near the
rational surface is not fully understood yet; however, the radial
electric field shear near the rational surface is one of the
candidates for suppressing the turbulence.

Another interesting observation of the poloidal flow in
the magnetic island is the bifurcation phenomena. When the
width of a magnetic island exceeds a critical size, a spin-up
of the poloidal flow inside the magnetic island is observed.
This spin-up causes a finite radial electric field and a peaked
space potential profile inside the magnetic island, although
the temperature profile is flat inside the magnetic island.
This spin-up of the poloidal flow is due to the difference in
poloidal flows at the two boundaries of the magnetic island
(the boundary inner side and the boundary outer side). It
is an important fact that the spin-up of the poloidal flow
appears abruptly, which suggests the strong non-linearity of
flow damping and/or generation in the vicinity of the magnetic
island. The multiple equilibrium solutions of the radial electric
field in the vicinity of the magnetic island are also predicted
theoretically (section 8.4.2) [242]. It should be noted that
the Er shear at the boundary of the magnetic island tends
to disappear when the spin-up takes place for the large size
magnetic island. Therefore, strong Er shear is expected in a
plasma with a small magnetic island.

This Er shear is one of the candidates for the transport
improvement mechanism near rational magnetic surfaces,
where small magnetic islands may exist. The TJ-II stellarator
device was the ideal device to explore the effects of rational
surfaces and possible small magnetic islands on the transport,
because the rotational transform can be scanned over a wide
range ι/(2π) = 0.9–2.2 during the discharge [325, 326].
Figure 41 shows the contours of the electron thermal diffusivity
in the helical coil current scan during a discharge [327].
The electron thermal diffusivity is derived from the electron
temperature gradient measured with ECE, which gives precise
relative values, although the absolute value of the gradient may
have a large uncertainty due to the calibration. It is clearly
demonstrated that the electron thermal diffusivity is strongly
coupled with the low order rational surface of ι/(2π) =8/5
and 5/3 indicated with solid lines.
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Figure 41. Profiles of electron thermal diffusivity as a function of
helical coil current. The vacuum low order rationals (ι/(2π)) = 8/5
and 5/3 are shown with white lines. Two higher order rationals
(ι/(2π)) = 13/8 and 18/11) are indicated with dashed lines (from
figure 8 in [327]).

10.4. Implications for ITER

Experiments on toroidal and poloidal viscosities demonstrated
that these viscosities have reasonable agreement with that
expected from neoclassical theory. At the plasma edge,
friction with neutral particle has a significant role and it can
be larger than the poloidal viscosity. Since the friction with
neutral particles decreases as the edge temperature becomes
higher, the friction may not be crucial in large devices such
as ITER. Therefore, the experiments on toroidal and poloidal
flow suggest that the theory of neoclassical viscosity can give a
reasonable prediction of the flow pattern (toroidal and poloidal
flows) for the plasma with normal nested magnetic flux surface
in future devices such as ITER.

In contrast, the physics of a complicated magnetic
topology (magnetic flux surface with magnetic island) is not
well understood. For example, the flattening of temperature
inside the magnetic island is commonly observed; however,
this flattening of the temperature is not due to the enhancement
of cross field transport (large thermal diffusivity) but due to the
change of topology. The heat flux parallel to the magnetic field
becomes significant in this region and most heat flux in the
radial direction is through the X-point of the magnetic island
[328]. In fact, heat pulse propagation experiments suggest

reduction of cross field transport (low thermal diffusivity)
inside the magnetic island [329]. The existence of a magnetic
island would be crucial in ITER, when the resonance magnetic
perturbation field is applied to control the ELM. The magnetic
island causes a significant poloidal asymmetry of radial heat
flux and also significant complicated flow patterns in the
plasma. Therefore, the toroidal and poloidal viscosities in
the plasma with a magnetic island should be investigated more
in detail, because the toroidal flow plays an important role
to stabilize the MHD mode at the plasma edge, while the
poloidal flow as well as the zonal flow plays important roles
to suppress the turbulence and contribute to the increase in the
pressure gradient and MHD activity. Further comparisons of
neoclassical viscosity theory to explore are desirable in order
to understand the 3D effect on viscosities and to predict the
flow at the plasma boundary in ITER.

11. Neoclassical toroidal viscosity in tokamak
experiments

11.1. Importance of theoretical NTV expectations for tokamak
experiments

The non-ambipolar transport caused by broken toroidal field
symmetry in tokamaks has important ramifications for present
and future tokamaks. The effects of three-dimensional
(3D) magnetic fields with normalized magnetic perturbations
δB/B ∼ O

(
10−3

)
are currently being used to alter tokamak

transport, with a highly notable example being the use of
resonant magnetic perturbations to alter the density profile
in the pedestal region of tokamaks, to control edge localized
modes with direct application to ITER [330]. Tokamak
experiments on NTV have focused more directly on the effect
of the enhanced plasma viscosity caused by the associated non-
ambipolar transport. Studies have logically been more closely
tied to the effects of how NTV may alter plasma stability
through the variation of the plasma rotation profile, examining
the ramifications of slowing or increasing the toroidal plasma
rotation, and changing its profile. The effects of toroidal
rotation and its shear on MHD modes, e.g. tearing modes and
resistive wall modes (RWMs) are well known [331–334].

Verification and understanding of the basic characteristics
and scalings of NTV, an inherently 3D effect in tokamaks, is
especially important because the particle diffusivity, to which
the magnitude of the NTV is related, increases at reduced
collisionality (figure 20). Future devices such as ITER [335],
FNSF [336, 337] or DEMO [338] will operate at collisionalities
of about two orders of magnitude smaller than tokamaks
today, and so it will be important to experimentally verify
the dependence of NTV on ν, which shown by figure 20
is somewhat complex. The behaviour of NTV in regimes
spanning the Pfirsch–Schlüter, plateau, 1/ν, B–L, and C–
D regimes will be important. Also, very important is the
verification of the superbanana plateau (Sb-P) regime, which
will create increased NTV at sufficiently low ωE. Determining
potential alteration of Sb-P generated NTV at different levels
of ν is important. The NTV offset rotation might provide
important intrinsic rotation for mode stabilization or sustained
H-mode operation in slowly rotating plasmas. As NTV is
strongly related to the perturbed 3D field, the ramifications
of the amplification of that field due to stable or unstable
plasma response is important to understand. NTV can also
be used to tailor the plasma rotation and its shear to avoid
MHD instabilities by using pre-programmed currents, or in
closed-loop feedback using applied 3D fields as actuators.
Understanding the dependence of NTV on the key plasma
parameters is critical for the successful use of NTV in either
pre-programmed or closed-loop feedback. For instance, one
must be wary of potential non-linearities, or possible hysteresis
due to variations of NTV as the plasma traverses the operating
space of a given tokamak.

Bridging from present-day tokamaks to the lower
collisionality of ITER and DEMO takes NTV from the
1/ν (section 8.2.1) to the collisional boundary layer
ν − sqrt(ν) regime (section 8.2.2) and the collisionless
detrapping/retrapping regimes (section 8.2.3) [208, 222]. The
superbanana plateau regime (section 8.2.4) can exist in
all regimes at reduced collisionality with ν∗

i < 1. These
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regimes have distinct dependences on plasma collisionality,
summarized as follows for ions: the torque due to NTV,
TNTVi ∝ nK1

i T K2
i , where K1 = 0, K2 = 5/2 for the 1/ν

regime, K1 = 3/2, K2 = 1/4 for the ν − sqrt(ν) regime,
and K1 = 1, K2 = 0 for the superbanana plateau regime.
Simplified, these scalings show a strong increase in the strength
of τNTVi as the plasma becomes collisionless (here defined as
collisionality falls below ν∗

i < 1), then saturates at lower ν.
The extended theory states that at sufficiently low ν, τNTVi may
eventually begin to decrease with decreasing ν. Of particular
note is that when the superbanana plateau criterion is met, the
TNTVi dependence on ν changes significantly, and increases
in magnitude, even though the plasma rotation may be small.
Based on these observations, attention should be placed on the
potential deleterious effects of strong NTV reducing plasma
rotation, and possibly leading to locked tearing modes and
global MHD instabilities leading to disruptions at low ν, and
separately in the Sb-P regime.

11.2. Non-resonant rotation alteration by applied fields and
modes in tokamaks

11.2.1. Non-resonant NTV versus resonant damping, key
experimental characteristics. The terms ‘non-resonant’ and
‘resonant’ rotation damping are often used to segregate
observations of rotation damping in tokamaks by 3D
perturbations generated in the plasma by either applied fields
and their potential amplification by stable, but weakly damped
MHD modes, or MHD instabilities. While they can often
become confused with similar terminology on related subjects
(e.g. stabilizing resonant kinetic effect applied to MHD
modes), these two designations are important because they
generally describe torques on a tokamak plasma with critically
different dependences on the magnitude of the toroidal plasma
rotation frequency, ωφ . Extending the classification by
Fitzpatrick [339] for low-beta, large aspect ratio tokamak
equilibria, Fourier harmonics of modes and error fields can
be separated into two classes: ‘resonant’ when there exists a
‘rational flux surface’ inside the plasma for which k · B = 0,
where k is the wave vector associated with the harmonic. A
non-resonant harmonic has no such rational surface inside
the plasma. A simple example of a resonant mode is a
tearing mode, for which the rotation damping due to the
electromagnetic interaction of the mode and tokamak error
field has been studied [340].

Generally, the damping torque exerted on a rotating
plasma due to a resonant harmonic importantly has an inverse
dependence on ωφ . Therefore, a rotating mode exposed
to a resonant braking torque that continually slows the
plasma rotation will eventually generate a catastrophic loss
of torque balance [339], causing the mode to lock to the
typically static resonant error field harmonic, typically causing
a plasma disruption (significant thermal collapse, or full
current quench). In stark contrast, a non-resonant braking
torque typically scales with ωφ in such a way that it cannot
produce a catastrophic loss of torque balance, which is clearly
beneficial in that it will not cause mode locking and associated
disruptions. Non-resonant NTV as described in earlier sections
exhibits such a characteristic (e.g. NTV scales linearly with ωφ

in most regimes of interest).

The following brief summary of key characteristics of non-
resonant NTV plasma rotation damping compared to resonant
damping is useful to help identify the different mechanisms in
tokamak experiments.

(A) Resonant rotation damping.

(i) Exhibits a localized peak in rotation damping near
a rational surface, initially showing a clear outward
diffusion of momentum across the rational surface. This
increases rotation on the outboard side of the rational
surface and decreases it on the inboard side, as the island
creates a localized radial flattening of the rotation across
the rational surface.

(ii) If momentum input is sufficient to maintain the torque
balance, the steady-state evolution of the plasma rotation
frequency inside of the rational surface is a rigid rotor
(ωφ (ψ) = constant = ωφs , which is the value of the
plasma rotation at the rational surface).

(iii) Since the magnetic braking torque near the rational surface
scales as 1/ωφ , the plasma is subject to loss of torque
balance and consequent mode locking. Assuming that
the island is locked to the plasma flow (no-slip condition
[340]), the plasma slows to zero rotation at the rational

surface.

(B) Non-resonant NTV rotation damping.

(i) Non-resonant NTV is radially extended and not highly
localized, as it is a convolution of a non-resonant perturbed
field spectrum (which is typically radially extended in a
tokamak plasma), the plasma temperature profile, and the
plasma toroidal rotation profile.

(ii) Since the plasma temperature and rotation profiles tend to
zero at the plasma boundary, the NTV torque density and
related change in toroidal rotation due to NTV tend to zero
in this region regardless of the magnetic field perturbation
strength in this region.

(iii) There is no clear momentum transfer across a particular
rational surface, and no clear localization of momentum
damping at rational surfaces. Therefore, when the plasma
rotation frequency is significantly greater than the NTV
offset frequency, the change in the rotation frequency
due to NTV by an applied 3D field retains the same sign
versus the minor radial coordinate, in contrast to resonant
braking where the change in rotation changes sign across
the rational surface.

(iv) For usual tokamak radial profiles, the NTV magnitude
changes as a function of flux surface, therefore the profile
of the plasma rotation frequency can be changed by NTV,
depending on the non-resonant field spectrum applied, or
non-resonant mode activity that appears. The local NTV
torque density and its profile are therefore important, as
its alteration allows more control of the rotation profile
than afforded by a highly localized, or integrated external
torque.

These characteristics allow the identification of observed
magnetic braking in tokamak experiments as either resonant
or non-resonant. However, the superposition of these two
effects can confuse their interpretation. Therefore, tokamak
experiments aimed to study NTV are generally required
to have insignificant sources of resonant breaking, e.g. the
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Figure 42. Reduced plasma rotation (frame 2) in DIII-D due to the
variation of an applied n = 3 field (frame 1).

elimination of strong tearing mode activity. The potential loss
of torque balance generated by resonant braking mechanisms
also precludes non-resonant NTV studies at low rotation speeds
below the threshold for mode locking [341].

Theory and modelling [340–342] of resonant rotation
damping preceded the experimental identification of non-
resonant NTV. This may have been due to an apparent lack of
connection between plasma rotation damping due to resonant
(e.g. tearing perturbations of the magnetic field) and non-
resonant modes (e.g. ideal perturbations of the magnetic field).
The successful model of rotation damping due to tearing modes
[340] identified the drag force as an electromagnetic J × B

drag caused by the perturbed currents of the mode interacting
with a resonant error field. However, it can be shown that for
an ideal plasma perturbation, the corresponding torque is zero.

11.2.2. Early connections to rotation damping induced by
applied fields. In research primarily addressing NTM control,
it was observed in DIII-D that an applied n = 3 perturbation led
to a decrease on plasma rotation [37] (figure 42). An important
conclusion of the study was that a resonant electromagnetic
J ×B force model was not compatible with the observed drag.
A key defense made for this statement is related to the 1/ωφ

dependence of the resonant drag torque. It was argued that
mode locking should have occurred once the rotation dropped
to half of the steady-state rotation frequency [340]. Instead,
a simple empirical model of n = 3 ripple field-induced drag
related to transit time magnetic pumping (TTMP) [343] was
used to fit the experimental results, with a good fit to the
observed plasma rotation frequency evolution.

The paper purposefully did not attempt a first-principles
computation of TTMP. Also, it is important to note that the
magnitude of the radial field perturbation was used in the
empirical fits, which would have been insufficient in producing
quantitative agreement with NTV theory, which requires the
total field perturbation as input. Unlike the majority of the
NTV regimes described in section 8, TTMP has a plateau
characteristic in that the induced particle diffusivity is not
dependent on collisionality.

At about the same time, connection between non-resonant
perturbation field harmonics and measured magnetic braking

Figure 43. Evolution of measured m = 2, n = 1 radial field
perturbation (dashed, labelled line) and various radial channels of
charge exchange recombination spectroscopy measurements in JET.
The time of mode penetration is labelled and indicated with a
vertical line.

was made for JET plasmas [38]. A new hypothesis was needed
to address the JET results, which showed an anomalous fast
bulk braking of the plasma toroidal rotation which could not be
explained by the resonant braking model. Specifically, the non-
resonant m = 0, n = 1 sideband of an m = 2, n = 1 tearing
mode was computed to cause a significant neoclassical toroidal
viscous force which could explain the rotation damping by
applied resonant error fields, or MHD mode activity. Results
from the experiment are shown in figure 43. Here, a resonant
m = 2, n = 1 field is applied by coils in a slow linear ramp.
Before, and up to the time of mode penetration, the resonant
braking theory [340] applies, showing localized braking at
the rational surface only. Also expected from the theory,
the time of mode penetration corresponds to the ωφ at the
q = 2 surface reaching half of its initial steady-state value.
However, after the time of mode penetration, the braking was
no longer localized to the rational surface, and unexpectedly
the ωφ profile decreases self-similarly (ωφ (r, t) /ωφ (r, t0) is
a function of time alone). Once the applied n = 1 field is
turned off at t ∼ 59.5 s, the plasma was observed to recover
(figure 43), and it was remarked that the initial ωφ profile
was reached in a manner that was also self-similar during the
subsequent plasma acceleration phase.

To address the experiment, [38] considered the

neoclassical toroidal viscous force ⟨êϕ •∇ •
↔∏

i⟩ in the plateau
regime (section 8.3.1). A key element of the modelling was
the inclusion of the non-resonant m = 0, n = 1 sideband in the
neoclassical toroidal viscous force. This consideration allowed
the model to represent the global, non-resonant characteristic
of the rotation braking force, as this harmonic had a radially
extended profile with significant amplitude in the plasma core.
This, superposed with the m = 2, n = 1 radial profile, formed
the simple perturbed magnetic field spectrum used in the model
(figure 44). An ad hoc model of the time dependence was used
to simulate the experimental time variation of the applied field.
The model qualitatively reproduced the self-similar braking
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Figure 44. Profiles of the two components used to model the
perturbed field in the JET experiment: m = 2, n = 1 (dashed line)
and the m = 0, n = 1 non-resonant sideband (solid line).

characteristic of the experimental results, although the final
braking amplitude was too low, indicating that the magnitude
of the neoclassical toroidal viscous force was underestimated.

It was recognized that the plateau regime modelling of
the neoclassical toroidal viscous force was not adequate, as
the region of the plasma near the q = 2 surface in these
experiments was in the ion banana regime (ν∗

i < 1), and that
extension of the model to lower collisionality (section 8.2),
specifically highlighting that the 1/ν regime [208, 271]
(section 8.2.1) needed to be considered. An estimate was
made to determine if the inclusion of the 1/ν regime in the
model could bring the calculations closer to the experiment
results. An increase of two orders of magnitude was estimated
for the braking force in the 1/ν regime compared to the plateau
regime. At this level, the observed experimental braking rate
would be comparable to the experimental observations.

11.2.3. Early connections to rotation damping by non-
resonant global modes. The experimental results shown in
section 11.2.2 displayed resonant mode activity, or utilized
applied fields resonant with low-order tearing modes (e.g.
m = 2, n = 1) that can significantly alter plasma stored energy
and rotation when destabilized. Studies addressing non-
resonant, radially extended plasma rotation braking without
strong resonant harmonics or modes are therefore desired.
Early experimental demonstrations of such braking were
reported in NSTX in connection with ideal plasma RWMs
[344]. Such modes have ideal field perturbations in the plasma
which typically have a large radial extent (i.e. a global mode).
The plasmas used in the studies of non-resonant magnetic
braking were shown not to exhibit resonant mode activity,
and comparisons of the ωφ profile evolution in cases with
non-resonant global RWM activity were compared to cases
with saturated n = 2 and 3 rotating modes of significant
amplitude. The demonstration that an ideal, non-resonant
field perturbation alone (here, generated by an ideal plasma
RWM) can cause global rotation damping supported the
need for a non-resonant theory of toroidal viscosity, since
the resonant electromagnetic J × B force model typically
applied at rational surfaces produces no internal torque
on an ideal perturbation. This initial finding was further
substantiated in continued studies of strong, global plasma
rotation damping during RWM destabilization in NSTX

[39, 40], which furthered observations that were qualitatively
consistent with non-resonant NTV: (i) strong, global rotation
damping during RWM activity measured by internal kinetic
and external magnetic diagnostics, with (ii) a self-similar
decrease of the ωφ profile, significantly different in form
compared to the localized, resonant ωφ damping dynamics
found during saturated tearing mode activity (which exhibited
a clear radially outward momentum transfer across dominant
rational surfaces), and (iii) essentially no change in the plasma
rotation near the edge of the plasma, regardless of the field
perturbation strength.

A computation of the non-resonant NTV torque density
profile observed during ideal plasma RWM activity in
NSTX [40] was made using the NTV model appropriate
for plasmas in the plateau regime (section 8.3.1). These
calculations were analogous to the calculations made for JET
[38] (described above), except with a significantly different

magnetic perturbation profile. In the NSTX calculations, the
difference in the electron temperature profile measured by
Thomson scattering was used as a proxy for the magnetic
perturbation profile. Similar to the result found for JET, the
NTV torque density profile qualitatively matched the change
in the angular momentum profile based on Thomson scattering
and charge exchange recombination spectroscopy (CXRS)
measurements of plasma density and ωφ (figure 45).

11.2.4. Observation of non-resonant NTV by applied fields
and RWMs. The first quantitative comparison of non-
resonant NTV theory that included both the plateau and 1/ν

regime formulation with experiment was conducted for NSTX
plasmas in conditions that included n = 1 applied field
configurations, n = 3 applied field configurations, significant
amplification of the n = 1 applied field, and unstable n =
1 RWMs [41]. The theoretical calculations followed the
models in section 8 utilizing Hamada coordinates. Note the
use of the word ‘configuration’ here. Actually, for each
configuration, the full Fourier spectrum of the perturbations
generated by a midplane RWM control coil set was computed
using the Biot–Savart law on a full 3D model of the coils
(which have 3D features), using the time-varying experimental
coil currents. It was noted, for instance, that the ‘n = 1
applied field configuration’ in fact had higher n components
of significant amplitude due to the 3D nature of the coil set.
The entire spectrum was used in the computations to make the
best comparison to experiment. When viewed as individual
components in the NTV model, the effect of the n = 5
component is actually larger than the n = 1 component,
and even n = 11 is appreciable (figure 46). The ‘n = 3
configuration’ did have n = 3 as the dominant component,
with a smaller but still appreciable n = 9 component.

Some cases using the n = 1 applied field
configuration showed an experimentally measured resonant
field amplification which was used to increase the computed
vacuum field. In all of the cases studied, the plasmas were
carefully prepared to eliminate measurable tearing modes, so
that the non-resonant NTV could be accurately evaluated.
The n = 3 applied field cases were particularly notable, as
the measured resonant field amplification was insignificant,
and the applied field spectrum was non-resonant. N = 3
instabilities were not observed in the plasmas investigated.
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Figure 45. Toroidal rotation profile evolution during RWM activity
in NSTX (a), (b) and a simplified calculation of the NTV torque
density profile in the plateau regime (scaled) overlaid with the
measured change in the plasma angular momentum (c).

In these experiments, a perturbative technique was used
in which the applied non-axisymmetric fields were switched
on quickly (significantly faster than the plasma momentum
diffusion time) and the change in the plasma moment of
inertia, I , and the angular momentum profile was determined
using full two-dimensional equilibrium reconstructions, and
Thomson scattering and CXRS measurements of plasma
density and ωφ . This perturbative technique was used
to eliminate most components of the momentum diffusion
equation, allowing a direct comparison of the measured change
of the plasma angular momentum to the computed NTV
torque density profile (figure 47). Quantitative agreement
was found between experiment and theory. Thirty different
equilibria were modelled for cases with the applied field
configurations mentioned, with the mean value of the ratio of
(TNTV) /(d(Iωφ)/dt) being 1.59 using the peak values along
the radial profile, with a standard deviation of 0.87. This
O(1) agreement was considered close given that prior research
showed theory and experiment differing by more than two
orders of magnitude.

In addition to the comparison of NTV theory to experiment
for applied non-axisymmetric field perturbations, a similar
comparison was made for ideal plasma RWMs, and the plasma

amplification response generated by stable RWMs, again with
good quantitative agreement (figure 48). Improved agreement
between theory and experiment was found when a simple
model of the measured plasma amplification of the vacuum
field was included (rather than using the applied vacuum field
alone). Agreement was further improved when the spatial
variation of the plasma amplification was modelled using an
ideal n = 1 RWM eigenfunction computed by the DCON code
[345].

Subsequent to these experiments, the n = 3 applied field
configuration was routinely and extensively used in many
experiments spanning different areas of research on NSTX
including stability and transport to provide open-loop toroidal
rotation profile control [333, 334, 346, 347]. This application
of non-resonant NTV was to slow the plasma rotation
generated by the unidirectional neutral beam configuration of
the device. Due to the non-resonant nature of NTV in this
field configuration, resonant mode locking due to the applied
field does not occur, even at plasma rotation speeds near zero
at key rational surfaces, such as q = 2 or 3. In addition, small
changes in the magnitude of the current generating the applied
field can be made to generate similarly small and reproducible
changes in ωφ . These are both favourable characteristics for
more general experiments, and provide significant advantages
over changing the plasma rotation via modulation of the neutral
beam sources. Such modulation generally produces coarser
variations in ωφ , and alters other key plasma parameters that
are often preferred to be held constant, such as stored energy,
or βN .

11.3. Further investigation of NTV characteristics in tokamak
experiments at various ν

The success in reaching quantitative agreement between NTV
theory and experiment, as shown in section 11.2.4 was due to
the suggestion and application of the substantial increase in
viscosity predicted by theory in the 1/ν regime (section 8.2.1)
as the plasma collisionality drops below ν∗

i = 1, when particle
collisions become sub-dominant to particle bounce motion.
This gave greater confidence that NTV could more generally
reproduce related aspects of plasma rotation dynamics in
tokamaks in the different NTV collisionality regimes at low
ν∗

i < 1. This has led to a significant number of more recent
experiments in several devices testing aspects of NTV physics.

11.3.1. Varied applied field spectra. Several experiments
have used varying applied field spectra to produce non-
resonant NTV, with results that further support theoretical
expectations. Earlier work from JET was followed up with
more recent experiments using an n = 1 applied field
configuration producing significant global damping of the
plasma rotation [348] (figure 49(a)). The maximum torque
was observed to be in the plasma core (within normalized
radial coordinate ρ = 0.4). The rotation profile was reduced
by about 50% in these experiments due to the applied field
(figure 49(b)). The plasma was computed to be in the
transition between the 1/ν, and ν–ν0.5 regimes (sections 8.2.1
and 8.2.2). Strong tearing mode activity was absent in these
experiments.

Due to the different 3D geometry of the coil sets, the
Fourier spectrum of the n = 1 applied field configuration
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Figure 46. (a) Magnitude of the total field perturbation versus toroidal angle and major radius for the ‘n = 1 applied field configuration’ in
NSTX, (b) the major radial profile of the sine components of the field perturbation for this configuration, and (c) the flux surface averaged
field component summation relevant to the NTV calculation.
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Figure 47. Comparison of measured d(Iωφ)/dt profile with the
theoretically computed NTV torque for an n = 3 applied field
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Figure 48. Comparison of measured d(Iωφ)/dt profile with the
theoretically computed NTV torque for an n = 1 applied field
configuration in NSTX. NTV calculations using the applied vacuum
field, the measured plasma amplification of this field (RFA), and
with a spatial variation of the plasma amplification modelled using
an ideal n = 1 RWM eigenfunction are compared.

yielding NTV in JET is significantly different than the
equivalently named applied field configuration in NSTX. In
the JET case, the dominant component is n = 1, with

n = 2 amplitude about two orders of magnitude lower, and
the n = 1 component makes the dominant contribution to
the non-resonant NTV (recall from section 11.2.4, the n = 5
component was computed to yield the dominant non-resonant
NTV magnitude in the ‘n = 1 configuration’). The NTV
torque was computed in several ways in this work, with the best
agreement between theory and experiment occurring when the
effect of the resonant components of the field were assumed
to be shielded. The computation of the experimental torque
density profile on the plasma (computed by a transport code)
was compared to the NTV torque for the low collisionality
ν − ν0.5, and 1/ν regimes, with the closest quantitative
agreement occurring with the 1/ν regime formulation, and
the calculated torque about an order of magnitude larger
than expected (figure 50). Note that the paper also shows
results for an Eulerian formulation of the field perturbation,
which agrees with the experimental observation to order unity
[349]. Since the core of these JET plasmas appeared to

be in the lower collisionality ν − ν0.5 regime, it is unclear
why the 1/ν formulation provides superior agreement. It
was postulated that plasma amplification effects added in the
ν − ν0.5 formulation may bring those calculations closer to
experiment.

Experimental results on non-resonant NTV due to n = 2
applied field configurations have been reported in NSTX
[334], JET [349], KSTAR [350] MAST [351] and TEXTOR
[352]. Experiments on NSTX have demonstrated controlled,

non-resonant toroidal rotation braking by an n = 2 field
configuration, and that the NTV braking torque increases
with ion temperature, consistent with the scaling TNTV ∼
δB2ε1.5pi/νi ∼ T

5/2
i [334] expected by NTV theory in the

1/ν regime. A factor of two increase in toroidal rotation
damping was found in plasmas with higher ion temperature,
consistent with the T

5/2
i scaling in the region of peak NTV

torque (figure 51). It was also observed that the toroidal
rotation damping profile was broader when using the n = 2
applied field configuration than for n = 3 fields, which is
theoretically expected due to the broader field spectrum and
reduced radial falloff of the n = 2 field.
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Figure 49. Global toroidal plasma rotation damping in JET by an n = 1 applied field. (a) shows the time evolution of the toroidal rotation
from three CXRS channels, the magnitude of the n = 1 applied field current, the line-integrated density, normalized beta and q95. (b) shows
the steady-state rotation profiles without, and with the n = 1 field applied.

Figure 50. Torque density profile (computed by the JETTO
transport code from experimental measurements) in JET
experiments with an n = 1 applied field compared to NTV torque
calculations appropriate for various collisionality regimes in the
Shaing formulation.

Rotation damping for both n = 2 and n = 1 applied
field configurations was reported in JET experiments focused
on ELM control [349]. No clear dependence of the toroidal
plasma rotation braking on q95 was observed in the range 3–4.9.
Curiously, a hysteresis was reported in the plasma toroidal
rotation evolution when comparing the interval of rotation
braking to rotation spin-up as the applied non-axisymmetric
field current was increased, then decreased. No explanation
of this effect was reported. However, the variation of the
applied field and rotation data plotted was made in the same
discharge, and it clear that the rotation data had not reached a

steady-state value at each value of the applied field plotted.
The NTV braking torque in the core of JET was shown
to increase with decreasing collisionality [352] (figure 52),
similar to the increase observed on NSTX further out in
the plasma (figure 51). However, it was remarked that the
collisionality dependence was weaker than 1/ν, and closer
to 1/ν0.5.

The KSTAR device has also produced controlled rotation
braking in initial experiments using applied n = 2 fields
[350]. In recent experiments on KSTAR using long applied
field pulses significantly longer than the momentum diffusion
time, so that a steady-state was reached at each level of the
applied n = 2 field current (figure 53), the rotation profile
measured by CXRS is observed to be of nearly identical shape
and magnitude at a given applied field current whether the
plasma rotation is reduced towards the steady state, or if it is
increased towards the steady state [365]. There is no evidence
of hysteresis in this process, indicating that that the technique
will be useful for future closed-loop rotation control in the
device. The experiments were conducted using a combination
of the KSTAR in-vessel control coils that were located on the
plasma midplane. As the off-midplane coils were not used,
there was no preferred pitch of the applied field with respect
to the helical plasma equilibrium field.

A non-axisymmetric n = 2 applied field configuration has
produced non-resonant NTV rotation damping in MAST using
ex-vessel coils [351]. The plasma toroidal rotation evolution
measured by CXRS is shown in figure 54 for a plasma heated
by neutral beam injection (NBI) aimed counter to the direction
of the plasma current. Clear global braking was observed,
reducing the rotation by a factor of two. No tearing or ideal
instabilities were observed in these experiments to isolate the
effect of the non-axisymmetric applied field on the plasma.
This experimental braking was compared with the theoretically
expected NTV torque, and a factor of five difference was found.
However, similar to the result found for JET, by reducing
the resonant component for two harmonics around a given
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Figure 52. Integrated total torque inside the ρ = 0.4 surface in a
JET plasma with applied n = 1 field configuration versus
collisionality (ν∗

i at ρ = 0.2).

resonant surface by a factor of 0.5 (where 1 is complete plasma
shielding), the agreement was improved, suggesting a strong
plasma shielding of the resonant components of the field.

The possibility of significant non-resonant NTV was
examined in a significantly different applied field spectrum
in TEXTOR [352]. While the configuration was n = 2,
the dynamic ergodic divertor (DED) coils [353], which are
located on the inboard (small R) side of the torus, were
utilized. This is in contrast to all other experiments reviewed
in section 11 which utilized coils located on the outboard
(large R) side of the torus. Specifically, it was shown that
the strength of the vacuum field perturbation for the n = 2
applied field decreased strongly from δB/B ∼ 0.6% at
the plasma edge for the strongest poloidal harmonics down
nearly an order of magnitude to δB/B ∼ 0.075% only
20% into the plasma (in terms of a minor radial coordinate
ρ = (normalized toroidal flux)0.5). This is compared to the
vacuum perturbation of the n = 1 applied field configuration in

JET, which maintains large magnitude into the core (figure 55).
Consequently, the computed NTV torque generated by this
field was small—four orders of magnitude smaller than the
NTV from the n = 1 applied field configuration in JET
[352]. This is consistent with the non-resonant braking

experiments on TEXTOR using this configuration, which
showed no significant reduction of the measured toroidal
rotation (figure 56).

The results shown in this section, examining non-
resonant NTV in a diverse set of tokamaks with various
non-axisymmetric applied field spectra, displaying the
characteristics of non-resonant NTV in each case, and agreeing
to within an order of magnitude with NTV theory, give
added confidence that non-resonant NTV physics can explain
the observed phenomena. However, challenges remain
to further improve the quantitative agreement of the non-
resonant NTV torque with the observed change in the plasma
angular momentum, the largest being an accurate and verified
experimental and theoretical determination of the internal
plasma response that may significantly modify the vacuum
field (e.g. addressed in [352]). This is a relatively insignificant
issue for applied fields with mostly non-resonant components
(e.g. the n = 3 field configuration in NSTX (figure 47)—
the n = 3 component of the resonant field amplification
measured by RWM sensors has been shown to be small,
even in high βN NSTX plasmas). Codes such as IPEC
[354] and MARS-F [355] have been used successfully to
generate the ideal plasma response for applied fields with
relatively high sensitivity for amplification or shielding of
the applied field. At present, NTV results attempting such
modification generally yield stronger non-resonant NTV than
observed. Use of the vacuum applied field should provide
a quantitative lower limit of the non-resonant NTV profile,
with understandably greater accuracy for applied fields that
have components that are not strongly affected by the plasma
(e.g. spectra with higher n components). Fortunately, these
two approaches for computing the non-axisymmetric field
in the plasma apparently provide upper and lower bounds
for non-resonant NTV calculations. It is noteworthy that
NTV calculations for JET [348] and MAST [351] have
shown success by reducing the magnitude of key resonant
components in the plasma, which generally represent the field
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Figure 53. (a) Plasma toroidal rotation frequency profile evolution from non-resonant NTV rotation damping with n = 2 applied field
current stepped-up (solid lines) and stepped-down (dashed lines), with (b) corresponding applied 3D field current waveforms. Rotation
profiles reach a steady state between current steps, and the dynamic shows no hysteresis—the same profile is reached at the same applied 3D
field current regardless of whether the plasma accelerates or decelerates towards each steady state.

Figure 54. Non-resonant NTV rotation braking in MAST from external coils circuited in an n = 2 applied field configuration.

components that have the greatest uncertainty regarding the
plasma response.

11.3.2. Offset rotation. The anticipated NTV offset rotation
was observed in experiments conducted on DIII-D [300, 356].
In these experiments, a static, non-resonant field with a
dominant n = 3 component was applied to relatively slowly
rotating plasmas in the device. Evidence of an offset rotation in
the direction opposed to the plasma current was observed by
examining the evolution of the ωφ profile towards a steady
state (figure 57) Because the experiments were conducted
with initially slowly rotating plasmas, with rotation speeds
on the order of the offset rotation itself, the results have
notably demonstrated the positive result that non-resonant

NTV can increase the plasma rotation locally, rather than
just decrease it. This capability has been used to support
the important QH mode operational scenario in DIII-D. In
preliminary experiments using n = 3 fields in this way at
ITER-relevant low NBI torque, QH mode was generated and
sustained in DIII-D plasmas with low q95 = 3.4 having reached
high equivalent fusion gain [357]. The NTV offset rotation
may be more generally useful in future experiments operating
with relatively low injected neutral beam torque (e.g. in ITER)
to influence plasma stability and/or confinement properties.

The NTV offset rotation remains a topic of research as
results from various experiments have shown varying results.
Non-resonant NTV operation with an n = 3 field configuration
over the full range of neutral beam operation in NSTX has
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Figure 55. Percentage magnitude of the normalized vacuum non-axisymmetric field perturbation for (a) n = 2 applied DED configuration
in TEXTOR, and (b) n = 1 applied field configuration in JET.

Figure 56. Toroidal angular momentum density evolution near the
plasma core for both resonant (solid line, top frame) and
non-resonant (dashed line, top frame) n = 2 DED field
configurations in TEXTOR; corresponding DED coil current
waveform (bottom frame).

shown that the NTV offset rotation was small, with saturated
values of ωφ approaching zero, rather than to a finite offset
in the counter-Ip direction [334, 358]. The conclusion was
similar for NSTX operation with an n = 2 field configuration.
NTV studies on JET have pointed out the potential importance
of the electron contribution to NTV in the low collisionality
core plasma, with a corresponding component to the offset
rotation in the co-Ip direction, with magnitude on the order
of the electron diamagnetic frequency [352]. Research on
TCV [359] (discussed further in section 11.3.3) investigating
a mixture of non-resonant and resonant sources of rotation

damping has also shown that an offset rotation in the co-
Ip direction best fits the experimental data. These results
indicate that the physics of the NTV offset rotation still needs
to be verified across devices to give the highest confidence for
extrapolation to future devices.

11.3.3. Plasma modes causing non-resonant NTV. Non-
resonant plasma modes can provide the non-axisymmetric field
perturbation in the plasma to generate non-resonant NTV. To
influence the plasma rotation, a mode with an ideal perturbation
needs to couple to other modes with non-ideal perturbations,
or to external fields which could be generated by a coil set, by
eddy currents in conducting structure, or provided by device
error fields. An early example of this effect was shown in
section 11.2.3, with non-resonant NTV generated by unstable,
ideal plasma RWMs in NSTX [40]. In this case, the plasma
momentum is transferred to the lab frame through the inherent
coupling of the RWM to the tokamak device conducting
structure.

A further study examining non-resonant NTV as a cause
for rotation damping by ideal MHD mode perturbations
was shown in MAST for a large saturated kink instability,
termed the ‘long-lived mode’ [360], which produced toroidal
rotation damping in the plasma core. It was remarked that
high resolution temperature measurements using Thomson
scattering did not indicate local profile flattening, and no phase
inversions were observed between neighbouring channels of
poloidal cross-section soft x-ray cameras, indicating that no
strong magnetic islands were found during the time of strong
magnetic braking. However, the measured global toroidal
rotation damping was not self-similar, and a clear outward
momentum transfer is observed at a well-defined major radial
position in the profile R = 1.15 m. The structure of the
eigenmode, measured to be n = 1, was estimated using the
CASTOR code and soft x-ray measurements. In the core
plasma, at minor radial positions corresponding to being inside
R = 1.15 m, the mode appears to be a kink. Calculation of the
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Figure 57. Experiments demonstrating the NTV offset rotation in DIII-D.

non-resonant NTV in this core region shows consistency with
the measured rotation damping.

More recently, toroidal rotation damping in the core of
the KSTAR device during electron cyclotron resonant heating
(ECRH) [361] has been connected to non-resonant NTV
caused by the excitation of an internal kink mode [362]. This
result is particularly noteworthy, as toroidal rotation changes
due to ECRH have been measured in many devices. However,
there is no widely accepted explanation for the observed effects
on the toroidal rotation profile evolution. The experiments
were run with ECRH alone, and in combination with neutral
beam heating. Internal kink modes appeared whenever ECRH
was injected. The toroidal rotation of argon impurities was
measured using an x-ray imaging crystal spectrometer, and of
carbon impurities by charge exchange spectroscopy in plasmas
heated by NBI. The radial extent of the internal kink extends
to the sawtooth inversion radius in sawtoothing plasmas.
The toroidal rotation profile was observed to decrease the
magnitude in the plasma core during the period when ECRH is
injected and the internal kink is correspondingly destabilized
in the plasmas with (figure 58), or without NBI.

Non-resonant NTV was evaluated for these plasmas using
the 1/ν regime formulation (section 8.2.1). The perturbed
magnetic field caused by the ECRH-induced internal kink
modes was estimated from the measured plasma displacement
profile in the core plasma from electron cyclotron emission.
The peak normalized field perturbation δB/B was computed
to be approximately 0.005. The computed non-resonant NTV
torque density profile in the core (figure 59) is shown to have a
magnitude and radial dependence consistent with the observed
experimental rotation damping, and computed magnitude of
the injected torque from the neutral beams.

Recently, non-resonant NTV has been investigated
experimentally in TCV investigating the effect on plasmas
with resonant instabilities (2/1 and 3/2 tearing modes) [359].
This work examines evidence of an associated neoclassical
toroidal viscous torque observed as a pronounced flattening
and global braking of plasma rotation at the onset of these
tearing instabilities. As in the KSTAR experiments mentioned
above, the TCV plasmas also have ECRH applied. The work
clearly states the presence of both resonant and non-resonant
causes for the observed rotation damping. This, added to the
use of ECH, for which the associated intrinsic rotation physics

is not yet established, makes the modelling difficult (for
example, island NTV effects, discussed in section 8.4, should
be included). These results are notable in that the maturity
of NTV theory and the significant number of experimental
comparisons since the early investigations (section 11.2)
have yielded an understanding that makes more complicated
investigation involving multiple modes more tractable. Some
of the general conclusions are noteworthy. It was found that
within experimental uncertainty, the evolution of the toroidal
rotation profile is consistent with the general effect of an
NTV torque proportional to the difference between the toroidal
velocity and the NTV offset rotation, which was found to be
finite, evaluated in steady-state conditions. The best fits to the
experimental ωφ evolution were found by taking into account
an offset rotation frequency in co-Ip direction, despite the usual
counter-Ip rotation offset expected from neoclassical theory
for ions. The presence of resonant magnetic perturbations was
given as a potential reason for the change of sign of the offset
rotation.

11.4. Exploration of the superbanana plateau regime

The theoretically anticipated significant increase of NTV as a
tokamak plasma enters the superbanana plateau regime [223]
(section 8.2.4) is a concern for future tokamak operation at
reduced collisionality and at low plasma rotation (e.g. in ITER).
The increase in NTV anticipated in this regime has been
observed in tokamaks in the past few years. Results show that
while the NTV and associated rotation damping rate of plasma
rotation increases, the braking remains non-resonant, and does
not lead to mode locking and consequent plasma disruption.

Experiments in DIII-D conducted at moderate βN =
1.6 − 1.7 (below the n = 1 ideal MHD no-wall stability
limit) have accessed the superbanana plateau regime and have
demonstrated a peak in NTV at low ωE [363, 364]. In these
experiments, an n = 3 field configuration was applied to the
plasma using the DIII-D I-coil set in odd parity (defined as
the upper and lower set of coils applying n = 3 fields that
differ in toroidal phase by 180◦), and plasma rotation feedback
actuated by NBI was utilized. The total NTV torque, TNTV,
was evaluated as a function of plasma toroidal rotation by
measuring the change in NBI torque, 'T NBI, needed to sustain
a given rotation when the applied n = 3 field was switched
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Figure 58. Toroidal rotation profile damping (top) during ECRH and NBI and associated core internal kink destabilization in KSTAR. The
toroidal rotation recovers once the ECRH pulse is terminated (bottom).

Figure 59. Torque density profile computed for non-resonant NTV in the 1/ν regime (red trace with squares) for a KSTAR ECRH plasma
with NBI that exhibits a saturated core kink mode. The torque density profile provided by the neutral beam is also shown before (black solid
line) and during (blue dashed line) ECRH.

on (assuming 'T NBI = −TNTV(ωφ)). The resulting scan in
plasma rotation yielded a peak in near zero deuterium rotation
speed (figure 60). The measured peak in TNTV occurs at a
toroidal rotation rate where the radial electric field is near zero
as determined by radial ion force balance.

Experiments in NSTX at high βN = 4 − 5 (at, or above
the n = 1 ideal MHD no-wall stability limit) have also entered
the superbanana plateau regime [358] by varying the ratio of the
ion collisionality to the E ×B frequency, ωE , a key parameter
that determines the scaling of NTV with νi in the collisionless
regime (ν∗

i < 1) (section 8.2.4). As |ωE| is reduced, TNTV/ωφ

is expected to scale as 1/νi when (νi/ε) / (nq|ωE|) > 1 and
maximize when it falls below the ∇B drift frequency and
enters the superbanana plateau regime. In these experiments,
a constant n = 3 field configuration was applied to the plasma
using the midplane control coils. Increased braking strength
was observed at constant |δB| and βN in experiments when
ωφ (and |ωE|) were sufficiently decreased, as expected by
NTV theory (figure 61). Lithium wall preparation was used

to suppress tearing modes that would have led to resonant
braking, mode locking and plasma disruption, allowing the
investigation of non-resonant NTV braking down to low values
of ωφ and |ωE|. The low levels of ωφ were sustained, even
with the q = 2 surface in the region of low rotation. It is
especially notable that the stronger NTV in the superbanana
plateau regime yielded a steady, low rotation state with no
mode locking, and that the plasma rotation frequency (based
on carbon impurity measurement) approached zero, instead of
a finite offset rotation frequency.

Operation in the superbanana plateau regime was
originally thought to be an issue for future tokamaks. Devices
operating with low plasma rotation, and ωE near zero may be
thought to suffer MHD instabilities as the stronger NTV in this
regime rapidly brings the plasma rotation to the NTV offset
rotation frequency, which might be small in future devices.
While this may still be an issue for future devices and requires
further experimental investigation, operation of plasmas in this
regime in both DIII-D and NSTX give confidence that the
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Figure 60. DIII-D experimental results demonstrating a peak near
zero deuterium rotation frequency (black stars) in comparison with
theory (red inverted triangles).

plasma can exist in this state. The NSTX results show that
high plasma performance can be reached in the Sb-P regime,
without mode locking and associated disruptions.

11.5. Applications of NTV in tokamak research

The seminal theory for NTV is now well established, with
tokamak experiments in the early to mid-2000s establishing
some of the core physics elements with quantitative agreement
with theory. Extensive tokamak experiments have been
conducted to date, further investigating the broader scope of the
physical characteristics of NTV. While several aspects of the
theory remain to be verified by experiment, enough research
has been accomplished to date to have confidence in the use of
non-resonant NTV to enable and improve high performance
steady-state tokamak operation.

Non-resonant NTV is an excellent example of the positive
use of 3D fields in otherwise axisymmetric tokamak devices.
The non-resonant aspect is important for tokamak operation
in general, as this form of NTV prevents MHD mode locking
at low rotation. Several applications of non-resonant NTV
logically follow directly from initial experiments that have
already been conducted. NTV has been used in several
experiments including NSTX, DIII-D, JET, KSTAR and
MAST (section 11.3.1) to alter the toroidal plasma rotation
and profile in a controlled, reproducible manner using non-
resonant applied field configurations, even for plasma entering
the superbanana plateau regime. Devices with unidirectional
NBI, such as NSTX and KSTAR, have effectively utilized non-
resonant NTV for pre-programmed, open-loop plasma rotation
control in a variety of experiments in topical areas including
stability and transport. A logical next-step is to use non-
resonant NTV as an actuator for real-time, closed-loop rotation
control. This has been proposed for NSTX-U [365] and
KSTAR, utilizing non-resonant NTV, NBI, and (in KSTAR)
ECRH as actuators, with a key use being the avoidance of
plasma disruptions by tailoring the plasma rotation profile to
avoid MHD instabilities. NTV offers significant advantages
as an actuator over NBI in this role, as its variation does
not substantially change the plasma stored energy, and the

amount of desired change in the rotation profile can be made as
precisely as the control circuit feeding the actuator coils allows.
This approach to rotation control provides some challenges
to the control algorithm, as a weak non-linearity exists in
the non-resonant NTV torque term involving the applied field
current and the plasma rotation speed. The success of using the
neoclassical offset rotation to produce and sustain QH mode
in DIII-D gives greater confidence for using this physics to
sustain favoured modes of tokamak operation in future devices
envisioned to have plasma rotation magnitude substantially
lower than present tokamak devices with neutral beam
heating.

NTV theory has also been investigated to potentially
understand the dependence of resonant error field mode
locking thresholds on plasma density in ohmically heated
plasmas [366]. Further application of NTV theory to
experiments investigating resonant mode locking may discover
further understanding of the plasma parameter dependence on
mode locking [359, 367] for more accurate extrapolation to
future experiments. The reduction of error fields in present
tokamaks has also been addressed using NTV theory. Since
non-resonant NTV produces a global change in the plasma
rotation profile, that does not lead to mode locking, the
correction of non-resonant error fields in turn will generally
produce increased plasma rotation in a tokamak heated by
neutral beams that provide momentum input. This result was
used to produce optimal error field correction of the n = 3
field component in NSTX, with non-resonant NTV modelling
that was consistent with the reduction of the magnetic braking
observed with the corrected field [368]. NTV is now similarly
evaluated in several devices to minimize error fields. Most
notable for future devices has been related work with the IPEC
code to minimize error fields in ITER [369].

11.6. Implications for ITER and future devices

NTV research and related 3D physics effects in tokamaks
have potentially positive effects for ITER and future tokamak
fusion devices. The application of non-resonant NTV for
plasma rotation control of MHD instabilities for disruption
avoidance has been discussed above in section 11.5. Devices
with significant momentum input can in principle alter the
plasma rotation speed and profile from maximum rotation
magnitude to near zero without mode locking for instability
avoidance. In ITER, plasma rotation is expected to be low.
The NTV offset rotation may be able to support an operational
scenario as it has for the DIII-D QH mode. Still, operation of
ITER near MHD stability limits, which may be required for
ITER to achieve fusion power production goals, may require
a rotation magnitude larger than that provided by the NTV
offset rotation [370]. Recent transport computations for ITER
utilizing the NTV offset rotation have found that this intrinsic
rotation (the Kikuchi model of offset rotation [371] was
utilized) can result in the formation of an internal transport
barrier (ITB), located in normalized minor radius between
r/a = 0.6–0.8 which can have a strong positive impact on the
plasma performance in the device [372]. The ITB is formed in
the model by the suppression of anomalous transport due to ωE

flow shear and magnetic shear. NTV theory has been essential
in understanding the ITER test blanket module (TBM) error
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Figure 61. NSTX experimental results accessing the superbanana plateau regime, displaying increased non-resonant magnetic braking at
fixed applied field and βN at low ωE .

field simulation experiments at DIII-D [373]. In these
experiments, a toroidally localized three-coil mock-up of
two magnetized ITER TBMs in one ITER equatorial port
was mounted on the DIII-D device and operated producing
magnetic error fields similar to those expected from the
proposed ITER test blanket modules containing ferromagnetic
material. The largest effect was a significant self-similar
reduction in plasma toroidal rotation velocity across the
entire radial profile caused by non-resonant NTV braking
(figure 62). The largest non-resonant component of the
NTV torque density profile causing the non-resonant braking
was shown to be due to the n = 1 component which
penetrated to the plasma core. This understanding of the cause
of the magnetic braking allows computations of correction
fields needed to alleviate the drag to the plasma rotation
created by the TBM. These experiments give confidence
that the NTV-related magnetic braking from fairly arbitrary
(in this case, toroidally localized) non-axisymmetric fields
can be confidently evaluated and altered. However, several
key aspects of NTV theory are yet to be fully verified
across experiments as already stated throughout section 11.
Arguably, the largest issue is both the accurate modelling,
and accurate internal diagnosis of the plasma response to
applied non-axisymmetric fields, or to non-axisymmetric
field perturbations created by saturated MHD instabilities.
This issue is especially important in plasmas operating at
high beta [354, 374], as will occur in ITER advanced
scenarios, FNSF in the role of a component test facility,
or DEMO.

12. Discussions and summary

It has been demonstrated here that the eight-moment
neoclassical methodology can be applied to calculate transport

Figure 62. (a) Radial profiles of toroidal rotation of C+6 measured
by charge recombination spectroscopy in DIII-D TBM experiments
for shots without (black) and with (red) the TBM fields energized,
(b) the normalized difference between these profiles.

fluxes for a variety of plasma conditions that are of interest to
thermonuclear fusion reactors. Once the closure quantities
such as plasma viscosity are calculated, all transport fluxes
can be evaluated using the plasma flows determined from
the momentum and heat flux equations. The approach is
particularly useful for modelling transport consequences in
toroidal plasmas.

97



Nucl. Fusion 55 (2015) 125001 Review Article

12.1. Discussions

One of the common features of the theories discussed here
is that there is an intrinsic steady-state plasma flow even
without external momentum sources. The flow generation
without external momentum sources is not as farfetched as it
seems. The well-known diamagnetic flow is generated without
external momentum sources. The origin of the momentum
for the diamagnetic flow is the unbalanced particle momenta
from neighbouring gyro-orbits. The existence of the intrinsic
poloidal and toroidal flows in toroidal plasmas has been known
long before experimentalists emphasized them. The steady-
state plasma flows exist in practically every theory regardless
of the nature of the theory. The magnitude of the flow is of
the order of vtρpi/Ln for most theories. Thus, if a flow with a
magnitude of the order of vtρpi/Ln is needed to control plasma
confinement, it is not necessary to do anything externally to
obtain a flow of such magnitude.

The physics understanding for the origin of the momentum
for such flows has been presented in [194] using the well-
known neoclassical poloidal flow generation in tokamaks
as an example. The steady-state neoclassical poloidal
flow is proportional to the equilibrium ion temperature
gradient in large aspect ratio tokamaks [6, 7]. Without
collisions or de-correlation, the equilibrium temperature
gradient only contributes to the diamagnetic heat flow and not
the diamagnetic mass flow because of the exact cancellation
of the particle momenta from the neighbouring particle orbits
resulting from the

(
x2 − 5/2

)
in the definition of the heat flow

q after integrating over an equilibrium Maxwellian distribution
as can be seen from equations (3.1) and (3.2). The independent
variables are (p, T ) here. However, when energy dependent
collisions occur, the exact cancellation is destroyed, and the
equilibrium temperature gradient generates a diamagnetic like
fluid flow that contributes to the parallel plasma viscosity
that damps the poloidal flow shown in equation (4.2.1.2).
This point is further corroborated by the fact that there
is no time-dependent poloidal heat flow dependence in the
time-dependent viscosity given in equation (4.2.1.2) in the
asymptotic limit where ∂/∂t operator dominates. Thus, the
reason that there is a steady-state neoclassical poloidal flow is
a result of the energy dependent collision frequency. During
the poloidal flow damping process, the exact cancellation of
the particle momenta from neighbouring orbits is destroyed as
illustrated schematically in figure 63. Thus, the neoclassical
poloidal flow is diamagnetic in nature in tokamaks.

The same physics picture is applicable to poloidal
generation in other collisionality regimes, and the toroidal
flow generation resulting from the neoclassical toroidal
plasmas viscosity in toroidal plasmas with arbitrary symmetry
property. The exact cancellation of the particle momenta from
neighbouring orbits is destroyed because the de-correlation
time and step size depend on energy. Similarly, the physics
picture is also valid for the turbulence generated toroidal flow
resulting from the residual stress in [174, 176] because the de-
correlation time, and the step size depend on particle energy.

12.1.1. Summary and discussion. Both the eight-moment
approach to neoclassical theory for non-axisymmetric tori,
with axisymmetric tokamaks as a special case, and the

Figure 63. The origin of the momentum for flow generation without
external momentum sources is illustrated here. The red line
indicates the equilibrium temperature profile. The neighbouring
banana orbits are shown to indicate the cancellation of the local
particle momentum from neighbouring orbits.

experimental tests on plasma viscosity and plasma flows have
been reviewed. The effects of compressibility and shock
formation are not discussed in detail, however.

It has been demonstrated in section 4 that the eight-
moment approach unifies the transport fluxes, the physics of the
momentum relaxation, and ambipolarity through the relation
between plasma viscosity, or, in general, plasma stress and
transport fluxes. It has been shown that after the momentum
on the magnetic surface is relaxed, steady-state plasma flows
emerge, and the plasmas reach an ambipolar state. The
relaxation processes are dictated by the components of the
viscous forces. The transport fluxes follow naturally from the
flux–force relation, which relates fluxes with the components
of the viscous forces in all regimes except the Pfirsch–Schlüter
regime, by substituting plasma flows into viscosity. Thus, the
approach illuminates the pivotal role of the momentum and
heat balance equations in the transport theory. The approach
is most suited for modelling the plasma rotation and transport
in toroidal plasmas. The viscosity for the conventional
theory for axisymmetric tokamaks has been summarized in
section 6 and been implemented in the NCLASS code for
self-consistent modelling of the plasma confinement. The
approach is employed in the DKES code to model plasma
flows and transport fluxes in stellarators. The neoclassical
methodology has also been applied to the transport processes
caused by the turbulent fluctuations to unify both neoclassical
theory and quasilinear theory as illustrated in section 7. One
of the most important conclusions is that even in turbulent
toroidal plasmas, neoclassical theory provides a powerful tool
to understand confinement physics quantitatively.

A systematic method of calculating the components of
plasma viscosity for a variety of plasmas that are of interest
to tokamak and stellarator operations has been illustrated
in sections 6, 7, 8 and 9. The key is to solve the drift
kinetic equation with plasma flows instead of gradients as the
driving terms. Most of the theories are developed for large
aspect ratio tori, except the parallel viscosity for axisymmetric
tokamaks, mainly because the difficulty in having compact
analytic expressions for particle trajectories and in solving the
complete test particle collision operator.

Results of the effects of orbit squeezing in section 6 can
be used to model ion heat transport and bootstrap current in the
pedestal region of H-mode plasmas in tokamaks. The ion heat
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conductivity in that region should be smaller than that in the
standard theory. In the vicinity of the magnetic axis, the potato
bootstrap current can be used to maintain a 100% bootstrap
current equilibrium. However, there are no experimental tests
on this issue at the moment.

The most important aspect of plasma viscosity perhaps
is that it depends on the radial electric field and parallel
flow speed non-linearly as illustrated in sections 6, 8 and
9. The non-linearity can lead to bifurcated solutions of
equilibrium plasma flows. It has been tested in the electrode
induced L–H transition. However, it has never been tested
in naturally occurring L–H transition. To resolve the L–H
transition mechanism in naturally occurring transitions, the
non-linearity must be tested. Indeed, the generic consequences
of different sets of non-linear equations are similar. The only
way to distinguish them is to test the underlying non-linearity
experimentally.

The neoclassical methodology is used to unify neoclassi-
cal theory and quasilinear theory in section 7. The most im-
portant consequence of the unification is that not all transport
coefficients are equally anomalous. Thus, even in turbulent
toroidal plasmas, some coefficients are still close to neoclas-
sical predictions, e.g. bootstrap current, and plasma resistiv-
ity. The theory provides a theoretical foundation for operating
tokamaks with high bootstrap current fraction. The quasilin-
ear toroidal plasma viscosity consists of diffusion, convection
and residual stress. The residual stress drives a local plasma
flow; the direction of which depends on the characteristic mode
frequency in fluctuations.

When toroidal symmetry is broken, the symmetry
breaking induced transport fluxes in tokamaks are qualitatively
similar to those in stellarators. Results in all known
collisionality regimes have been presented in section 8. They
can be employed to model present and future experiments when
applied 3D fields are used to control plasma flows, and plasma
confinement. The symmetry breaking induced energy losses
for energetic alpha particles may ultimately limit the magnitude
of symmetry breaking magnetic fields in thermonuclear fusion
reactors [375]. The results, from the solution of the bounce
averaged drift kinetic equation, have also been checked in a
code that solves the drift kinetic equation using quasilinear
approximation [376]. The theory for neoclassical toroidal
plasma viscosity and transport fluxes are being extended for
finite aspect ratio tokamaks [377].

Transport fluxes in real stellarators are rather difficult
to calculate analytically in the low collisionality regimes.
However, the basic collisionality scalings can be understood
using results derived from a model magnetic field spectrum as
illustrated in section 9. It has been known that the confinement
of thermal particles can be improved by controlling the
radial electric field. However, one of the crucial issues for
thermonuclear fusion reactors based on the stellarator concept
is the energy confinement of fusion-born alpha particles, which
are not usually susceptible to the effects of the radial electric
field.

In stellarator/heliotron devices, the contribution of
neoclassical parallel viscosity in the toroidal direction is
comparable to that in the poloidal direction. The perpendicular
flow (radial electric field or space potential as a constant
quantity on magnetic flux surface) and parallel flow are

considered to be important rather than toroidal/poloidal flows.
The parallel flow and perpendicular flow are treated separately
(for example, the non-ambipolar condition gives only the
perpendicular flow). The neoclassical toroidal and poloidal
viscosities are treated as a projection of the neoclassical
parallel viscosity in the toroidal and poloidal directions.
This is in contrast to the situation in tokamaks where the
toroidal and poloidal flows/viscosities are treated separately
or independently. This is because there is no neoclassical
toroidal viscosity without an external perturbation magnetic
field because of the toroidal symmetry. Then the neoclassical
toroidal viscosity experiment in tokamak is focused to the
plasma response to the perturbation magnetic field, which
breaks the toroidal symmetry, while the neoclassical toroidal
viscosity experiment in stellarator is focused on predicting the
toroidal flow in the plasma without the external toroidal torque.
The toroidal viscosity in the stellarator/heliotron is larger than
that in a tokamak even with a perturbation magnetic field. The
experimental results from stellarators/heliotron would be good
examples to test the neoclassical toroidal viscosity, because
the neoclassical toroidal viscosity is usually larger than the
anomalous perpendicular viscosity near the edge. This is not
the case in a tokamak where the anomalous perpendicular
viscosity is still more dominant in most experiments.

In helical plasmas, both toroidal and poloidal flows
are affected by the damping process due to parallel
viscosity. Experiments on toroidal and poloidal viscosities
in CHS, Heliotron-J, HSX, Tohoku-Heliac, W-7AS and LHD
demonstrated that these viscosities have reasonable agreement
with that expected from neoclassical theory. The symmetric
direction, where the parallel viscosity is minimum, is between
the toroidal and poloidal directions. Plasma flow along the
symmetric direction is observed in HSX and CHS, when a
large electric field exists in the plasma and the plasma flow
is mainly determined by the intrinsic flow. Because the
symmetric direction is tilted from the magnetic field direction,
the spontaneous toroidal flow is anti-parallel to the direction
of the Er × Bθ drift in helical plasmas. This is in contrast to
the spontaneous toroidal flow in the direction parallel to the
direction of the Er × Bθ drift in JFT-2M tokamak plasmas.
The poloidal flow inside the magnetic island was found to be
zero, which indicates a flat space potential inside the magnetic
island. Then the strong flow shear appears at the boundary
of the magnetic island and it may contribute to the reduction
of transport near the boundary of the magnetic island through
turbulence suppression by E × B shear as observed in the
TJ-II stellarator. The experiments on toroidal and poloidal
flows in helical systems suggest that the theory of neoclassical
viscosity can give a reasonable prediction of the flow pattern
(toroidal and poloidal flows) for the plasma with a normal
nesting magnetic flux surface. However, the flow patterns in
the magnetic island and stochastic magnetic field region are
complicated [378] and further study of neoclassical viscosity
theory in plasmas with magnetic islands will be necessary in
the future.

Early investigations of non-axisymmetric field effects in
tokamaks [37] inspired theoretical investigations to confirm
the NTV effect in experiments, with initial calculations
underestimating quantitative agreement with experiment
due to simplification of the computed field perturbation.
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The theoretical suggestion of an expanded field spectrum
[38] inspired more complete three-dimensional computations
of the non-axisymmetric field and its potential amplification,
which led to quantitative agreement between NTV theory and
tokamak experiments [41]. Further investigations reviewed in
the previous section have established additional dependences
of NTV on plasma parameters including the toroidal mode
spectrum of the applied non-axisymmetric field, dependence
on collisionality (ion temperature in the ‘1/ν’ regime), and the
manifestation of the superbanana plateau regime. The lack of
hysteresis of the NTV effect as a function of plasma velocity
is a favourable characteristic for its use in open or closed-loop
plasma rotation feedback control systems. Additional positive
applications of NTV in present and future tokamaks, including
ITER have also been discussed in section 11.

A further critical area of investigation in tokamaks
that specific NTV experiments can strongly support is the
establishment and/or testing of physical models of plasma
response. A detailed and quantitatively accurate first-
principles model of the plasma response in tokamaks has
not yet been established. As shown in the previous
section, especially for spectra dominated by n = 1 fields,
plasma response is typically needed to find quantitative
agreement between NTV theory and experiments, while field
configurations dominated by higher n elements (e.g. n =
2, 3) when non-resonant with strong tearing modes may not
need strong amplification of the applied field to quantitatively
match theory and experiment. In either case, these examples
suggest that NTV theory can be used as a strong constraint
for any plasma response model proposed when tested against
experiments that accurately measure the NTV torque profile.
This is due to the dependence of the NTV torque profile being
strongly related to the applied field—by the square of the field.
Therefore, any model of the field amplification by the plasma
response over the vacuum field will be generally increased by
the square of this amplification when compared to experiments.
At present, the most accurate measurements of the peak NTV
torque in tokamak experiments are nominally within a factor
of two of the theory. Therefore, the maximum tolerated error
in a plasma amplification model in a radial region of strong
NTV in such experiments is limited to approximately the
square root of this factor, or about 40%. As published plasma
amplification models have shown far greater variations of the
resultant amplified field—sometimes greater than an order of
magnitude—the comparison of the theoretical NTV produced
by these models against experiments accurately measuring the
NTV radial profile can produce conclusive determination of
the validity of any proposed plasma-induced field amplification
model.
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