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Abstract

Neoclassical transport processes are important to the understanding of plasma confinement physics in doubly periodic magnetized
toroidal plasmas, especially, after the impact of the momentum confinement on the particle and energy confinement is recognized.
Real doubly periodic tori in general are non-axisymmetric, with symmetric tori as a special case. An eight-moment approach
to transport theory with plasma density N, plasma pressure p, mass flow velocity V' and heat flow g as independent variables
is adopted. Transport processes are dictated by the solutions of the momentum and heat flux balance equations. For toroidal
plasma confinement devices, the first order (in the gyro-radius ordering) plasma flows are on the magnetic surface to guarantee
good plasma confinement and are thus two-dimensional. Two linearly independent components of the momentum equation
are required to determine the flows completely. Once this two-dimensional flow is relaxed, i.e. the momentum equation
reaches a steady state, plasmas become ambipolar, and all the transport fluxes are determined through the flux—force relation.
The flux—force relation is derived both from the kinetic definitions for the transport fluxes and from the manipulation of the
momentum and heat flux balance equations to illustrate the nature of the transport fluxes by examining their corresponding
driven forces and their roles in the momentum and heat flux balance equations. Steady-state plasma flows are determined
by the components of the stress and heat stress tensors in the momentum and heat flux balance equations. This approach
emphasizes the pivotal role of the momentum equation in the transport processes and is particularly useful in modelling plasma
flows in experiments. The methodology for neoclassical transport theory is applied to fluctuation-driven transport fluxes in the
quasilinear theory to unify these two theories. Experimental observations in tokamaks and stellarators for the physics discussed
are presented.
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times in tokamaks and stellarators are much shorter than
those predicted by classical transport theory. The research
neoclassical transport theory began when it was realized
that the width of the collisionless particle orbits in the

1. Introduction

The economic feasibility of toroidal thermonuclear fusion
reactors such as tokamaks and stellarators critically depends

on the understanding and control of plasma particle and
energy transport losses in these devices. The strong magnetic
fields, forming nested magnetic surfaces, shown in figure 1,
are used to confine plasma movements across the magnetic
surfaces. Plasma particles and energy are lost from the
system through transport processes across the magnetic
surface. It was expected that transport losses follow the
predictions of classical transport theory [1]. However, it
has been known that plasma particle and energy confinement

0029-5515/15/125001+104$33.00

magnetic geometry of tokamaks and stellarators is much
wider than that of the classical gyro-orbits [2-5]. This
results in much larger transport fluxes than the predicted
classical fluxes when coupled to a dissipation mechanism. The
dissipative mechanism is Coulomb collisions in neoclassical
and classical transport theories of high-temperature plasmas
for thermonuclear fusion purposes. Coulomb collisions are
present even in turbulent plasmas. Thus, they are the
irreducible dissipation mechanism. Neoclassical transport

© 2015 IAEA, Vienna Printed in the UK
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Figure 1. A schematic diagram of the magnetic fields and
coordinates for a torus. Here, R is the major radius, ¢ is the toroidal

angle, 6 is the poloidal angle, Z is the unit vector perpendicular to
the (R, ¢) plane, B, is the toroidal magnetic field, B,, is the poloidal
magnetic field, and B = B, + B, is the magnetic field. The nested
circles denote magnetic surfaces.

theory, pioneered by Galeev and Sagdeev [2,3], is a study
of the transport consequences caused by the drift orbits under
the influence of Coulomb collisions.

The neoclassical transport processes in tokamaks are
fundamentally different from those in stellarators. The
magnetic field in ideal tokamaks is toroidally symmetric,
or axisymmetric. Toroidal symmetry ties particles to the
magnetic surface and limits the radial excursions of the
particles. Particles do not drift off the magnetic surface.
The magnetic field geometry for stellarators, on the other
hand, does not possess any symmetry property. Collisionless
particles readily drift off the magnetic surface.  Thus,
neoclassical transport losses, especially for fusion-born alpha
particles, in stellarators are much larger than those in tokamaks.
Transport processes in non-axisymmetric tori are further
complicated by the limited ability to describe analytically the
collisionless particle trajectories in complicated magnetic field
configurations.

Even though ideal tokamaks are toroidally symmetric, real
tokamaks do not possess such symmetry due to the presence
of either the discrete numbers of the toroidal magnetic field
coils, or error fields, or low-frequency magnetohydrodynamic
(MHD) activity. In this sense, all real magnetically confined
toroidal plasmas are non-axisymmetric. Thus, at least in
principle, neoclassical transport theory for real tokamaks and
stellarators can be formulated with a unified approach. Details
are of course much different and depend on the spectrum
of the magnetic field strength B = |B|, where B is the
magnetic field. One of the goals of this review is to address the
similarities and differences in the transport properties in these
devices.

Neoclassical transport theory for axisymmetric tokamaks
is a matured subject. Two excellent review papers on the
subject describe the detailed physics, mathematical procedures
for solutions of the drift kinetic equation in various asymptotic
limits, and transport fluxes of the theory [6, 7]. The approaches

described in those two reviews are quite different. In the
review by Hinton and Hazeltine [6], a variational approach
is adopted. Transport coefficients in the transport matrix are
calculated individually by taking the proper moments of the
distribution function. To treat approximately the important
momentum restoring effects in the Coulomb collision operator,
a flow speed, proportional to the radial gradients of the
plasma pressure, electrostatic potential, and temperature, that
is parallel to the magnetic field B is introduced in the solution
of the drift kinetic equation with a variational parameter y to
be determined. The parameter y,and thus a relation between
the parallel flow and the radial electric field, is determined by
minimizing the rate of entropy production, which is equivalent
to the ambipolarity condition, for simple electron—ion plasmas

[5,8]. The role of the momentum equation in the theory is
not transparent in this approach. In the review by Hirshman
and Sigmar [7], a moment approach to the transport theory
is employed. In that approach, a parallel flow for each
species is introduced, following the insight gleaned from the
variational approach, to treat approximately the momentum
restoring terms in the Coulomb collision operator. The flux—
forcerelation [9, 10] thatrelates transport fluxes to forces plays
apivotal role in the theory. Once the components of the viscous
forces (or stresses in general) are calculated, all transport fluxes
can be obtained by solving for plasma flows that satisfy the
momentum and heat balance equations and by substituting the
resultant plasma flows into the flux—force relation. Thus, it is
not necessary to take the proper moment of the distribution
function for each individual transport flux. This approach
has several advantages. First, it can be readily generalized to
plasmas consisting of multiple ion species, as demonstrated in
[7]; second, the components of the viscous tensors can be used
for modelling plasma flows in experiments; third, the relation
between plasma ambipolarity and momentum relaxation is
clearly delineated [11,12]; and fourth, the crucial role the
momentum and heat balance equations played in the theory
is transparent. For these advantages, moment approach is
adopted in this review to unify the formulation for the transport
processes in non-axisymmetric tori for simple electron—ion
plasmas. Eightindependent fluid variables are employed in the
approach. Specifically, the eight moments are plasma density
N, plasma pressure p (or temperature 7), mass flow velocity V'
and heat flux q. The Braginskii equations [1], by contrast, are
based on a five-moment approach where independent variables
are N, V and plasma temperature 7.

The momentum confinement is not usually emphasized in
the neoclassical transport theory for axisymmetric tokamaks
presumably because transport fluxes are perceived to be
intrinsically ambipolar [6]. The poloidal flow damping
process becomes a research subject almost as an after thought

[13]. It had been believed that momentum confinement had
nothing to do with the particle and energy confinement until
the development of the theory for the high confinement mode
(H-mode) [14]) to change the paradigm [15-17]. Another
paradigm shift concept in the theory is that the turbulence
fluctuations can be suppressed by the gradient of the E x
B angular velocity. Here, E is the electrostatic electric
field. Turbulence suppression theory and its implications
on plasma confinement first appeared in 1988 [17], and
were later reviewed in [18]. The electrostatic radial electric
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field is determined from the momentum equation, which
can have bifurcated solutions resulting from the non-linearity
of the plasma viscosity, another paradigm changing idea
in tokamak physics. Thus, the momentum confinement
intimately affects the particle and energy confinement. These
insightful discoveries first demonstrated in [15—17] have led to
the intensive theoretical and experimental research efforts on
the momentum confinement in all plasma confinement devices.
The moment equation approach is particularly suited for
investigating the momentum confinement in toroidal plasmas.

Because the variation of the strength of the equilibrium
magnetic field on the magnetic surface that causes neoclassical
transport fluxes is larger than turbulence fluctuation
amplitudes, the components of the viscous forces caused
by the equilibrium magnetic field variations can be the
dominant forces in the momentum equation. The momentum
confinement mechanism is likely to be neoclassical even in
turbulent plasmas. It is known that turbulence fluctuations
enhance particle and energy transport fluxes but have little
effects on the neoclassical bootstrap current and the electric
conductivity [19,20]. This is an indication that neoclassical
momentum balance equations are relevant even in turbulent
plasmas. Thus, not all transport coefficients are equally
anomalous as demonstrated in the neoclassical quasilinear
theory [21], and neoclassical theory plays an important role in
the understanding of plasma confinement in non-axisymmetric
tori with axisymmetric tori as a special case.

1.1. Brief summary of neoclassical transport fluxes for
axisymmetric tokamaks

Neoclassical transport fluxes in axisymmetric tokamaks can be
summarized in a 3 x 3 matrix [6, 7], schematically:

r, Dy Dy D3 Xy
/T | =|Da Dxn Dy X/Z; (L.1.1D)
/T D31 D3y Dss Eﬁ )

The transport fluxes in equation (1.1.1) are I';, g, and J),
which are the radial (across the magnetic surface) particle flux,
radial heat flux and current density parallel to the equilibrium
magnetic field, respectively. The thermodynamic forces are
X1, Xy and E{"Y, where X1 = X, (p//p.T'/T), Xo = T'/T,
the prime denotes the radial derivative, and E ﬁA) is the inductive
electric field parallel to the magnetic field. The transport
coefficients are D;;, where i and j are positive integers varying
from 1 to 3. Because of Onsager symmetry, D;; = Dj;.
The conventional particle and heat diffusion coefficients are
D11, Dy, and Dy, = Dj;. The coefficients D3 and D»;3
describe the particle and heat fluxes resulting from the Ware
pinch [22,23]. Their conjugate elements D3; and Ds, are
coefficients for the bootstrap current driven by the plasma
gradients [23,24]. Ds3 is the electric conductivity with the
modification due to the existence of the trapped particles [25].

The fundamental reason that neoclassical transport fluxes
deviate from fluxes in the classical theory is because the
magnetic field strength B varies on the magnetic surface. In
tokamaks, the magnetic field is stronger on the inside of the
torus where 6 = 7 and weaker on the outside of the torus
where 0 = 0. Here, 6 is the poloidal angle as shown in figure 1.
The right-handed coordinate system is chosen here. In a large

Banana

Vv

Figure 2. As collision frequency decreases, the diffusion coefficient
D;; forior j =1 or 2 goes from the collisional Pfirsch-Schliiter
(P-S) regime, through the intermediate plateau regime and finally to
the banana regime. These scalings can be understood in terms of the
random walk argument. This is a log—log plot.

aspect ratio tokamak, this variation can be expressed as, when
e < 1,[2-5]
B = By(l —ecosh), (1.1.2)

where B is the magnetic field strength on the magnetic surface,
By is the magnetic field strength on the magnetic axis, ¢ = r/R
is the inverse aspect ratio, r is the local minor radius and R
is the major radius. The typical distance going from 6 = 0
to & = & along a magnetic field line scales as Rg, where the
safety factor ¢ = r By/ (R Bp), B, is the toroidal magnetic field
strength, and B, is the poloidal magnetic field strength.

Particles drift along the constant B surface as a result
of VB and curvature drifts due to the non-uniform magnetic
field. In a circular tokamak equilibrium, the constant |B]|
surface is parallel to the Z-axis. The radial drift speed is,
thus, proportional to sin €, and the poloidal drift speed has
cos 0 dependence. The radial drift reverses direction across
the & =0 line. On average, particles do not drift off the flux
surface in axisymmetric tokamaks. It is this drift motion that
enhances the neoclassical transport fluxes over fluxes in the
classical theory.

The typical collision frequency dependence for the particle
and heat fluxes is shown in figure 2.

Because the magnetic moment pu = Mvi/(ZB) is
an invariant for physics processes that have characteristic
frequencies less than the gyro-frequency Q@ = eB/(Mc),
particles are trapped on the outside of the torus where the
magnetic field strength is weaker. Here, e is the electric charge
of the particle, M is the mass of the particle, v, is the particle
speed that is perpendicular to the magnetic field, and c is the
speed of light. These trapped particles are called bananas for
having a poloidal projection similar to the shape of bananas
(see figure 3).

The characteristic width of the trapped particles (Ar), is
of the order of [6,7]

(Ar), ~ Vepp,

where pp = v; /|Qp| is the poloidal gyro-radius, v, = /2T /M
is the thermal speed, 2, = eB,/(Mc) is the poloidal gyro-
frequency. Because B, < B in tokamaks, the width in

(1.1.3)
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Figure 3. A schematic diagram for a banana orbit.

equation (1.1.3) can be much larger than the gyro-radius
p = v/|Q2|. Typical trapped particles have v /v < /&, where
vy is the particle speed that is parallel to the equilibrium
magnetic field. Thus, effective collision frequency for trapped
particles to scatter out of the magnetic well is

v Vv

V ~—_—  ~ —

[A@/w] €&

where v is the typical collision frequency, A (v;/v) denotes the
width in the pitch angle space that is relevant to the physical
process under discussion, and v is the particle speed. Typical
diffusion coefficient D can be estimated using a random walk
argument, which states that

(1.1.4)

(Ar)?
AT

D~ f, , (1.1.5)
where f, is the fraction of the particles that dominate the
transport processes, Ar is the characteristic radial step size
in between decorrelations, and At is the typical decorrelation
time. Using the argument, when trapped particles dominate
the transport processes in tokamaks,

Dy ~ v/epy, (1.1.6)

which is larger than the classical diffusion coefficient D, ~
vp* by about two orders of magnitudes when typical B, is
about a tenth of B. The scaling in equation (1.1.6) is for the
transport coefficients in the banana regime. The banana regime
onsets when the collision frequency is infrequent enough so
that collisionless orbits of the trapped particles can be formed.
Thus, the effective collision frequency in equation (1.1.4) must
be less than the bounce frequency of the trapped particles
wy ~ vy//(Rq) which yields v, = vRq/(e¥?v) < 1.

In the Pfirsch—Schliiter regime, all particles contribute
to the transport processes. Thus, f, = 1. The step size
is estimated to be the distance a particle can drift within a
decorrelation time, thus Ar ~ vgAt, where vg ~ vp/R is
the typical drift speed. The radial drift speed changes direction
from the bottom half to the top half of the torus for having sin 6
dependence. The decorrelation time is determined by the time
for this to occur for particles diffusing along a magnetic field
line through collisions, andis At ~ (Rq)? (v/vtz). The typical
diffusion coefficient is then

Dps ~ vp2q?, (1.1.7)

which is larger than D, by a factor of g2 for g > 1.

The plateau regime is dominated by the resonant particles
that have vj ~ O in the sense that they suffer persistent
radial drift. This drift is interrupted by the collisions. Thus,
Ar ~ vgAt. The fraction of the particles that can participate
the transport processes is determined by viA(v/v)/Rq <
v/ [A(v” / v)]z. Physically, this inequality implies that the time
for the resonant particles to move from the bottom half to the
top half of the torus so that the radial drift reverses the direction
must be less than the effective collision frequency to scatter out
of the resonance layer [6,7]. This yields f. ~ [A(v;/v)] ~
(w/[v/ (RN, and (AT)™' ~ v/[A(v”/v)]z. Thus, the
typical diffusion coefficient scales as

v
P w/(Rg)

The plateau regime is limited by v < v,/(Rgq), which implies
that the particle motion along the magnetic field line is no
longer diffusive, but v, > 1 to prevent the formation of the
trapped particles. It is obvious that the plateau regime can
exist only in large aspect ratio tokamaks.

Externally driven electric current parallel to the magnetic
field line is carried by particles that are circulating around the
torus. In the banana regime, trapped particles cannot circulate
around the torus. Thus, electric conductivity is reduced by a
fraction proportional to the fraction of the trapped particles in
the large aspect ratio limit. When all particles are trapped in
the unity aspect ratio tori, electric conductivity must vanish.
It should be noted, however, that trapped particles can carry
bootstrap current which is diamagnetic in nature.

Bootstrap current is analogous to the diamagnetic current.
It is driven by the radial density gradient and is in the
direction of the magnetic field. Trapped particles move
along the magnetic field line with a speed of the order
J/€v.. Because plasma density is not uniform in the radial
direction, there is a parallel fluid flow V) of the order of
Vi ~ —Je (Vew) Vepy N~ dN/dr due to the finite orbit
width of the trapped particles. The first 4/¢ in V|| denotes the
fraction of the trapped particles. This parallel flow is damped
by the bumpiness of the magnetic field strength along the
magnetic field line with an effective damping rate veg ~ v/e.
So far the argument is independent of the plasma species. For
electrons, v ~ v, the electron—ion collision frequency. In the
electron momentum equation, i.e. Ohmic law, this momentum
dissipation must be balanced by the friction force term that
scales as ~v.;J)/Ne. The parallel current generated is the
bootstrap current and is of the order of

(1.1.8)

cT dN
e —

Jp ~ — .
b B, dr

(1.1.9)

The bootstrap current exists even in the unity aspect ratio
tokamaks.

Bootstrap current, Ware pinch, and the modification
on the electric conductivity have similar collision frequency
dependence. These physics quantities depend strongly on
the formation of the collisionless trapped particle trajectories.
Thus, they have the largest values in the banana regime where
v, < 1 and diminish when the collision frequency increases.
Schematic collision frequency dependence for these quantities
is shown in figure 4.
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Figure 4. Transport coefficient D3 as a function of collision
frequency in a log—log plot is shown.

B

6

Figure 5. Schematic magnetic field strength B variation along a
magnetic field line in a stellarator. The red shaded region indicates
particles trapped in a helical well. The arrow indicates particles
trapped in a toroidal magnetic field well.

1.2. Brief summary of neoclassical transport fluxes in
stellarators

All axisymmetric tokamaks have the same magnetic geometry.
However, not all stellarators are equivalent. The simplest
model magnetic field for a classic stellarator is [3.4,26]

B =By(l —gcosf —e,cosa), (1.2.1)
where ¢ is the Fourier amplitude for the toroidal harmonic,
&y 1s the amplitude of the helical harmonic, « = m@ — n¢ is
the helical angle, and m and n are integers denoting poloidal
and toroidal mode numbers. Usually, in stellarators, ng > m.
Modern real stellarators have a magnetic field spectrum that is
more complicated than that shown in equation (1.2.1) even for
real quasi-symmetric stellarators [27]. There is only one class
of trapped particles in tokamaks. However, there can be at
least two classes of trapped particles in stellarators. Particles
can be trapped either in a toroidal magnetic field well or in a
helical magnetic field well, as shown in figure 5.

The typical collision frequency dependence of diffusion
coefficients for stellarators is shown in figure 6 [3]. This
dependence is generic for non-axisymmetric tori.

The transport mechanisms for the Pfirsch—Schluter regime
and the plateau regime in stellarators are the same as those in
tokamaks except that there are more than one harmonic in the

Sb-P

Sb P-S
Plateau

Figure 6. Schematic collision frequency dependence of diffusion
coefficients in a stellarator in a log—log plot.

magnetic field spectrum. The contribution from each harmonic
to the diffusion coefficients is additive in these two regimes.
This is because plasmas are collisional, the effects of each
harmonic on particle motion are decoupled from each other.

It is important to note that collisionless trapped particles,
i.e. bananas, do not drift off the magnetic surface upon
averaging over their trajectories in axisymmetric tokamaks
because of the toroidal symmetry, as can be seen in figure 3.
However, this is no longer the case once the toroidal symmetry
is broken as is the case in stellarators and tokamaks with error
fields or MHD activities. Typical drift orbits in stellarators,
e.g. a superbanana, a circulating banana and an orbit that
underwent collisionless detrapping/retrapping, are shown in
figure 7. These drift orbits can have a width much larger
than the poloidal gyro-radius and cause significant transport
losses when normalized magnitudes of the symmetry breaking
components in the magnetic field spectrum are fraction of a
per cent.

When e, > ¢, and ng > m, as the collision frequency
decreases, particles trapped in the helical variation of the
magnetic field become collisionless first. These helically
trapped particles drift off the magnetic surface under the
influence of the toroidal variation of the magnetic field, i.e.
the &, cos 0 variation in equation (1.2.1).

In the 1/v regime [3,4], the collision frequency is high
enough so that helically trapped particles cannot complete their
drift trajectories before being collisionally scattered out of the
helical magnetic well. Thus, the step size is Ar ~ vg4Ar,
and At ~ (v/ey)"'. An additional 1/ey, factor in AT appears
because only a small change in A(vj/v) ~ /ey is adequate
for trapped particles to scatter out of the helical well. The
fraction of the particles that participate in the transport process
is f, ~ /en. Recall that vq ~ v p/R, the diffusion coefficient

scales as in
D ( cT )2 &/ %e>

1.2.2
eBr v ( )

Of course, this 1/v scaling cannot persist forever.

When the collision frequency decreases even further, the
poloidal drift motion cannot be ignored any more. The
transport fluxes can be categorized as resonant and non-
resonant fluxes depending on whether the poloidal drift speed
vanishes or not along the drift trajectories. If poloidal drift
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Superbanana

Collisionless /

detrapping / retrapping

Circulating banana

Figure 7. Schematic diagrams for typical orbits in a stellarator. The wriggles indicate the helically trapped particles.

vanishes at some point on the drift trajectories, these are
resonant particles because the step size becomes unbounded
at the resonance position. Of course, the unbounded step size
is unphysical. In the superbanana plateau (Sb-P) regime, the
resonance is broadened by collisions analogous to the plateau
resonance in axisymmetric tori [6,7]. In the superbanana
(Sb) regime, the resonance is removed by the formation of
the non-linear superbananas similar to the banana regime in
the axisymmetric tokamaks [6,7]. The transport coefficients
in these two regimes have the same collision frequency
dependences as those in the plateau and banana regimes in
axisymmetric tokamaks, respectively, but with much larger
magnitudes due to larger step sizes. If the poloidal drift does
not vanish anywhere along the drift trajectories, particles are
not resonant. In that case, it is the particles in the vicinity of
the helically trapped and untrapped boundary that dominate the
transport processes. These particles can become detrapped or
retrapped either through collisions or even without collisions.
If the collisional effects dominate, the transport coefficients
scales as /v, a typical scaling resulting from the boundary
layer (B-L) analysis [3,4]. In non-axisymmetric tori, drift
orbits can change their topology even without collisions
because the second adiabatic invariant J, is no longer a good
invariant quantity [28]. The diffusion coefficients are still
proportional to the collision frequency in this collisionless
detrapping (C-D) regime [3].

1.3. Collision operator

The neoclassical theory for non-axisymmetric toroidal plasmas
is to solve the drift kinetic equation for the perturbed
distribution function to calculate transport coefficients. The
equation for each plasma species is [29]

% +(yn+vg) - Vf +ev”E‘(|A)% =C(f), (13.1)

IE
where f is the particle distribution, n is the unit vector in
the direction of B, vy is the drift velocity, E = Mv?/2 + e®
is the energy of the particles, @ is the electrostatic potential,
inductive parallel electric field E hA) = —c'n-03A/3t, A
is the vector potential, and C (f) is the Coulomb collision
operator. The independent variables for equation (1.3.1) are
(E, u, x), where  denotes spatial coordinates. The subscripts
that indicate plasma species for species-dependent quantities
are suppressed for the sake of simplicity. When plasma species
in physics quantities needs to be specified, the subscript i is
used for ions and e for electrons.

The theory is to solve the linear version of equation (1.3.1)
by expressing the particle distribution f as

f=fu+fr. (1.3.2)

where

N
fm= nTzvf exp (—vz/vlz) (1.3.3)
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is the equilibrium Maxwellian distribution function, and f; is
the perturbed distribution function. Thus, C (f) = C (f1)
because C (fy) = O when the temperature equilibration
between species is neglected. The operator C (f) is an
integral—differential operator that makes equation (1.3.1)
difficult to solve. An approximate collision operator that can
yield accurate transport coefficients is adopted in this review

for the illustration purposes, and it is [30]
Mv, 0 3f1 V)| Ugq1
Cap (far) = v =L ==+ A =5
o v
20" pa
ol 2 fon,
ta

B ou
(1.3.4)

where the subscript that denotes species is restored, C,p
denotes the test particle species a colliding with the
field particle species b.  The first term on the right
side of equation (1.3.4) is the pitch angle scattering
operator. ~ The deflection frequency vﬁb is defined as
VY = v[® (v/ve) — G (v/vw)]/(v/1,)?, where the basic
relaxation frequency v,, = 4w N (eqep)* In A/(vfaMs), In A
is the Coulomb logarithm, the Chandrasekhar function is
G(x) = [CD (x) —x®’ (x)]/(sz), and @ (x) is the error
function. (In this review, when & has a dimensionless
argument, it denotes error function, and when it has an
argument that is the position it is the electrostatic potential.)
The second term on the right-hand side of equation (1.3.4) is
the momentum restoring term from the test particle operator,
where Av®® = vab — v The slowing down frequency
v s V8 = vy, T,/ Ty) (14 My/M) G (v/v)/(v/via),
and u, = fd(3v‘|/2v)vufa1/faM. The third term is the
momentum restoring from the field particle distribution, where
Yba = (3/2)fdethvfufbl/f deavgh(v/vlu)zfaM~

The eight-moment equation approach to be discussed is
not sensitive to the details of the collision operator. The model
operator displayed here is to facilitate the illustrations of the
theory.

1.4. Summary of moment approach to transport theory

The moment approach to transport theory provides a means to
determine plasma flows and as a consequence the transport
fluxes. The roles of plasma flows in transport fluxes are
explicit. Thus, not only the transport fluxes, but also plasma
flows under various physics conditions are of interest in the
theory. For large aspect ratio tokamaks, analytic expressions
for plasma flows and transport coefficients can be obtained.
However, for real stellarators, it is often difficult to have
compact analytic expressions for transport fluxes in the low-
collisionality regimes for a general magnetic field spectrum.
For those cases, plasma flows and transport fluxes for classic
stellarators are discussed to illustrate the physics involved.

The moment approach to the transport theory can be
summarized in figure 8. The momentum equation is used
to determine the plasma flows on the magnetic surface that
make plasmas ambipolar. These plasma flows are substituted
into the flux—force relation to determine the transport fluxes.
The viscous forces in the momentum equation are calculated
from the solution of the kinetic equation to close the moment
equations.

Momentum Equation

A4

Plasma Flows

h'4

Ambipolar State

A4

Flux-Force
Relation

Y

Transport Fluxes

Figure 8. Flow chart for the moment approach.

1.5. Synopsis

The review concerns neoclassical transport processes,
including quasilinear theory, formulated using the neoclassical
methodology and turbulence suppression theory to provide a
theoretical tool to understand plasma transport behaviour in
a non-axisymmetric torus with an axisymmetric tokamak as
the special case. Because the focus of the theory part of the
review is on the analytic neoclassical methodology, only works
that are directly related to the development of the moment
equation approach are referenced, and numerical works on
neoclassical theory are not reviewed here. The subjects and
references chosen are biased towards those that are needed in
the modelling and understanding of the neoclassical transport
phenomena observed in experiments. Thus, they are by no
means extensive. The part on the experiments is limited to
the review on the experimental tests of neoclassical plasma
viscosity and plasma flows in non-axisymmetric tori.

The moment equations are needed for the development
of the transport theory. They are employed to construct
equilibrium flow patterns and current on the magnetic surface,
and the flux—force relation. These equations are displayed in
section 2.

Transport theory is to describe the particle, momentum
and energy losses in equilibrium plasmas. The standard MHD
equilibrium is briefly discussed in section 3. The emphasis
is on the flow patterns and the expression for plasmas current
in non-axisymmetric tori. These flows and current are to be
determined in the transport theory.

The key to the transport theory is the flux—force relation
that relates the transport fluxes in the even velocity moment
equations to forces in the odd velocity moment equations. Both
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moment and kinetic derivations are presented in section 4.
The relation together with the momentum equation is used
to demonstrate that the ambipolar state is reached when two
linearly independent components of momentum equation on
the magnetic surface are relaxed. An example of the poloidal
flow damping or relaxation in the banana regime is employed
to show the relation between flow damping and the so-called
intrinsically ambipolar transport in axisymmetric tokamaks. It
also demonstrates that the radial electric field is first established
on a short time scale of the order of the poloidal flow damping
time and further evolves relatively slowly at the transport time
scale. Thus, it evolves at two distinct time scales in tokamaks.
In addition, it is shown that when neoclassical transport losses
are improved so are the anomalous losses by considering the
relation between the flow damping rate and improvement of
the anomalous losses.

The equivalence between the variational and moment
approaches to neoclassical transport theory is illustrated in
section 5. The reason for the introduction of the parallel flow
into the solution of the kinetic equation is discussed.

The neoclassical transport theory for axisymmetric
tokamaks is reviewed in section 6. Analytic expressions for
particle trajectories both in the region away from and in the
vicinity of the magnetic axis are calculated from conservations
of canonical toroidal momentum and energy together with the
invariant of the magnetic moment. These expressions are used
in a systematic method that calculates the parallel component
of the plasma viscous forces in all regimes. Specific physics
included are transport theory in unity aspect ratio tokamaks in
the Pfirsch—Schliiter regime, effects of orbit squeezing, effects
of finite banana width, non-linear plasma viscosity, transport
theory in the vicinity of the magnetic axis and shock formation.
The application of the theory to low confinement mode (L-
mode) to H-mode transition is also presented.

In section 7, the methodology of the neoclassical theory
is employed to formulate the quasilinear theory to describe
transport losses, including particle, energy and momentum
losses, associated with turbulent fluctuations. The turbulent
suppression theory is also discussed to complement the
neoclassical theory.

Real tokamaks are not axisymmetric. The transport
consequences in tokamaks with weak broken symmetry are
reviewed in section 8. The theory is relevant to the use
of the external coils to control plasma flows and MHD
stabilities. All known collisionality regimes are discussed.
Approximate analytic expressions that join all asymptotic
limits of the solutions of the bounce averaged drift kinetic
equation are presented to facilitate modelling of toroidal flow
in experiments.

The neoclassical transport theory for stellarators is
reviewed in section 9. As the collision frequency decreases,
the model for the magnetic field spectrum used in the theory
becomes simpler due to the inability to have compact analytic
expressions for particle trajectories in real stellarators, and the
difficulties to solve the drift kinetic equation. However, more
detailed mathematical procedures used to calculate transport
fluxes than previous reviews [3,31] are presented. The key
developments after those reviews [3,31] are the derivation
of the flux—force relation, and its use to calculate the plasma
flow, radial electric field and transport fluxes. An approximate

expression for the bootstrap current for an arbitrary magnetic
field spectrum in the low-collisionality regime is also obtained
by solving the drift kinetic equation approximately with the
aid of the solution of the moment equations.

Neoclassical radial thermal transport does not play an
important role in optimized stellarator or heliotron devices as
it does in tokamaks. The experimentally evaluated thermal
diffusivity is much larger than that predicted by neoclassical
theory even in plasmas with electron internal transport barriers,
where the turbulence transport is suppressed to some extent

[32,33]. However, neoclassical transport has a significant
impact in determining the poloidal and toroidal viscosity
in axisymmetric toroidal plasmas and the radial electric
field in helical systems. The toroidal viscosity evaluated
in experiments is comparable to the neoclassical toroidal
viscosity (NTV) in helical plasmas. The transition of the radial
electric field from the electron-root to ion-root or vice versa has
been found to be consistent with the neoclassical predictions
[34-36]. Therefore, it is quite important and interesting to
compare the plasma flow observed in experiments with that
predicted from neoclassical theory. Experimental results on
neoclassical poloidal and toroidal viscosity in stellarators are
discussed in section 10.

Neoclassical transport effects due to low-level non-
axisymmetric magnetic field perturbations (§ B/ B ~ O(1073))
in otherwise axisymmetric systems (e.g. tokamaks) have been
appreciated theoretically since the inception of the theory.
However, it was not until the last decade that NTV was
appreciated as the cause for plasma rotation alteration by
non-resonant field perturbations and other important effects
observed in dominantly axisymmetric devices [37-39]. Early
theoretical studies discounted NTV as being too weak in theory
to reproduce experiment. Eventually, research showed that
NTV theory could indeed quantitatively explain experimental
observations in tokamaks [40,41]. A review of the evolution
of this appreciation of NTV in tokamaks with corresponding
experimental observations is given in section 11.

In section 12, a physics mechanism for the origin of the
momentum for intrinsic plasma rotation, which is ubiquitous in
theories and experiments discussed, is illustrated. A summary
is also given.

2. Moment equations

Transport theory is used to derive the closure relations for
quantities in the fluid moment equations. The moment
equations are derived by taking the velocity moments of the
kinetic equation [6,7]. In the eight-moment approach, the
moment equations for the eight independent variables: plasma
density N, plasma pressure p (or plasma temperature 7'), fluid
mass velocity V' and heat flux g are required. The theory
will not address the effects of sources. Thus, all sources are
neglected.

The kinetic equation for the particle distribution function
f for each plasma species is
O ovieL(pstoxB). Y —c
3t+v f+M< +Cvx > v /.
where v is the particle velocity. Taking the v°, v, Mv?/2
and Mv?v/2 moments of equation (2.1) yields the density

2.1)
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conservation equation

oN
—+ V- (NV) =0, 2.2)
at
the momentum equation
dv 1 -
NMW =Ne|(E+-VxB|—-Vp—-V-m+F, (23)
¢
the energy conservation law
(3, vmve) 4w
o \27 72
e had 1 2 3
lq+ (n +p I)«V+§NMV Veipv
=Q0+(NeE+F))-V, (2.4)
and the energy flux balance equation
Q e 5 1 ) ¢ o
—=—FE-(|zp+=NMV~° ) I+ 7T +NMVV
at M 2 2
1 e - T /5
-l QxB-V- T+ <7F1 + F) , 2.5)
cM M \2

where d/dt = 9/t + V - V, plasma density N = [dvf,
plasma flow velocity V' = [dvfv/N, plasma pressure

p = [dv(Mu?/3) f, w = v — V, viscous tensor T=
JdoM (uu —u? ?/3)]‘, ? is a unit tensor, friction force

Fi = [doMvC(f), ¢ = [dvu(Mu?/2) f, heat friction
force F, = [dvMwv (x* —5/2) C(f), x = v/v,, collisional
energy exchange Q = [ dv (Mu?/2) C (f), the energy flux

Q= [do(Mv*v/2)f = q+ (7‘? +p 7) V+NMV2V/2+

3pV/2, and the energy stress tensor r = Jdv (Mv*/2)vof.
The density conservation law for the Coulomb collision
operator, i.e. [dvC(f) =0, has been used in deriving
equations (2.2)—(2.5). Note that for energy flux @ and the
energy stress tensor ;), the mass flow V" has not been subtracted
from the particle velocity v. Because only the transport theory
for the subsonic mass flow, i.e. |V'|/v, < 1, will be discussed,
whether V' has been subtracted from the particle velocity v is
not crucial.

An alternative form for the momentum equation, i.e.
equation (2.3) is [6]

a 1 ©
5(NMV)=N€<E+7V><B)—V'P+F1, (2.6)
c

where the stress tensor (13= [ dvMvv f. The energy flux
balance equation can also be cast into a form to emphasize the
heat flux balance as

dq e
dr — Mc

1 < PES T PES PR
——VT~(—+1? )——V-(~+ﬁ )
M O+ 1)~ V- (6407

qu—%VT~(7?+p?)

1 <> <>
+— (v 74V —F)-n— vV
NM< p 1 q

SV V_E Vv LR
3q ol i 25

where &= [ duMu(uu— 7 u?/3)f,and ¥ = [du(Mu?/
2T —5/)M T (u2/3)f.

2.7)

For subsonic plasma flow, equations (2.3) and (2.5) can

be simplified to

A% 1 ©
NMﬁzNe E+-VxB)—-Vp—-V-7+F (2.8)

c

and
BQ e 5 < o le d
7=7E. - - B_V'
o M <2p]+”)+cMQX "

T (5
+M (EFI + F2> , (29)
where Q reducesto Q = q+5pV /2.
In the eight-moment approach, quantities Fj, Fj, T

and r as functions of the eight independent variables are
derived from the solution of the kinetic equation to close the
moment equations. The solutions of the odd velocity moment
equations, i.e. the momentum and heat flux balance equations,
determine plasma flows and, thus, the transport fluxes, which
are employed in the even velocity moment equations of the
density and energy conservation laws to determine the plasma
density and temperature profiles.

3. Plasma equilibrium

To confine plasmas, all the forces acting on them must be
balanced to reach an equilibrium. This involves solving the
moment equations, Maxwell’s equations, together with the
boundary conditions to determine self-consistent magnetic
field, electric field, current density, mass flow and heat flow.
This is a formidable task for toroidal plasmas. To accomplish
this goal, a gyro-radius ordering is commonly employed. The
small parameter in the ordering is p /L, where L, is the typical
scale length of the plasma parameters [6,7]. Note that the
gyro-radius here can be replaced by Ar, the generic radial
width of the particle orbits. In any plasma confinement device
for thermonuclear fusion purpose, Ar must be much smaller
than L, to avoid rapid convective or direct losses. The force
balance is maintained at each order in the ordering scheme.
In addition, transport ordering is adopted so that equilibrium
plasma density and temperature evolve at a rate of the order of
v (p/Ln)* [6,7].

From equations (2.3) and (2.5), the zeroth-order (in gyro-
radius) force balance equations for each plasma species are

1
Ne (E+7V><B> =Vp (3.1)
c
and 5
€ p
—_— B=—-—VT. 3.2
M1 T T 2m 32)

In the direction of the magnetic field B, the solutions for
equations (3.1) and (3.2) imply that the equilibrium pressure
p, electrostatic potential ® and the temperature 7' are flux
functions, i.e. p = p(x), ® = ®(x) and T = T (x), where x
is the poloidal magnetic flux divided by 27. Thus, equilibrium
plasma density N is also a flux function.

Summing equation (3.1) over plasma species yields the
force balance equation for plasmas

%J x B=VP, (3.3)

where P =) ; pj is total plasma pressure, and subscript here
J indicates plasma species.
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3.1. Magnetic coordinates

Magnetic coordinates in which the magnetic field are straight
lines are employed to describe the nested magnetic surfaces.
The magnetic field B can be represented as

B=¢gVx xV0+Vt xVy, 3.1.1)

where 6 is the poloidal angle, ¢ is the toroidal angle, and
the safety factor g(x) = B - V¢{/B - VO which is the
same as the inverse rotational transform 27 /t. The Jacobian
Vg = (Vx xV8-V¢)™' = 1/B - V0 is arbitrary. For
Hamada coordinates [42], /g is a flux function. For Boozer
coordinates [43], it is proportional to 1/B2. The poloidal flux
x plays the role of the radial coordinate analogous to that in
the polar coordinates. The notation 6 and ¢ denote poloidal
and toroidal angles in the coordinates of interest. They are
different in different coordinate systems.

The conventional definition for the Jacobian in Hamada
coordinates (V,0,¢) is /gn = (VV x VO -V ™' = 1,
where V is the volume enclosed inside the magnetic surface
divided by 472 [42]. In terms of (V, 6, ¢), the magnetic field
in equation (3.1.1) can be expressed as

B=y'VV x VO — x'VV x V¢, (3.1.2)

where ' = B- V¢, ¥ is the toroidal flux divided by 27, x' =
B - V0, and prime denotes d/dV. In non-axisymmetric tori,
Hamada coordinates are preferred coordinates for transport
theory because not only the magnetic field and the current
density J are straight lines, but also the incompressible
flow velocity V' and heat flow g. It is easier to express
these quantities in Hamada coordinates because there are no
complicated angle dependences in these quantities.

The standard axisymmetric tokamak coordinates can be
obtained from equation (3.1.1) using the identity

Vy x V6
XX YT _ Ry, (3.1.3)
B-Vo
to yield
B =1V +V¢ x Vy, (.1.4)

where I = R?V¢ - B. The angle ¢ is the axisymmetric toroidal
angle in the tokamak coordinates.

In this review, the Hamada coordinates are used in the
transport theory for non-axisymmetric tori and the tokamak
coordinates are used for axisymmetric tokamaks.

The covariant representation B is also useful and
is [44,45]

B=GVO+FVi—1tVy+Vog, (3.1.5)

where F = F ()x) is the poloidal current outside a magnetic
surface multiplied by 2wc/4m, G = G (x) is the toroidal
current inside a magnetic surface multiplied by 2mc/4m,
functions 7 and ¢ satisfy [44]

Bve=arP (L L , (3.1.6)
dx \ vz (1/2)
and
2 2 1 1
B-Vy =B _<B>_(G+Fq)(ﬁ_<ﬁ>>’ (3.1.7)

the angular brackets denote the magnetic flux surface average,
which is defined as

[ /5d0ds ()
Jvgdodc
and the integration limits for 6 and ¢ integrals are from 0 to

27 . There are two identities related to the flux surface average
are commonly used [6]; one is

() (3.1.8)

(B-VF) =0, (3.1.9)
and the other is
1 0
V- F\= —— (V/(F-V , 3.1.10
(V- F) = 4o (VIR V) (3.1.10)

where V' = [d6 [d¢. /3.

Itis obvious that the symmetry property of a torus does not
depend on the specific coordinates chosen because plasmas do
not recognize coordinates. This simple concept is used in the
development of the transport theory for non-axisymmetric tori

[46]. The explicit mathematical proof is first shown in [44].

3.2. Plasma flows

The first-order plasma mass and heat flows that are
perpendicular to the magnetic field are [6, 7]

B xV® B xVp

Vi=c 5 +c NeB: 3.2.1)
and 5
cp
=-——B x VT. 322
U =5_mBx (322)

These flows are the standard E x B flow, diamagnetic flow
and diamagnetic heat flow. The general forms for the mass
flow V' and heat flow g can then be expressed as

V= VHn+VL, (323)

and

g=qmn+q.. (3.2.4)

The first-order (in gyro-radius ordering) parallel flows V|, and
q)| are not yet determined.

Note that both first-order flows V' and q are on the
magnetic surface, i.e., V- Vx = 0and q - Vx = 0, and they
are two-dimensional vectors. For good plasma confinement
concepts, this should be the case so that plasma losses are
higher order in the p/L, ordering.

It is also important to realize that there are two unknowns
to be determined to specify the first-order flow V' completely.
One is V), and the other is the radial electric field —V® =
—(d®/dyx) Vx. Thus, two linearly independent equations
are required. The two equations are two linearly independent
components of the momentum equation. These equations
and their relation to the ambipolarity will be discussed in
section 4.

For subsonic mass flow [6,7], V is incompressible, i.e.

V.-V =0. (3.2.5)
and can be expressed as [47]
V=VVy xVO—VVy xVi+Vx x Vny, (3.2.6)
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where V¢ and V? are functions of x only, and 7y is a function
of (x, 0, ¢) that satisfies

1 1
B-Vyy = (qV? - V¢ (——<—>)
( NE\ &
Using equation (3.1), the standard radial force balance takes
the form [47]

(3.2.7)

(Ve —vo) (L) = cors S p (3.2.8)
N Ne'’ -
where prime denotes d/dy. In general, V¢ = dV,/dy = vy

and V¢ =dV,/dy = Vl/’,, where V, and V, are respectively
the poloidal and toroidal velocity fluxes inside the magnetic
surface divided by 27. Usually, V¢ and V¢ are not the
contravariant components of the flow vector V' in non-
Hamada coordinates. In Hamada coordinates, using (V, 8, ¢)
coordinates, ny is a function of V only and

V =ViVV x VO — VIV x Ve, (3.2.9)

where V¢ = dV,/dV, and V¥ = dV,/dV are contravariant
components of the flow velocity. The velocity V is a straight
line in Hamada coordinates.

In helically symmetric tori,

VeV -Va=mV’ —nV?¥, (3.2.10)
is a flux function, or, explicitly,
Vi (mF +nG)cT (p'  ed’
V.- Va=— (m— +—=+—,
VAV Va = on = ngy+ DL (24 8
(3.2.11)

and in particular for m = 1 and n = 0, i.e. tokamaks,
VeV -ve =v?

Vi FcT (p  ed
= — 4+ —+ (3.2.12)
B eB2\p T
is a flux function. In tokamak coordinates, F' = I.
Similarly, the incompressible heat flux g, i.e.
V.q=0, (3.2.13)
can be represented as [47]
q=q"Vx x V0 —q"Vyx x Ve +Vyx x Vi, (3.2.14)

where ¢* (x) = dgy /dx, q° (x) = dq, /dx, qy is the toroidal
heat flux inside the magnetic surface divided by 27, g, is the
poloidal heat flux inside the magnetic surface divided by 27,
and 1, is a function of (), 6, ¢) that satisfies

B-Vn, = (49" - 4°) (% B <%>>

Note that the scalar ¢ denotes the safety factor. In Hamada
coordinates, 7, is a flux function and q is a straight line, i.e.

(3.2.15)

q=q*VV x V0 —¢°VV x V¢, (3.2.16)

where ¢¢ = dgy/dV and q° = dg,/dV are, respectively,
contravariant toroidal and poloidal components of q. There is
also a radial heat force balance equation

(a4 — ¢) <L> _3¢

=pT. 3.2.17
NG 5oP ( )

In helically symmetric tori,

V2q-Va=mq’ —ng* (3.2.18)
is a flux function, or explicitly,
q 5 (mF+nG)cT T
Vo= —(m— +-p————=, (3.2.19
V8q-Va =g m—ng)+Sp———p 7 )
and for tokamaks,
Vea- Vo =4’
a5 IcTT (3.2.20)
= — 4+ —pif
B 2" eB?T

is a flux function.

3.3. Magnetohydrodynamic (MHD) equilibrium

The equilibrium current density perpendicular to the
equilibrium magnetic field J , from equation (3.3), is

B x VP
The general form for the current density is then
J = JHTL+JL, (332)

where the current density parallel to the magnetic field J;; in
equation (3.3.2) remains undetermined.
Equation (3.3), together with Ampere’s law,

4
VxB=—J
c

(3.33)
and the boundary conditions determine the MHD equilibrium
for toroidal plasmas. The typical time scale for establishing
MHD equilibrium is (VA/LA)’I, where V, is the Alfvén
speed, and Ly is the typical length scale of the torus. The
radial force balance relation in equation (3.2.8) is established
on this time scale.

In tokamaks because of the toroidal symmetry, the
magnetic field lines form nested magnetic surfaces. The
equilibrium magnetic surface can be calculated from the Grad—
Shafranov equation [48, 49]

A*y =—II' —4nR*P/, (3.3.4)

for given pressure and current profiles, where A*y = R’V -
(Vx/R?).

In non-axisymmetric tori, in general, the nested magnetic
surfaces do not rigorously exist [50]. To facilitate the
development of the transport theory, the existence of the nested
magnetic surfaces is assumed. There are computer codes that
solve for the equilibrium configurations for non-axisymmetric
tori. One of such codes is VMEC [51, 52].

From equation (3.3) and Ampere’s law in (3.3.3), the

current density J is [44]
J:%(VGXV9+VFXV§—VTXVX). (3.3.5)
4

In Hamada coordinates, 7 is a flux function, and J is a straight

line. The current density in equation (3.3.5) satisfies
V.J=0, (3.3.6)

as required by the quasi-neutrality of the plasmas.
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3.4. Equilibrium parallel current density

The equilibrium current density that is parallel to the magnetic
field has not yet been determined. Taking the V& component
of equation (3.3.3) yields

Ji cF’ ¢ (B*t/or) P’
— = | ——— 4+ — (I +{0¢/0
B~ ax [4n B ey e
Jos
—, 34.1
+3 (34.1)
where the Pfirsch—Schliiter current Jp is defined as
s ¢ (at (B*3t/d¢) p(F_F
it O P et A [ -
B 4m \ 8¢ (B?) B> (B?)
190 1 /o
—ep' (=22 - (%)), (3.4.2)
B29¢ (B \d¢

The Pfirsch—Schliiter current has the property that (B Jps) = 0.
One can also take the V¢ component of equation (3.3.3)
and obtain an equivalent expression for the Pfirsch—Schliiter
current. In the case of the toroidally symmetric tokamaks, the
Pfirsch—Schliiter current in equation (3.4.2) yields the well-
known expression [6, 7]

=—cP’ (
in tokamak coordinates.

There is still an undetermined part of the parallel current
density that does not vanish upon flux surface averaging, i.e.
(BJ,) # 0. This is the bootstrap current [23,24]. It is
determined by the flux-surface-averaged electron momentum
equation, i.e. Ohm’s law, and the ion momentum equation

1
B?

I

(82)

ﬁ

B (3.4.3)

Ne(B.E<A>>—(B-V- 7‘?>+(B.F1) =0,  (344)
in the direction of B, where the subscripts that denote the
species are omitted for the sake of simplicity [7]. These
equations are coupled to the parallel heat flux balance equations
through the coupling of the heat flows in the friction and
viscous forces. The inductive electric field drives the Ohmic
current and the flux-surface-averaged electron parallel viscous

forces (B - V- 7?) and (B - V- 6) drive the bootstrap current
[7]. Excluding the ohmic current, the parallel current density
can thus be expressed as

Sy _ (BJ)
B (B

o
B

(3.4.5)

where J), is the bootstrap current density. The local bootstrap
current is [7]
(B o) B
(%)
The poloidal magnetic field in stellarators is generated by
the electric current in the external magnetic field coils. Thus,
there is no need for the inductive plasma current to generate
the field. In this sense, stellarators are steady-state plasma
confinement devices. This is one of the merits often cited when
comparing stellarators and tokamaks as thermonuclear fusion
reactors. However, bootstrap current exists in stellarators as

Tp = (3.4.6)

well due to finite plasma gradients [53,54]. It has to be taken
into account in MHD equilibrium calculations [55].

Conventional tokamaks are not intrinsically steady-state
plasma confinement devices. The plasma current to create
poloidal magnetic field in tokamaks is maintained by the
inductive electric field induced by the time changing magnetic
flux [56]. The discovery of the bootstrap current makes
the steady-state operation possible if there is a seed current
at the magnetic axis [24]. However, the existence of
the potato bootstrap current at the magnetic axis makes the
seed current unnecessary [57-59]. The bootstrap current
allows tokamaks to become intrinsically steady-state plasma
confinement devices as are stellarators [57-59].

4. Flux—force relation, momentum relaxation and
ambipolarity

The relation between momentum relaxation (i.e. seeking the
steady-state solutions of the momentum equation for plasma
flows) and plasma ambipolarity in axisymmetric tokamaks and,
in general, non-axisymmetric tori is not well known [60, 61].
However, these two important aspects of the plasma dynamics
are intimately related. They need to be treated properly so that
the momentum equation is satisfied. The relation that bridges
these two important constraints is the flux—force relation. It
is first derived for axisymmetric tokamaks in [9, 10] and is
employed in the transport theory extensively in [7]. It is
generalized for non-axisymmetric tori in [53].

4.1. Flux—force relation

The transport fluxes in the even velocity moment equations,
and forces such as perturbed pressure force, viscous forces
and friction forces in the odd velocity moment equations that
are smaller than the equilibrium quantities by a factor of p/L,,
have to be expressed in terms of the eight independent variables
to close eight moment equations. The flux—force relation
relates transport fluxes to these forces. The importance of
the relation is that it identifies the transport fluxes calculated
from the solution of the kinetic equation with the closure
terms in the momentum and heat flux balance equations. This
facilitates the determination of the self-consistent plasma flows
including parallel flow and the radial electric field that satisfy
the momentum equation. This shows that the self-consistent
plasmarotation guarantees that the forces acting on the plasmas
are balanced. This also indicates that the ambipolar state is
related to steady-state solutions of the momentum equation
for plasma flows.

There are two methods to derive the relation. One is to
manipulate the moment equations [7,9, 10] and the other is to
use the kinetic definition for the transport fluxes [47]. These
two approaches are equivalent of course.

4.1.1. Moment approach. Taking the B x V x component of
the steady-state momentum equation in equation (2.8) yields

the flux surface averaged particle flux, '* = (NV - Vy) =
(T -Vx),
ExB-V
o _<N0g>
B2
+<Lvax.<Fl—vp—v. 7?)) 4.1.1.1)
eB?
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Using a vector identity [6,7,47,53]:

(B.-B)B BxVy

Bi=—"% B2

(4.1.1.2)

where B, J/&Vx x V0O, to replace B x Vx/B? in

equation (4.1.1.1), the particle flux can be further decomposed.

With the help of the parallel momentum balance equation
NeB~E—B-Vp—B-V-7(?+B-F1 =0, (4.1.1.3)

the particle flux is shown to consist of the Pfirsch—Schliiter flux

cff L (L)
M =—(—= - B-F|), 4.1.14
A(m-f)mn) o
the banana—plateau flux
1. © 1.
bp=_f< )(B~V~7t)=—£< ) (B - Fy)
e (B?) e (B?)
+(NeB - E(A’)), (4.1.1.5)
the non-axisymmetric flux
= £<(B‘~Vp)+<Bt~V~ 7?)), (4.1.1.6)
e
the classical flux
cl c
' =——(B- Fi.), 4.1.1.7)

e

the flux associated with the moving velocity of the toroidal
magnetic flux surface

V'(B-E)

IwzzNﬁw-Vx%=Nc< —<E-Bo)

42q
(4.1.1.8)
(1)

(Bz) (1 — > , (4.1.1.9)

where I, = B; - B, F}, is the component of the friction
force perpendicular to the magnetic field, and (uy - V) is
the moving velocity of the toroidal magnetic flux surface
[6,7,53,62,63]. Thus, relative to the moving toroidal
magnetic flux surface, I'* — "¢ consists of the Pfirsch—Schliiter
flux, banana—plateau flux, non-axisymmetric flux, classical
flux and the residual E x B flux, which is usually neglected.

It should be noted here that the banana—plateau flux I'*
not only exists in the banana—plateau regime, but also in the
Pfirsch—Schluter regime. It is subdominant in the Pfirsch—
Schluter regime, however, except when the inverse aspect ratio
& approaches unity.

In the derivation of the flux—force relation using the
momentum equation, the viscous tensor is not limited to
the Chew—Goldberger—-Low (CGL) form [64], which is
T= (p— p)(nn—1 /3), py = [ dvMul f is the plasma
pressure in the direction of the magnetic field, and p;, =
[ dvM ui /2) f is the pressure in the direction perpendicular
to the magnetic field. However, to obtain the neoclassical

and the residual £ x B flux

(BZ) \

I'“ =Nc¢(B-E
¢(B-E) (1) 4n%q

transport matrix briefly summarized in section 1, the CGL
viscous tensor is adequate.

Note that the pressure in equations (4.1.1.1) and (4.1.1.6)
is the perturbed pressure driven by the particle drift velocity.
In terms of the gyro-radius ordering they are first order. In
Hamada coordinates, (B; - V p) = 0for any non-axisymmetric
torus, and only (B - V- T ) contributes to non-axisymmetric
particle flux I'". Because I'™ is driven by the viscous force
and pressure force, it is not intrinsically ambipolar.

A relation between the heat flux and the forces can also
be derived. The relevant moment equation is
aq e

- 5T o T

_—qu—V~r+—(Vp+V‘7t)+—F2,

o oM M M
(4.1.1.10)

where the higher order terms have been neglected and the heat
flux g reduces to

5
4=Q - 3TNV 4.1.1.11)

Employing the same procedure used to decompose the particle
flux, radial heat flux g* = (g - V) can be decomposed into
the non-axisymmetric heat flux g™ :

q

na

7=£<B1-V- 6>+E<B[-Vﬁ>, 4.1.1.12)
T e e
the banana—plateau heat flux ¢ :
bp
q c <I() < < c (IL>
i __ - B.v.@>:_,7 B FB),
T = (B TSR
(4.1.1.13)

the Pfirsch—Schliiter heat flux ¢™:

q* c 1. (1) ( =
AL f B-V17+B~V-~)
T e<(32 (87 ©
el 1l (L)
=—([£-2L]|B F 4.1.1.14
<<B <BZ>) > e
and the classical heat flux
cl
1 __SB. B, (4.1.1.15)
T e
where F,; is the heat friction force that is per-

pendicular to the magnetic field, the CGL heat vis-

cous tensor 6 = (©)—-0)nn— T/3), Y =
®,/3 +20,/3, 9 = fdv(vz/vf—S/Z)Mvﬁf and
0, = [dv@?/v}—5/2)(Mv?/2)f 16,7,53,62]. For a
Maxwellian distribution, # = 0. Again, ¢® also exists in
the Pfirsch—Schliiter regime.

As can be seen from the flux—force relation, except the
Pfirsch—Schluter fluxes, all transport fluxes are driven by
components of the perturbed pressure and viscosity. Once
the components of these forces are known, all transport fluxes
can be derived by substituting the consistent plasma flows
determined from the solutions of the components of the
momentum equation. Thus, the key to the development of
neoclassical theory in the moment equation approach is to
calculate the plasma viscosity in axisymmetric and in general
non-axisymmetric tori under a variety of plasma conditions.
The main theme of the review is to show the procedures to
calculate plasma viscosity, to obtain the consistent plasma
flows that satisfy the momentum equation, and to demonstrate
the transport consequences.
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4.1.2. Kinetic approach The flux—force relation for the
neoclassical fluxes can also be derived using the definitions
for the neoclassical particle flux

EY x B
rx :</dvad-Vx>+<Nc e > 4.1.2.1)
and the heat flux
qx—/d L fog-V (4.12.2)
i v 22 ve-Vy), 1.2,

where f, independent of the gyro-phase, is the solution of the
drift kinetic equation [6]. The classical particle and heat fluxes
are, thus, excluded.

To proceed, an explicit expression for the drift velocity [6],

Vg = —yn X \Y% (UH/Q) N (4]23)

is needed.  Even though the representation for vy in

equation (4.1.2.3) is valid for low-B plasmas, its radial

component, i.e. vq - V, is valid for arbitrary plasma j [6].

Here, plasma § is defined as the ratio of plasma pressure to the

magnetic field pressure. The radial drift speed vq - Vx is
0g-Vy = Ay (U

B [(Q)vax]'

Substituting equation (4.1.2.4) into equation (4.1.2.1), and
employing the vector identity in equation (4.1.1.2) yields [47,

(4.1.2.4)

e () (457)
At {565
(e [e2nis)

EW x B
+<Nc (T)> (4.1.2.5)
The non-axisymmetric flux I'™ is
na _ _ ﬂ . v”BZBT
e — </dvf<B)V (79 , (4.12.6)
the banana—plateau flux I"° is
v v B*B\ (I.)
e =( [ dof(2L)v.|(- <), @127
</ or (3)5 [ (422) ). @zn

and the Pfirsch—Schliiter flux I'” together with part of the
inductive electric field driven flux I'#P is

rPS+rgP:</dvf( )V
(52 (- )]}

(82)

It is straightforward to show that

vy

B

UHBZB
Q

I,

B2

(4.12.8)

Jour (5 [(*67)1]
- gv. (/ dvvaﬁAB) —/dvv” n-Vf) "”?ZBZ,
(4.12.9)

14

for an arbitrary scalar A. The second term on the right-hand
side of equation (4.1.2.9) can be shown to be

/dvv” (n-Vf) (””ABZ>

Q

C <« (S)
zfA(B~Vp+B-V-7r _NeB-E )
e
=SA(B-F +NeB-EW), (4.12.10)
e
where 7 is the CGL viscous tensor, and E® = —V®

is the electrostatic electric field. = The divergence term
in equation (4.1.2.9) vanishes upon flux surface averaging.
Thus, the neoclassical fluxes are driven fundamentally by
the perturbed pressure, perturbed electrostatic potential and
viscous forces. Equation (4.1.1.3) has been used to obtain the
second equality in equation (4.1.2.10).

Using results given in equations (4.1.2.9) and (4.1.2.10),
the banana—plateau, and Pfirsch—Schliiter fluxes can be shown
to be the same as those derived in section 4.1.1. The rest of
the flux driven by the inductive electric field is the same as
those in section 4.1.1. It is important to note here that the
Pfirsch—Schliiter flux I'?® is part of the flux in the definition
of the particle flux in equation (4.1.2.1), thus, it exists in all
regimes.

The non-axisymmetric particle flux I'™* can be written as

e _ _Udva‘ - (34 v2>2>
_<2/dvf >>

BV - B, (3 , v
BV - B, v?
—/dvf —

2

LA N

3 Q 27 2
a5

g((Bt~Vp)+<Bt-V- ??))

using the following identity:

4.12.11)

(B‘~Vp)+<Bl~V-;'?>:—(pHV~BI)
B,-VB
—<(Pn—m) B >

The decomposing of the heat flux using the definition in
equation (4.1.2.2) follows straightforwardly from that of the
particle flux shown here.

(4.1.2.12)

4.1.3. Helically symmetric tori. The most general symmetry
property in doubly periodic tori is helical symmetry. The
flux—force relation in such tori can be obtained from those
in sections 4.1.1 and 4.1.2. However, it can be simplified
somewhat because the poloidal magnetic field is usually not
generated by the inductive plasma current, (B - E ﬁA)) =0,
and the motion of the flux surface can be neglected.

When the torus is helically symmetric, the magnetic field
strength has the form B = B(x, «). There exists a symmetric
vector in such tori:

S=mgVx x V0 —n/gVy x V¢, (4.1.3.1)

so that S - Va = 0. The vector S is also divergence free, i.e.
V.8 = 0. For axisymmetric tokamaks, m = 1 and n = 0 and
S - V¢ = 0. When the symmetry is broken, the vector S can
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still be defined although it no longer satisfies S - Va = 0. The
corresponding flux—force relation, using the identity

B x Vy
B2

_(8'B)B _

S e

(m — nq) , (4.1.3.2)
can be derived. The relation is the same as the one derived
using vector B, in equation (4.1.1.2) except replacing B
by [S/(m — ng)]. This replacement forms the basis for the
isomorphic transformation that unifies transport fluxes in all
symmetric tori to be demonstrated in section 9.

The fundamental reason that the perturbed pressure force
also appears in the flux—force relation in magnetic coordinates
other than Hamada coordinates is that the vectors B, and S are
no longer divergence free in non-axisymmetric tori. However,
a divergence free vector S| can be constructed by adding a

term to the vector S so that [66]

S, =S+ RB, (4.1.3.3)

and R satisfies a magnetic differential equation
B-VR =-V- 8. (4.1.3.4)
With the choice of the function Ry, V - S§; = 0. The

solubility constraint for equation (4.1.3.4) is satisfied because
(B-VR|) = —(V-8) = 0. The explicit expression for
equation (4.1.3.4) is

n 9.,/g m 3,/g

NN

The integration constant for the solution to equation (4.1.3.5)
is chosen to be zero, because B - VR = 0 if and only if the
torus is helically symmetric. With this choice of the integration
constant, R = 0 in Hamada coordinates, because V - § = 0
regardless of the symmetry property in those coordinates. The
vector S| can be projected in the direction of B and in the
direction perpendicular to B to obtain

B-VR = (4.13.5)

(S,-B)B

B x Vy
B2 ’

B2

S — (m —nq) (4.1.3.6)
The particle and heat fluxes can be decomposed employing
equation (4.1.3.6) as before. The results are the same as those
obtained previously except for the fact that B, is replaced by
[S1/(m — ng)]. However, because V-S|, =0, (S| - Vp) =0,
and non-axisymmetric particle flux becomes

= € (sl V. 7‘?) 4.13.7)
e
and non-axisymmetric heat flux reduces to
na P
9__¢ (s1 V. o> (4.13.8)
T e

The pressure force term in '™ and V¢ force term in g™
are annihilated rigorously. This also indicates that the
decomposition of the flux is not unique for non-axisymmetric
tori. However, the total flux through a given magnetic flux
surface must be invariant as illustrated in [53].

4.1.4. Useful identities. The explicit expressions for the flux
surface averaged components of the CGL viscous forces in
terms of the particle distribution function are [67]

o B-VB
(B-v-7)= —<(p” — ) > 4.1.4.1)

- B-VB
(B-v-6)= —<(®” —0,) > (4.14.2)
(B,-Vp) +<Bl V. z?> =—(pV-B)

B.-VB
and
<Bl V. 6>+ (B, - V)
B.-VB
=—(OV-B)- <(@” -01) ‘B > (4.1.4.4)

These expressions are used to calculate the components of
the viscous forces from the solution of the drift kinetic
equation. Sometimes, the components of the viscous forces
are calculated directly using the solution of the drift kinetic
equation and the transport fluxes are derived using the solutions
of the force balance equations. Sometimes, the transport fluxes
are calculated directly and the corresponding viscous forces are
identified.

4.2. Momentum relaxation and ambipolarity
Summing equation (2.8) over plasma species yields

1 <

B
V=7J><B—VP—V~71,
c

NM—

o 42.1)

where the mass M is approximately ion mass, and =
> ; 7 ;j is the total viscous tensor. Taking the projection of
equation (4.2.1) in the direction of S and flux surface averaging
the resultant equation yield the momentum relaxation equation
in the direction of symmetry:

9(S-V -
NM <8t ) MGy Gy — (S VP)
—<s V.7 ) 422)
Using Ampere’s law,
1 0(E-Vy)
J - Vy)=——-—" 27 4.2.3
( x) s o7 (4.2.3)
Equation (4.2.2) can be written as
a(S-V — 1 0(E-V
8V mong LB VO g gp
ot c 4 at
PR 1
—(S-V.mr)=—- R 424
< n) c Z/‘ it ( )

The left-hand side of equation (4.2.4) represents the plasma
momentum and the momentum of the electromagnetic field
[6,60] and the right-hand side of equation (4.2.4) represents
the momentum dissipation when symmetry is slightly broken.

If the torus is helically symmetric, the right-hand side
of equation (4.2.4) vanishes for CGL viscous tensor. In
that case, only the higher order solution in the gyro-radius
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ordering for the drift kinetic equation can give rise to a non-
vanishing component of the stress tensor in the direction of
the symmetry S [68-70]. Settingm = landn = 0in §
in equation (4.2.4) yields the toroidal momentum relaxation
equation for tokamaks with slightly broken toroidal symmetry:

Ny BV LBV o
ot cdn o
<Bl ) =—72 e, T (4.2.5)

As emphasized previously, the pressure force term vanishes in
Hamada coordinates regardless of the symmetry property of
the tori. In any other magnetic flux coordinates, it does not
vanish when the symmetry is broken unless the momentum
equation is projected in the direction of S; instead of S. In
that case, in the direction of S,
0(S1-V) m—nqg 1 0(E-Vy)
T .

1%

Similarly, the equation for the evolution of the flow component
that is perpendicular to the direction of the symmetry

s [13,60,71]

(B-8)*\ 0K
NM(B)[1- —"L_|—
m—nqg 1 (B-S)d(E-Vy)

4m <|S|2) dr

NM

—<Sl V. §>

c

iT7 (4.2.6)

c

( )+ |S‘S)>(<s v +(s v 7))
o ?Sls;nzj e, 4.2.7)

where K(x) =V -Va/B-Va = mV? —aV?%)/(m — nq)
if symmetry is only slightly broken. For tokamaks, K(x) =
VP When the torus is either helically symmetric or
toroidally symmetric, ((S - VP) + (S - V- 7?)) = 0. When the
symmetry is slightly broken, both the pressure and the viscous
forces contribute to the evolution of the flow component K.
However, it is most likely that (B - V- 7?) dominates the
dissipative processes in the evolution of K when the symmetry
is only slightly broken. It should be noted that even though
it is F?p that appears in equation (4.2.7), the same equation
is still valid in the Pfirsch—Schluter regime. In that regime, it
is the (B - V- T ) not the Pfirsch—Schliiter particle flux in the
Pfirsch—Schliiter regime that damps the flow.

It is important to note that in the evolution equations for
flows in the direction of the symmetry and in the direction
perpendicular to the symmetry, the dissipation mechanisms
are directly proportional to the components of the viscous
stress and those components are directly proportional to the
particle fluxes according to the flux—force relation, as shown
inequations (4.2.4)—(4.2.7). In the direction of the symmetry, it
is the non-axisymmetric particle flux '™ when the symmetry
is slightly broken, and in the direction perpendicular to the
symmetry, it is the banana—plateau flux I'°P. When these flows
are relaxed, plasmas reach the ambipolar state [6, 7], i.e.

ZjEjF];a =0,

(4.2.8)

and

(4.2.9)

b
> 6t ;P =
These are two linearly independent equations that are required
to determine the first-order flow velocity V' completely, as
discussed in section 3.2. It is important to note that once
equations (4.2.8) and (4.2.9) are satisfied, the total particle

flux is ambipolar:
e;T”
Z_i I

However, the reverse is not true. Because equation (4.2.10) is
only one equation that cannot determine the two unknowns in
the flow velocity V.

Even though, the toroidal systems with slightly broken
symmetry have been employed in the illustrations on the
momentum relaxation and ambipolarity, the results and
conclusions are also valid for non-axisymmetric tori that
cannot be viewed as a perturbation from symmetric tori, as
shown in [61].

The momentum relaxation and ambipolarity have been
discussed in terms of the neoclassical plasma viscous forces,
here, the concept is, however, also applicable when turbulent
plasma viscous forces become important. It needs only
to replace the neoclassical viscous stress tensor with the
turbulence induced viscous stress tensor.

(4.2.10)

4.2.1. Poloidal flow damping in tokamaks and implications
on anomalous transport. ~As an example, the poloidal flow
damping in the banana regime in tokamaks is illustrated
here. The magnitude of the parallel viscous force is usually
much larger than that of the viscous force in the direction of
symmetry, S. Thus, the flow component K relaxes much
faster than (S - V) or the toroidal flow for tokamaks. For
axisymmetric tokamaks, the evolution equation for K () =
V?is [60,71], from equation (4.2.7),

NM (1+24%) (B?)

where the term of the order of V?/c? is neglected. Plasma
inertia is enhanced by a factor of (1 + 2¢?) due to the magnetic
geometry. Because usually the parallel component of the
viscous force for ions is much larger than that for electrons
by a factor of «/M;/M., only (B - V- ;) is needed in
equation (4.2.1.1). To obtain accurate damping rate for V?,

0K

—<B~V~ %’)
ot

42.1.1)

time dependent (B - V- 7?1) is required in equation (4.2.1.1)
and is approximately [72]

<B-V-71> NM (B )[u,lf(11v9—128§£>

av?e
+1 .6353/2—]. (4.2.1.2)
ot
Substituting equation (4.2.1.2) into equation (4.2.1.1) yields a
damping rate y, for V7 to be

Yo ~ 0.675v;/¢. (4.2.1.3)

The poloidal flow damping rate is much faster than the toroidal
flow damping rate in tokamaks, which is of the order of
vii(Ar/L,,)z. The y, is first obtained in [72] and later
confirmed by Hinton and Rosenbluth [73]. For the time
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scale longer than yp‘l, the poloidal flow is damped and

> i€ F?p = 0. This is the so-called intrinsically ambipolar
state in the neoclassical transport theory for axisymmetric
tokamaks because now the banana—plateau flux is driven by
the parallel component of the friction force [74,75]. However,
the concept of intrinsic ambipolarity is not really needed
to understand neoclassical theory for tokamaks as long as
poloidal flow damping is consistently determined from the
momentum equation. The toroidal flow is still evolving on
a much slower diffusion time scale. When the toroidal flow is
relaxed for tokamaks with toroidal symmetry slightly broken,
plasmas become ambipolar and Z e; F““ = 0. The relaxation
of the components of the plasma ﬂow veloc1ty described for
tokamaks is applicable for any symmetric tori by replacing the
poloidal flow with the flow component perpendicular to the
symmetric direction and toroidal flow with the component in
the symmetric direction.

After poloidal flow is damped, a combination of the Vj
and the radial electric field @’ is determined, as can be seen
from equation (3.2.12). Because the time scale for the toroidal
momentum relaxation in axisymmetric tokamaks is of the
order of the confinement time, V|, which is approximately
the toroidal flow for large aspect ratio tokamaks, evolves at
the confinement time scale and has a value approximate to
its initial value during the poloidal flow damping process
that lasts for a time span of the order of (v;/¢)~! which is
much shorter than the confinement time. Thus, throughout
the slow evolution process of the toroidal flow, the radial
electric field is determined after the time of the order of
(vii/e)~!, and evolves slowly at the confinement time scale.
The same physics processes occur in all quasi-symmetric
tori except that the poloidal flow V? is replaced by mV? —
nV¢ in equation (3.2.11). The neoclassical transport theory
for axisymmetric tokamaks or for quasi-symmetric tori is
much easier to comprehend if the concept of the ‘intrinsic’
ambipolarity is abandoned and replaced with the concept of
the poloidal or helical flow damping instead. Indeed, before
the poloidal flow is damped, the transport process is not
intrinsically ambipolar in tokamaks.

The Pfirsch-Schliiter particle flux is intrinsically
ambipolar because it is driven by the friction force. The time
scale for the flux to become intrinsically ambipolar is the time
to establish local force balance along the magnetic field line.
The classical particle flux is also intrinsically ambipolar at the
time when the MHD equilibrium is established.

Here, the simplest model has been used to demonstrate
the poloidal flow damping. However, other effects such as
orbit squeezing, sonic poloidal E x B drift speed, non-linear
plasma viscosity, orbit loss, etc can also affect the plasma
viscosity, transport fluxes and the rate of poloidal flow damping

[76,77]. In addition, because the rate of the poloidal flow
damping is important to the zonal flow damping, and thus,
anomalous transport fluxes, it has been shown that when
neoclassical transport fluxes are reduced due to effects of
orbit squeezing, sonic poloidal E x B drift speed and non-
linear plasma viscosity, the rate of the zonal flow damping
is also reduced along with the anomalous transport fluxes

[78]. Thus, improved neoclassical transport fluxes usually
imply the reduced anomalous transport fluxes [78]. This

indicates that neoclassical transport processes are important
to the understanding of the anomalous transport processes.

In cases where the magnitude of the ion plasma viscous
forces is reduced to that of the electron viscous forces, the
electron viscous forces can no longer be ignored in the
poloidal flow damping equation, i.e. equation (4.2.1.1) and
electrons also participate in the poloidal flow damping as
demonstrated in [79, 80].

5. Neoclassical methodology

Transport fluxes are calculated by solving the drift kinetic
equation given in equation (1.3.1). Usually this is
accomplished by simplifying the equation through an ordering
scheme to linearize the equation. The transport ordering,
assuming Ar/L, < 1, is adopted to solve the drift kinetic
equation shown in equation (1.3.1) [6,7]. The time scale
for the equilibrium quantities to evolve is of the order of
the diffusion time v='(Ar/L,)~%. Adopting the maximum
ordering to assume that the transit frequency is of the same
order as the collision frequency yields

vun . Vfo =

C(fo), (5.1

and

o _

-Vfi+vg-Vfo+ E(A)
yn-Vfi+uvg-Vfo+ey IE

C(f, (5.2)
where the subscripts in f denote the ordering. The time scale
for the temperature relaxation is assumed to be the same as that
for the radial transport [6, 7].

The solution to equation (5.1)
distribution, i.e.

is a Maxwellian

Jo =m0, (5.3)
and equation (5.2) becomes
3
vn- Vi +vg- VX% + ev”E(A)ﬂ =C(f), (4
X
where
an P eq>/ v: 5\ T’
M= fu [ T+<v7t2_§>?]. (5.5)

The prime denotes d/dx. The term vyn -V f} in equation (5.4)
describes the particle motion along the magnetic field line.

To solve equation (5.4) for fi, the explicit form for the
collision operator is required. Assuming that electrons and
ions have a common parallel flow V), the approximate ion—ion
collision operator is, by neglecting the ion—electron collisions
due to the common parallel flow assumption,

3ﬁ i u
Bu

i Miv HB

B o " (5.6)

Ci (fi) =vp

The approximate electron collision operator consists of the
electron—ion collision operator

el 0

a
o fel v
B ou

ou

21)” I

Cei (fe1) =vp (5.7

féMa
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and the electron—electron operator

8fel +
au

e Mevy 9

ee 21)‘

Cee (fel) =g Vp

DBBM

V
U”/.L |2 ! feM- (58)

Ve

The terms involving V| are responsible for restoring the
momentum to the test particle pitch angle scattering operator.

The facts that electrons and ions have a common parallel
flow V|, and there is no parallel heat flow for both species,
i.e. gie = qi = 0, imply that part of the solution, that is
responsible for the common flow, is

2
fij = %V\lva (5.9

)

which is also the solution for the homogeneous equations
Cj(fij) =0,

for each species for the exact collision operator when the
relaxation of temperature is neglected, where j = i for ions
and e for electrons. The distribution function in equation (5.9)
is not localized in the phase space. The pitch angle scattering
rate is comparable to the momentum restoring rate for non-
localized distribution. Thus, the momentum restoring term
is important for this distribution. In the original theory [5],
complete Cii(fi1), Cee(fe1) and Cei(fe1) are employed in the
treatment of the momentum restoring terms. It should be noted
that the solutions that have a common parallel flow do not allow
for the driving terms that are proportional to v or P;(v/v),
the Legendre polynomial.

(5.10)

5.1. Variational method

For the sake of simplicity, the inductive electric field is
neglected first, and equation (5.4) reduces to

dfm

v”n-Vf1+vd-VXW=C(f1). (511)

The perturbed distribution function is now expressed as

21)”
t
where
2 AR % 5\ T/
Vi=—1i [P 92 (y2) 0 (513
2Q; | pi T; 2) T,

and y is a parameter to be determined. The choice of y,
which is not a function of particle energy, is to make sure
that the shifted Maxwellian portion of the solution satisfies
the homogeneous equation of the collisional operator, i.e.
equation (5.10). In the banana—plateau regime, the function
H is localized in the phase space resulting from the resonance
at vy ~ 0. Note that the V| in equation (5.1.2) does not
contribute to the Pfirsch—Schliiter heat flow, thus, itis incapable
of producing the Pfirsch—Schluter heat flux in the banana—
plateau regime. In the Pfirsch—Schliiter regime, H is not
localized. The localization is important to the treatment of
the momentum restoring effects approximately in the collision
operator in the banana—plateau regime when ¢ < 1. The

equation resulting from the minimization of the rate of entropy
production in the variational procedure to determine y is the
same as the ambipolarity constraint, and for /M./M; < 1, the
constraint is that the ion particle flux approximately vanishes
[5,8]. In cases where the ion particle flux is no longer
larger than the electron particle flux, the full ambipolarity
constraint should be used. It should be noted that the form
of V) in equation (5.1.3) does not satisfy the incompressible
flow requirement, i.e. V- V = 0. For ¢ < 1, however, this is
inconsequential.
Substituting equation (5.1.2) into equation (5.1.1) yields,
for ions,

v? T/
vn - VHi + (vgi - VX) (7 - )’> —fmi = Ci (Hy),

Vg L

5.1.4)
and, for electrons

v\ln'VHe+(vde'vX)fMe
/ 2 ST/
(a3 Er a0

Pe vtze 2) T

= Ce (He) B
where Z is the ion charge number. Transport coefficients are
evaluated using the localized solution H, and only test particle
pitch angle scattering operators for both ions and electrons
are employed in the processes. The reason is that for the
localized distribution function H, the pitch angle scattering
operator dominates the collision operator for being larger than
the momentum restoring terms by a factor of e~'. For this
reason, there is no momentum restoring issue for the localized
distribution function in the ¢ < 1 limit. This concept is used
in the moment equation approach as well.

It is important to note that, as illustrated here, the
momentum restoring for the test particle pitch angle scattering
operator is treated approximately by introducing a term from
the shifted Maxwellian distribution in equation (5.1.2). Once
this is done, the momentum non-conservation property for the
test particle operator is no longer an issue for the localized
distribution H. The parameter y and thus, the parallel
flow in equation (5.1.3) is determined from the ambipolarity
constraint. It is not necessary to determine y from demanding
the momentum conservation of the test particle pitch angle
scattering operator for the localized distribution function H in
large aspect ratio tokamaks.

‘When the inductive electric field is taken into account, a
Spitzer solution f;. for the equation

T;
7T,

i

pPi

T
T

(5.1.5)

)

2

Ce

Ce (UH fse) = T

—V) 7 e (5.1.6)

is added in equation (5.1.2) for the electron distribution
function f; [6] so that

2v
fle = T”VHfMe
Ve
0 2
€Ce de (A) B (A)
il - _(BE ——<BE >
TefMe | B-V9< I (57) I

B
1 (BE™)+ He. (.1.7)
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The second term on the right-hand side of equation (5.1.7) is to
convert BE ﬁA) in the driving term in equation (5.4) to (BE ﬁA>)
and can be viewed as the perturbed density of the Maxwellian
distribution. The term has no explicit neoclassical transport
consequences. It is important to note that the Spitzer term in
equation (5.1.7) can be viewed as part of the parallel electron
flow V| and heat flow ge, if two-term Laguerre polynomial
expansion is used to approximate the Spitzer solution f;.. The
Spitzer term drives flows that differ from the common parallel
flow V| due to the inductive electric field.

In the case of ions, the (BEﬁA)) term is combined with the
ion—electron friction force Fjj;c from the ion—electron collision
operator Cj. due to the difference between Vj; and V) to form
(BE,) = (BIE{" + Fjic/(NieD)]) [6]. (BE,) is then replaced
by the electron banana—plateau flux using equation (4.1.1.5).
Thus, electron and ion fluxes are now coupled through the
flux surface averaged parallel momentum balance equation
(equation (4.1.1.3)).

5.2. Moment method

In the moment approach, the perturbed distribution function is

expressed as [7, 81]
2v 3/2
fi= TzH <V\|L(()/ -

t

2
-L

S (5.2.1)

o ﬂ) fu+h

p
for each species in large aspect ratio tokamaks, where Laguerre
polynomials are L§’? = 1,and L"'? = 5/2 — v?/v2. In the
banana and plateau regimes, 4 is localized in the phase space,
and parallel flows it generates can be neglected in the large
aspect ratio limit. As pointed out in section 5.1, the parallel
flows in equation (5.2.1) include not only flows required for
the momentum restoring in the linear collision operator, but
also those from the inductive electric field and, in general,
any possible driving terms in the linear drift kinetic equation
that is proportional to Py (v /v) fu. However, the dependences
of these parallel flows on the driving terms remain implicit.
For these driving terms, the expansion in equation (5.2.1)
implies the two-term Laguerre polynomial approximation to
the solution fp; of the equation

e
Cj (vifoj) = =viz- fuj- (522
j

It should be noted that the Pfirsch—Schliiter parallel flow
and heat flow are included in equation (5.2.1). Thus, it
can reproduce Pfirsch—Schliiter fluxes, which exist in all
regimes. Substituting equation (5.2.1) into equation (5.1.1)

and employing the following relations for incompressible flows

IcT ! (0%
V=BV — (L4220, (5.2.3)
eB \ p T
e 5 IcT T
c
= B¢ +Sp— = 524
N=2E 3P T (524
in equations (3.2.12) and (3.2.20) yield
0?2 (30 ] ) )
UHTL-Vh+L2 7!_, fM |:V9_7L(]3/2)q7:|
vi \2v 2 5 »
xn-VB=CHh, (5.2.5)

for both ions and -electrons. The driving term in
equation (5.2.5) is basically the parallel viscosity, i.e. 1y in
Brangiskii’s classification when the condition that flows are
incompressible is imposed and the perpendicular flows are
the diamagnetic and E x B flows [1]. For large aspect ratio
tokamaks, the pitch angle scattering operator,

MU” a oh
C (h) =VW—F VMU, (526)
B ou o
where vp = vl = vil for ions and vp = V§ = V¥ + 18

for electrons, is adequate for equation (5.2.5) in the banana
and plateau regimes because it is larger than the momentum
restoring terms for the localized distribution function / by
a factor e~!. An explicit demonstration for equation (5.2.5)
for large aspect ratio tokamaks can be found in [81], where
the inductive electric field and the momentum restoring terms
using the model collision operator in equation (1.3.4) are
included in the derivation. In the Pfirsch—Schliiter regime,
h is not localized, and equation (5.2.1) is valid for finite aspect
ratio tokamaks as well. In that regime, equation (5.2.5) can be
solved using the exact linear collision operator. The plateau
regime cannot be clearly defined in finite aspect ratio tokamaks.
In the banana regime, equation (5.2.5) can be solved for large
aspect ratio tokamaks using the conventional method given in
[6]. For finite aspect ratio tokamaks, a different approach is
used to obtain flux surface averaged parallel viscous forces [7].

It is important to note that the plasma gradient terms
in vg - Vxdfu/dx in equation (5.4) are cancelled by the
corresponding gradient terms in equations (5.2.3) and (5.2.4)
and are replaced by V¥ and ¢”. Also the (vj +v?) dependence
in vg - Vx is replaced by P>(v;/v) = (3vvﬁ/2v2 —1/2), the
Legendre polynomial. The reason for this replacement is that
the B dependence in front of V? and ¢ differs from that in front
of the plasma gradient terms in equations (5.2.3) and (5.2.4).
The plasma gradient terms contribute to the Pfirsch—Schliiter
fluxes. Thus, the cancellation of these terms in equation (5.2.5)
imply that the Pfirsch—Schliiter fluxes driven by the friction
forces are removed. The V? and ¢” terms do not contribute
to the Pfirsch—Schliter fluxes. In addition, because £ is
proportional to P, it does not contribute to parallel plasma
flows in the Pfirsch—Schliiter regime. The information on the
parallel flows is included in f; — % in equation (5.2.1) in large
aspect ratio limits. The Spitzer term in equation (5.1.7) has
the same v B dependence as V| and g in equations (5.2.3)
and (5.2.4). Thus, the Spitzer term does not contribute to the
Pfirsch—Schluter fluxes either.

A more general approach to the moment method is
to adopt the drift kinetic equation for large mass flow
[82], as demonstrated in [83]. In that approach, the
shifted Maxwellian, which describes the plasma mass flow
in equations (5.1.2) and (5.2.1), has already been taken
into account in the derivation of the drift kinetic equation.
The advantages of this approach are that the density,
temperature and plasma flows can have arbitrary geometric
angle dependences and that plasma flows can be compressible.
This allows the resultant drift kinetic equation to be valid for
physical situations beyond what the conventional neoclassical
theory addressed in [6,7]. An example is shock formation
when the poloidal flow speed is sonic.
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5.3. Equivalence of two methods

The treatments of the momentum restoring terms in the
variational and moment methods are equivalent in the ¢ < 1
limit. The parallel flow is introduced into the perturbed
distribution function to eliminate the momentum restoring
terms resulting from the test particle pitch angle scattering
operator for the non-localized distribution function. The
difference is that in the variational method, a parameter y is
introduced. Inthe moment method, two independent variables,
i.e. V? and g%, are employed. The relation between V¢ and ¢
is to be determined from

<B V. ﬁ}) -0, (5.3.1)
which is the same as, using the flux—force relation in
equation (4.1.1.5),

ribP =0. (5.3.2)

Equations (5.3.1) and (5.3.2) are also a statement of the
relaxation of the poloidal flow to reach the intrinsically
ambipolar state, as discussed in section 4. The ambipolarity
constraint in equation (5.3.2) is also derived from the
variational method to determine the parameter y [5,6].

The pitch angle dependence in equation (5.2.5) differs
from that in equations (5.1.4) and (5.1.5). In the moment
method, the pitch angle dependence in equation (5.2.5) is
P>(v/v). In the variational method, the quantity vq-V x has a
pitch angle dependence that is (vf + v*). This difference in the
pitch angle dependence is not important for large aspect ratio
tokamaks. The reason is that in the banana—plateau regime it
is either the particles that are trapped or are barely circulating
or those that have v ~ 0 that dominate the processes. For
these particles either vi ~ gv* < v* in the banana regime
or vﬁ ~ (Avp/v)*v? < v, with Ayy/v, the width of the
resonance layer in the plateau regime, the difference in the
pitch angle dependence is inconsequential. However, this
difference becomes important when the resonance is not at
vy ~ 0 due to sonic poloidal E x B drift for the nonlinear
plasma viscosity [79, 84].

6. Transport processes in axisymmetric tokamaks

Neoclassical transport theory for axisymmetric tokamaks has
beenreviewed in [6, 7], where the methods of solutions and the
physics involved are illustrated in detail. Transport coefficients
have since been calculated using numerical codes [85-87],
which indicate that analytic coefficients in [3, 6, 7] have an
accuracy of 20%. Some of these numerical results have been
incorporated in widely used fitting formulas [86,88]. The
moment approach is also implemented in the NCLASS code
to consistently model neoclassical plasma flows and transport
for axisymmetric tokamaks with impurities [89]. Here, a few
subjects that have been developed after those reviews were
published that are relevant to advanced tokamak operations
are discussed.

6.1. Orbit trajectory in axisymmetric tokamaks

Particle trajectories are intimately related to the method of
the solution to the drift kinetic equation when the collision

20

frequency is infrequent enough so that particles can complete
their collisionless trajectories. In axisymmetric tokamaks,
particle trajectories are governed by the conservations of
the toroidal canonical angular momentum p,, and particle
energy Mv?/2 together with the invariant magnetic moment .
Because p; is conserved, at any two positions on the particle
trajectory,

u_ Yio
Q Q'

where the gyro-phase dependent terms have been averaged out
and the subscript 0 indicates that the quantity is evaluated at the
reference position (g, 6p). The equation that determines the
orbit trajectories is, then, assuming the poloidal E x B Mach
number M, = cE,/(Bpv;) < 1 and neglecting the effects of
orbit squeezing,

pe=x—1 -1 (6.1.1)

IU()
= x0)* +222 (x = x0)

Q
+2 (

2
IU”()
—) (g9 cos By — e cosB)

Q
2
w2 (LY HBo o cosd 0) =0+ 0(e)
— | —— (ggcosfy — ecosh) = g),
N o o
6.1.2)
where E, is the radial electric field. Both ¢ < 1 and

equation (1.1.2) have been used in deriving equation (6.1.2).
The terms that involve Uﬁo and uBy/M in equation (6.1.2) are
the curvature and gradient B drifts, respectively.

6.1.1. Banana orbits. If the width of the orbit is much
narrower than r, & can be treated as a constant over the entire
orbit trajectory. Because all particles pass through 6 = 0, it
is convenient to choose 6y = 0. In this case, the solution to
equation (6.1.2) is

I‘UH()

I
o * Q—O\/ze (2uﬁ0 + ZMBO/M)

o\ /2
X <k§ — sin® 5) s

where k? = vﬁo/[4s(vﬁ0 + uBo/M)]. Fork? > 1, particles are
circulating. Fork? < 1, particles are trapped in the (1 —¢ cos 6)
well. The typical width (Ay), for trapped particles, i.e.
bananas, scales as [6]

X — Xo

(6.1.1.1)

Tv,

(AX)p ~ V2 —. 6.1.1.2)
Qo

6.1.2. Potato orbits. In the vicinity of the magnetic axis,
the width of the orbits is comparable to the local minor
radius r, ¢ cannot be treated as a constant [90-96] over orbit
trajectories and equation (6.1.2) in general becomes a quartic
algebraic equation. In that case, there does not seem to have a
simple analytic solution to equation (6.1.2), and the numerical
solution yields complicated particle trajectories in the region
near the magnetic axis [92,95]. However, for trajectories
passing through the magnetic axis, equation (6.1.2) reduces to
a cubic algebraic equation that has relatively compact analytic
solutions [94].

The crucial x dependence enters through ¢ = C, /X,
where C, = 4/2q /(81 R), and § is the elongation parameter of
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the magnetic surface. Choosing xo = 0 and neglectingdq /dy,
the orbit equation becomes [94]

IUHO _
Q

where x = ,/x. Equation (6.1.2.1) describes particle
trajectories that go through the magnetic axis. The trajectories
can be categorized according to the sign and magnitude of the
parameter opkp, where o, = v)o/|v)o] is the sign of v}, and

1’c
—2—% (vfy + uBo/M) cos 6 =0,

=3

X
2

Q0

+2 (6.1.2.1)

8 (I |vjo|/20)°

=— : (6.1.2.2)
P27 (12C, /) (v]y + 11Bo)?

When —oco < opkp, <

—1, the poloidal particle speed
defined as
v

wg = V] _UH%(IQ>

does not vanish anywhere on the trajectories. These particles
are circulating. There are two classes of circulating particles.
One that encircles the magnetic axis is described by

6.1.2.3)

cos <é> , cosf > 0,
P Y 1/6 3
X = 2% (—opkp) B (6.1.2.4)
sin{f—+=), cosf <O,
6 3
where ¥ = [(Isz/Qé)(vﬁO + uBy)1'3. Angle B is

related to the poloidal angle 6 through the relation cos
cos@/,/—opk, if cosf > 0, and the relation cosf
[cos@|/\/—0opkp if cos® < 0. The other that intersects the
magnetic axis but does not encircle it is described by

% = 28(—=0pky) /6 sin (% + g) ,cosf <0.  (6.1.2.5)

This class of circulating particles exist in the second and third
quadrants where cos < 0.

Particles with 0 < opk, < oo are also circulating. Their
trajectories follow the equation

B

)

¥ = 2% (0pk,)"/® sinh ( (6.1.2.6)

where sinh 8 = cos6/,/o,k;, for cos@ > 0. These particles
also intersect and do not encircle the magnetic axis. They only
exist in the first and fourth quadrants.

Trapped particles have a poloidal speed that vanishes at
turning points on their trajectories, and are characterized by
—1 < opk, < 0. Their trajectories have a complicated
functional form. On the outer half of the trajectory,

cosh (g) , (1)

¥ = 2%(—0pky)'/® 1 cos (g) (i) 6.1.2.7)
sin (% + g) (i)
and on the inner half of the trajectory,
- ~ 1/6 . Y ﬂ
X = 2% (—opkp) /° sin 5 3) (iii). (6.1.2.8)
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Figure 9. Particle orbits in the vicinity of the magnetic axis and a
standard banana orbit are shown. Class (a), (b) and (d) are
circulating orbits with —oo < opk, < —1and 0 < ok, < 0.
Class (c) is trapped particles, i.e. potato orbits with —1 < ok, < 0.
Class (e) is a standard banana orbit.

These two halves are separated by the turning points £6;
+(r — 0.), where wy(£6,) = 0. The angle 6, satisfies
opkp + cos?f. = 0. The region (i) in equation (6.1.2.7) is
limited to —6, < 6 < 6, and cos6 > 0. The region (ii)
is marked by 6, < 6 < mw/2, or —/2 < 6 < —6, and
cos® > 0. The region (iii) in equations (6.1.2.7) and (6.1.2.8)
is characterized either by (x — 6.) > 6 > m/2 or by
—(r —6.) <0 < —m/2,and cosd < 0. Trapped particles
have the shape of potatoes and are thus named [93].

Typical trapped particles and circulating particles in the
vicinity of the magnetic axis are shown in figure 9.

The typical width for potato orbits is [90-94]

)2/3

The ratio of the potato orbit width of ions to that of electrons is
(M;/ M_.)?/? when measured in poloidal flux . The fraction
of trapped potato orbits scales as [90-94]

1/3
()

which differs from the fraction of banana orbits. It should be
noted that f}, also depends on the mass and temperature of the
species. From these estimates, the ion heat conductivity scales
as [94], using random walk argument,

7/3
Xi ™~ v ( ) cy’,

in the tokamak magnetic coordinates. The potato transport
coefficients are valid over a region wider than the potato width.

12C, v}
2

(Ax)p ~ ( (6.1.2.9)

1C§vt
Q

(6.1.2.10)

T,

6.1.2.11
% ( )

6.2. Parallel plasma viscosity in axisymmetric tokamaks away
from the magnetic axis

In axisymmetric tokamaks, parallel components of the viscous
forces (including both viscous and heat viscous forces) play
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the key role in the neoclassical transport theory in the banana—
plateau regime. Once the closure relations for the parallel
viscous forces are known, all the transport coefficients in the
banana and plateau regimes are known. In these regimes, the
drift kinetic equation (equation (5.2.5)) has a singularity at
v; = 0 in the region away from the magnetic axis. There are
two ways to resolve this singularity. One is by collisions and
this leads to the plateau regime. The other is by the non-linear
particle trajectories, which results in the banana regime.

6.2.1. Banana regime This regime is defined by v, <
1. The singularity at vy = O in the drift kinetic equation
(equation (5.2.5)) is resolved by non-linear particle trajectories.
Using v, < 1 as the auxiliary expansion parameter,
equation (5.2.5) can be further expanded and the leading order
equation is

20% (3v] 1 2 3m4°
-Vho+ — | — — = ve — B8P
o 0 v2 <2v2 2 Fu |: 51 p
xn-VB =0, (6.2.1.1)
and the next order equation is
oh
ymn- WaT)l = C(ho). (6.2.1.2)

where the subscript in £ indicates the order in the auxiliary
expansion. Note that the non-linear particle dynamics along
the magnetic field line described by v is kept because the
independent variables are E and p, but the finite width of
particle orbits is not because the radial drift motion is neglected
in equations (5.2.5) and (6.2.1.1).

Integrating equation (6.2.1.1) yields

2 2 0
ST PR
Uh 5 p

+ 8 (X, E, 1),
(6.2.1.3)

where g,(x, E, (t) is an integration constant to be determined
from the constraint condition of equation (6.2.1.2) and
boundary conditions. The constraint condition is to guarantee
that 4, is periodic in 6. The boundary condition for circulating
particles is

h(@ =0) = h(0 = 27), (6.2.1.4)

because the system is periodic in 6. For trapped particles, the
reflection boundary condition is satisfied, i.e.
hi(6) = h_(6), (6.2.1.5)

and

ha(—0) = h_(—8), (6.2.1.6)

where the subscripts & indicate the sign of v defined
as 0 = vy/|vyl, and £6; are turning points that satisfy
v (x, &6, E, u) = 0. Integrating equation (6.2.1.2) and using
the boundary conditions in equations (6.2.1.4)—(6.2.1.6) yield
the constraint condition

(C(ho)); =0, (6.2.1.7)
where the angular brackets denote the annihilator defined
as () fozn %B\/g(-) for circulating particles, () =
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E
Equation (6.2.1.7) is an equation for the integration constant g;.
The function g, must be an odd function of ¢ by examining
equation (6.2.1.7). Thus, g, = 0 for trapped particles after
imposing the reflection boundary condition. Substituting /¢
in equation (6.2.1.3) into equation (6.2.1.7) yields [7]

B[ [ 2,

= —0——
* v Bu i ([uyl/v)
for circulating particles, where A = w By /(M v? /2),and By is
the global maximum value of B on the magnetic surface. For
axisymmetric tokamaks, By is also the maximum value of B
on a given magnetic field line. The function 4 in large aspect
ratio tokamaks is determined.

Using the definition for the parallel viscous force and
equation (5.2.5) yield a quadratic form for the parallel viscous

B./g(-) for trapped particles, and ,/g = 1/B - V6.

2 [
_cpema
p

501
(6.2.1.8)

force
B-V- 7 2
| TR ST

y hC(h) }
Ay =)

Flux surface averaged parallel viscous forces are, after
substituting A into equation (6.2.1.9),

(6.2.1.9)

ng) ) (11 1) ().

(6.2.1.10)

where the viscous coefficients are ; = (8/3/) fooo dx x
xte (x2 —5/2)/7! fivp for j = 1 — 3, which are the large
aspect ratio limit of the viscous coefficients for finite aspect
ratio tokamaks [7]:
o0
2 j—1
wi = (8/3v7) f dexte™ (x2 = 5/2)" 7 (f/ fo) vo.
0
(6.2.1.11)

The coefficients in equation (6.2.1.11) are obtained by solving
the conventional drift kinetic equation i.e. equation (5.2) and
converting the driving term from the plasma gradients to
plasma flows. The fraction of trapped particles is defined as
ft = 1 — f., and the fraction of circulating particles f. is

defined as [7]
1
dA .
/0 {Jon/vl)

A good approximate expression for f., which can be evaluated
efficiently by the numerical method presented in [97], is
fo = 1 —1.46/¢ + 0.46¢c. Thus, when ¢ —1, fo - 0
as expected. It is obvious that viscous forces are Onsager
symmetric. As noted previously that the surface averaged
parallel viscous forces in equation (6.2.1.10) are valid even
when there are external momentum and heat flux inputs as long
as those source terms have a pitch angle dependence scales
as v fu. The inductive electric field n - E™ in the parallel
momentum equation certainly belongs to that class of external

_3(8)
4 B}

A

f (6.2.1.12)
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sources. Thus, the viscous forces derived here are applicable to
calculate transport consequences resulting from the inductive
electric field.

Even though / is no longer localized in the velocity space,
ho in equation (6.2.1.3) is a valid solution at the unity aspect
ratio limit where g, = 0. Indeed, it is straightforward to show
that by taking the vj and v L?/ ? moments of equation (5.2.1)
yields the proper parallel flows at the & 1 limit [98].
Furthermore, it can be shown that finite aspect ratio viscous
coefficients in equation (6.2.1.11) can also be derived from
equation (6.2.1.3) when the method used to determine g; in
terms of poloidal flows developed in [7] is employed by
imposing that v; and v”L(13/ * moments of ko vanish. Thus,
it is possible that the equation for 4 is also approximately valid
when ¢ is finite in the banana regime.

In this review, viscous forces in axisymmetric tokamaks
are expressed in the form in equation (6.2.1.10) except for the
fact that viscous coefficients are different in various asymptotic
limits when different physics are involved.

There are four unknowns in the parallel viscous forces in
equation (6.2.1.10), i.e. electron and ion parallel flow speed V}
and heat flow g. The four equations for these unknowns are
the flux surface averaged electron and ion parallel momentum
and heat flux balance equations

<B V. E’) —(B-F), (6.2.1.13)

<B V. 6> —(B-PB). (6.2.1.14)
The inductive electric field (B - E™) can also be added
to the momentum balance equation in equation (6.2.1.13).
However, because coupled equations are linear, unless the
electric resistivity needs to be calculated, it is not necessary
to include such a term. The explicit expressions for the
parallel components of the friction forces are [7] n - Fy;
Fii=—n-Fie=—Fie=—I{,(Vji — Vi) — (2/5)[},q)e/ Pes
n-Fe = Fe = =I5V — Vi) = (2/5)39)e/pe and
n- F2i = in (2/5)l§2q”i/pi, where l?l = NeMeVej, llez =
1.55,, 1S, = (13/4+~/2/2)1$, and I, = +/2NiM;v;;. Note
that " ine Fy; = 0, which is a statement of the momentum
conservation of the Coulomb collision operator.

In the unity aspect ratio limit where ¢ — 1, the fraction of
circulating particles f. — 0, and ;; — o0, i.e. the parallel
viscous forces approach infinity. In this limit, the leading order
solutions, using the small parameter that is the ratio of the
friction forces to the viscous forces, to equations (6.2.1.13)
and (6.2.1.14) are

vl =0, (6.2.1.15)

and

g’ =0, (6.2.1.16)

for each species. This implies that the poloidal flow is
forbidden when all particles are trapped. However, the parallel
flow remains finite and is [7, 98]

<¢’+L
Ne

for each species. Thus, even when all particles are trapped, the
fluid flow along the magnetic field line is finite. The parallel

Ic
- B?

Y
B

(6.2.1.17)

23

heat flow is [7, 98]
5 IcTT

a _ »
2" eB2 T

B

, (6.2.1.18)

for each species. The parallel flows in equations (6.2.1.17)
and (6.2.1.18) include Pfirsch—Schliter flows as well.
Summing the result in equation (6.2.1.17) over plasma species
yields a net plasma current along the magnetic field line [7, 98]:

ﬂ:—EP/ (6.2.1.19)

= A 2.1,
which is diamagnetic in nature. Thus, the plasma current
along the magnetic field line remains finite even when all
particles are trapped. The current in equation (6.2.1.19) can
be decomposed into the bootstrap current Jy;, and the Pfirsch—
Schliiter current Jyps:

Jib IcP’
L. 6.2.1.20
5 5] ( )
and
Tos _ _pepr( L LY (6.2.1.21)
B> (B?)

The ion heat flux consists of both the heat viscous driven
flux in equation (4.1.1.13) and the heat friction driven flux
in equation (4.1.1.14). The ion heat viscous force, in the next
order in the ratio of the friction forces to the viscous forces, is

< - IcT!
<B'V'®i>=l§2 -,

€i

(6.2.1.22)

by substituting equation (6.2.1.18) into (6.2.1.14). Thus,
the ion heat viscous driven flux is, using the expression in
equation (4.1.1.13),

1’31 1

d (B

i i

—l3 (6.2.1.23)
and the ion heat friction driven flux is, by substituting
equation (6.2.1.18) into equation (4.1.1.14),

qiips _ _li IZCZTi/ < >_
T: 22 612

Thus, the total ion heat flux ¢;/7;, which is the sum of both
viscous and friction forces driven flux, is

)

In the unity aspect ratio limit, the Pfirsch—Schliter heat flux in
equation (6.2.1.24) not only exists but also is important in the
banana regime [98].

For finite values of the viscous coefficients s, relatively
simple expressions for the ion poloidal flow and ion heat
flux can be obtained for arbitrary aspect ratio tokamaks by

exploring «/M;/M. > 1. From

> (B-v-7)=0

j=ie

1
B?

1

(82)

) . (6.2.1.24)

g I2C2 Ti/

e

1

o (6.2.1.25)

i
- _122 2

(6.2.1.26)
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the ion poloidal flow is found to be

2 i q!

vl = )
S i pi

0 = (6.2.1.27)
The poloidal ion heat flow can be calculated, using
equation (3.2.20), ion heat flux balance equations (6.2.1.14)
and (6.2.1.27), to obtain

2q) _ —paiV + [Ly/(NiMp)] [1cT] /(e (B%))]
5 pi wu3i + 1y, / (N; M) '
(6.2.1.28)
and
yo — _ Mailn/(NiMy) T} (6.2.1.29)

' il + piildy /(Ni M) e (B2)

where || = piipsi — pc%i. In the limit of ¢ < 1, Vie reduces
to the familiar expression

0tz Iy
' i e (Bz)

) (6.2.1.30)

where /i = —1.17 [6,7]. The banana—plateau heat flux
qibp driven by (B - V- 61) is

—NM (B?) < )

The heat flux can be expressed as the combination of two

e

where the part that depends on friction force, valid when

[

and the heat viscous part, appropriate when ¢ — 0, is

2
|Mi|Ti/.
Mii

The proper way to combine these two limits is the well-known
inverse law as shown in equation (6.2.1.32). The total heat flux

bp

i

Ic

2GmmmM%KMMﬂT
€ (BZ)

il /i + Ly /(NiMy)
(6.2.1.31)
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T (6.2.1.32)
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= —N;M; (B?) (

f

-1
Ic

e; <B2>

b
4"
T:

(6.2.1.34)

= —N;M; (B?) (

m

where l‘l"f = If; + NeM. e, lf'z’ = I{, — NeM. s, l;‘z’ =
15, + Ne M. j13¢, and neoclassical plasma conductivity is [6, 7]

eb
122

2
Oetf = (Neee)
lebleb _
11722

. 6.2.1.36
e
In the case of ¢ — 1, all particles are trapped, and
oeit — 0. It is straightforward to show that when ¢ — 1,
equation (6.2.1.35) reproduces equation (6.2.1.20).

It should be noted that the transport fluxes in the banana
regime obtained using the eight-moment approach are not as
accurate as those in [100] because only P; dependence in
the momentum restoring terms is kept. Indeed, by including
the P; moment in the collision operator, the accuracy of
the viscous coefficients in the banana regime can be greatly
improved, as demonstrated in [101,102]. Here, P; is the
Legendre polynomial. These modified coefficients can be used
to improve the accuracy of NCLASS.

6.2.2. Plateau regime. When collisions are frequent enough
so that v, > 1, but infrequent enough so that v/w, < 1,
plasmas are in the plateau regime. Here, w, = v;/Rgq is the
transit frequency. The condition v, > 1 is used to neglect
the mirror force that is responsible for the non-linear motion
of the trapped particles. The condition v/w; < 1 is used to
obtain the localized solution in the vicinity of the resonance.
It is obvious that only when ¢ < 1, the asymptotic limit of
the plateau regime can exist. In this regime, the singularity at
v = 0 is removed by collisions.

By changing independent variables from (x, 0, E, ) to
(x, 0, vy, v) inthe linear drift kinetic equation, equation (5.2.5)
becomes

1 oh
v”n~Vh—E(vz—vﬁ)n~V(lnB)—

31)”

2% (3vf 1 2 694’
FRube ve—ZLPPL In.vB
v2 <2v2 2 fM[ 570 p "
3 vi\ o
S — (6.2.2.3)
2 9 (vy/v) v2 ] 9 (v /v)

The second term on the left-hand side of equation (6.2.2.3) is
the mirror force term that is responsible for pulling trapped
particles back from the turning points and can be neglected
when v, > 1. It is trivial to realize that it is not because
particles are highly circulating but because v is an independent
variable that v is not a function of the poloidal angle 6 [103].
By contrast, in the banana regime, v is not an independent
variable but rather a function of E, u, x and 6. Thus, in the
plateau regime, the equation to be solved is [81]

2 2 0
is the sum of ¢;” and ¢"". wn - Vh+ ZLZ <3v| - 1) M |:V9 - gL§3/z)i] n-VB
The bootstrap current can be obtained by solving v\ 2 5 p
equations (6.2.1.13) and (6.2.1.14) for electrons for plasma D P Uﬁ an
current. The result is [7] =S m (l — 2) _— (6.2.2.4)
o jeb 3 (v1/v) v2 ] 8 (vy/v)
(JpB) = —0efe e,u;e Ic|: (1 + L—E&) Equation (6.2.2.4) can be solved either using a Krook model
Nee; 137 e to approximate the pitch angle scattering operator on the right-
, waill, /NiM; 1 , hand side of equation (6.2.2.4) or approximating the pitch angle
x (P + il + pilly ) Ni M ENeTi> scattering operator as
2 2
+N.T! (“ze ﬁw) ] (6.2.1.35) w_9 (1 - v'z) 0w Ok 5 (62.2.5)
e IS5 e 2 9 (vy/v) v ) a(vi/v) 2 8 (v /v)
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because the localized distribution function is centred around
(vy/v) = 0. The width of the singular layer can be estimated
by balancing the pitch angle scattering operator with the
collisional broadening of the singularity at vy = 0, i.e. the
first term on the left-hand side of equation (6.2.2.4). Indeed,
the proper interpretation for that term is that it represents the
collisional broadening of the resonance at vj = 0. Expanding
vy in terms of Taylor series at v = 0 yields

) vy
v =0

where the O on the right-hand side of equation (6.2.2.6)
indicates the singularity or resonance, and the second term
denotes the collisional broadening. Thus, the collisional
broadening yields a singular layer width A(v;/v)
(v/w)'? < 1. Using the Krook model for the collision
operator, i.e. C(h) = —vh, and expanding / as

dU”

v = 0+
dv”

(6.2.2.6)

~

h = hgsinf + h.cos6 (6.2.2.7)
yield the resonant part of the solution
h v vt (B-V0)ef;
= . £ M
’ (v”n . V9)2 + 12 vt2
2 [4
x [W - J?mi} , (6.2.2.8)
5 p
and the non-resonant part of the solution
vmn - Y] 1)2 B.Vo
(= — = (B Vo) ey
(vym - Vo) +v2 Y
2 [4
x [v9 - iﬁ””i} . (6.2.2.9)
5 p

Equation (1.1.2) has been employed in obtaining equa-
tions (6.2.2.8) and (6.2.2.9). The plateau asymptotic limit
is reached when v/w; < 1, and in that limit the resonance
function

v

—_— > 78 (yyn- Vo),
(v”n-V9)2+v2 (v )

(6.2.2.10)

where 8(s) is a delta function in the resonant part of the
solution. The resonance occurs at the singular point v = 0.
Thus, fundamentally, the solution in the plateau regime results
from the resonance at which the kinetic part of the drift kinetic
equation vanishes. Indeed, this is a generic behaviour in
the kinetic theory. One can view the resonance as Landau
resonance [104] for a zero frequency mode. The non-resonant
solution does not contribute to the flux surface averaged
parallel viscous forces because it is out of phase with n - VB
in the expressions of the parallel viscous forces.

The parallel viscous forces are obtained by substituting
hs in equation (6.2.2.8) into the expressions for the parallel
viscous forces in equations (4.1.4.1) and (4.1.4.2). The viscous
coefficient j; is then [81]

o0 5 j—1
W= ?a)[szZ f dxx® (xz - 5) e, (62.2.11)
0

for j = 1 — 3. The energy integrals in equation (6.2.1.11)
can be evaluated and they are, respectively, C, ra,
C,=T@4)—-(5/2)I'B)and C3 =T'(5)-5I'(4)+(25/4)I"(3).
Here, I'(s) is the gamma function.

25

6.2.3. Pfirsch—Schliiter regime When v/w, > 1, plasmas are
in the Pfirsch—Schliiter regime. In this regime because the
collisional effects dominate, the linear drift kinetic equation in
equation (5.2.5) reduces to

3131 2 6
( ! )an.VB(VH—SL?/zi)):C(h).

202 2
(6.2.3.1)

It can be solved by expanding the distribution function 4 in
terms of Legendre polynomial P, and Laguerre polynomials
of order (5/2), i.e. LES/Z) [7]. However, a simple Krook
model C(h) = —vrh with a judiciously chosen collision
frequency vy = 3vp + vg for the collision operator yields
viscous coefficients that are accurate to about 20% [7]. Here,
Vg is the energy exchange frequency and is defined as v4® =
21)‘?" — 21)]‘3” — vﬁ”’, where v“‘”’ = 2vabG(v/vtb)/(v/vm)3 [30].
It is also easier to join results from various asymptotic limits
using a Krook model in the Pfirsch—Schliiter [7, 105]. Thus,

e24”

1

2
(3”| 1)an‘VB[V9_2 ]
P

- — = -L
2v2 2 5
(6.2.3.2)
when a Krook model for the collision operator is employed.
The viscous coefficients y ;s for j = 1 — 3 in the Pfirsch—
Schliter regime are, thus,

U2

v

2
v
_ —1
h= —UT 27
Vg

8 v2{(n-VB)?) foo o z< ) 5)“ 1
= —— d X —_— = —_—
M=5/m (B?) AR vr
(6.2.3.3)

The parallel viscosity obtained here is mainly employed to
calculate the poloidal flow damping in the Pfirsch—Schliiter
regime and yields the well-known relation between the
parallel flow and the radial electric field. It is known that
because the viscous forces decrease with increasing collision
frequency, bootstrap current in the Pfirsch—Schluter regime is
small because it scales as (v/w;)~2 and is usually neglected.
However, because the factor ((n - V.B)?) approaches infinity
which compensates the 1/v dependence in the viscous forces,
the viscous forces also drive a bootstrap current and contribute
to the ion thermal conductivity when the aspect ratio A of
tokamaks approaches unity. For a circular equilibrium with
B =[Bo/(1+ecost)l(e/q)0 + ],

B()é‘

o]

2

) , (6.2.3.4)
rq
where 6 and { are unit vectors in the poloidal and toroidal
directions respectively [105]. Thus, when e = 1/A — 1,
((n-VB)?) — oo. The factor ((n-VB)?) has been
calculated numerically using an equilibrium code, and is shown
in figure10 [106].

Thus, both (B - V- 7?) and (B - V- g)) diverge in unity
aspect ratio tokamaks for any finite value of collision
frequency. The consequences for the bootstrap current and
plasma flows are that these quantities are exactly the same as
those in the banana regime when ¢ — 1. Furthermore, the heat
viscous force driven ion heat flux also becomes comparable to
the friction force driven ion heat flux. The total ion heat flux in
the Pfirsch—Schluter regime is the same as that in the banana
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Figure 10. The geometric factor {(n - VB)?) as a function of the
aspect ratio A for a fixed g profile and toroidal magnetic field
strength on the axis. The circles are calculated from numerical
equilibrium and the solid line is from equation (6.2.3.4).

regime in the ¢ — 1 limit [98, 105]. This collisionless-like
behaviour in the collisional Pfirsch—Schliiter regime appears
when v < v [{(n - VB)z)/(Bz)]]/2 by balancing the friction
forces with the viscous forces in the collisional regime and
neglecting the numerical coefficients of the order of unity.

6.2.4. Approximate analytic expressions for parallel viscous
forces. To model tokamak plasmas, it is convenient to use a
formula that joins analytic expressions of the parallel viscous
forces in the asymptotic limits of the banana, plateau and
Pfirsch—Schluter regimes. This is accomplished by using the
rational approximation. The approximate expression for the
parallel viscous forces, after extending the analytic expressions
for the parallel viscous forces to multiple poloidal modes in the
| B| spectrum to allow for arbitrary magnetic surface shape,
is [105]

.~ KeKes (5, 5\
Hj= XT=3 >
3f Kg + Kps 2
(6.2.4.1)
for j = 1 — 3, where
Kg = ﬁva (6.2.4.2)
Je
2 VTIm
Kps = fvt Z F, , (6.2.4.3)
m=1
2 [((s'n 6)n - VB)
m=— inmé)n -
(B2)(B - Vo)

x ((sinm@) (B - VO)n - VB)

+{((cosmB)n - VB) {(cosmb) (B -VO)n - VB)],

(6.2.4.4)
3 vr 2 9 vr 4
VTI —= | — - = —
2 \on 2 \wn
1 3 9 /(v 2 vr 2 2vr 1 [ ©m
+{—+|=+- — tan ,
4 2 4 \w, Wiy W vr

(6.2.4.5)
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and w,, = vaxmn - VO. A similar expression for the viscosity
coefficients that connects all regimes is also constructed
in [107].

The expression in equation (6.2.4.1) has been bench-
marked [105] using the Drift Kinetic Equation Solver (DKES)
code [108]. A boundary layer analysis has been carried out
to make the slope of the perturbed distribution function con-
tinuous across the trapped-circulating boundary that leads to
the modification scales as /v to transport fluxes in the banana
regime [8]. This /v scaling has been incorporated into the
connection formulas for the transport coefficients that join all
asymptotic limits in [6]. However, as can been seen in the
figures in [105] that show the viscous coefficient versus the
collision frequency for several values of the aspect ratio, the
w; evaluated using equation (6.2.4.1) fits the DKES results
quite well without the /v scaling. Indeed, the connection
formula that joins all asymptotic limits usually gives a fairly
good description of the viscous coefficients or transport fluxes
without the need of the results obtained from the boundary
layer analysis. The p; shown in equation (6.2.4.1) has also
been implemented in the NCLASS code to model neoclassical
transport processes in axisymmetric tokamaks [89].

6.2.5. Effects of orbit squeezing and finite banana width. The
orbit trajectories discussed in section 6.1 are based on the
assumption that the width of a banana /¢ p,, is much less than
L,. However, in the edge region of H-mode, L, is comparable
to pp. In that case, the width of the banana orbits is squeezed
from the standard scaling /ep, [109]. Thus, in the edge
region of the H-mode plasmas, anomalous transport losses are
improved as a result of the turbulence suppression [16,17],
and the neoclassical ion transport losses are also reduced due
to the effects of orbit squeezing [110].

In the conventional neoclassical theory, the finite width
of the banana orbits is neglected. The bounce motion is the
zeroth order and the radial drift is the first order in gyro-
radius ordering. Thus, the bounce motion with zero banana
width is the ‘unperturbed’ orbit. The information of the
width of the banana orbits is obtained by integrating along
the unperturbed orbits. The method employed in solving
the kinetic equation for the theory for the effects of orbit
squeezing has to include the finite width in the unperturbed
orbits because in the (x, 6, E, ) space v only describes
bounce motion and contains no orbit squeezing information.
Here, E = Mv? /2+e®. Thus, the theory that describes effects
of orbit squeezing intrinsically is a finite orbit width theory in
the context of the local transport. In the limit when the orbit
squeezing is insignificant, the theory becomes a theory for the
finite banana width of large aspect ratio tokamaks.

6.2.5.1. Squeezed banana orbits. The squeezed banana orbit
trajectories can be calculated from the constants of motion
p; and total particle energy E Mv?/2 + e®, together
with invariant magnetic moment p. The energy conservation
implies

”H
2

/,LB ed

M M

e@o
M

2
)
2

B
u_‘_

, 6.2.5.1
i ( )

where the subscript 0 indicates that quantities are evaluated
at the reference point (xo, 6p). Expanding the equilibrium
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potential yields
1
D = O+ D) (x — xo0) + 5c1>g (X — x0) > +--. (6252)

The width of the orbits is obtained by solving equations (6.1.1),
(6.2.5.1) and (6.2.5.2) for (x — xo) to yield [79, 110]

I I ed Ty
— X)) = ——— S0 2 (6253
(X — x0) S (Uno+ oM ) 59 ( )

where
1/2
Wy = 050y (1 — k, sin? 7> , (6.2.5.4)
2 +Le®o (6.2.5.5)
s = |V — s 2.
@ 0T o™

o, denotes the sign of wy, the orbit squeezing factor S is defined
as [109]

I? ed!
S=1+——2, 6.2.5.6
*Em ( )
and the pitch angle parameter k; is
2
1 +Ie®,/(QM
1 _ o+ Tedp/@M)] (6.2.5.7)

ks 41s]e (uﬁo +MBO/M>

For trapped particles, k; > 1 and for circulating particles,
k; < 1. Note that k; is a constant of motion. For § > 0
particles are trapped on the weak field side of the torus, and
6o is chosen to be 0. When S < 0 particles are trapped on the
strong field side of the torus, and 6y = 7. For |S| > 1, the
transport fluxes do not depend on the sign of S. Without loss
of generality S is chosen to be positive. It can be inferred from
the expression of w; that the fraction of the trapped particles
is increased by a factor of /S to+/eS.

Using equation (6.2.5.3), equation (6.1.1) can be recast
into [79]

1 (S 1) + 6 st IU”
—pr=—— —Dojo+=——" =—.
X7 Pe= 750, 0T ™M |7 s, T @
(6.2.5.8)

Because @) is neglected, S is constant on particle trajectories,
the difference between x — p; and Iw,/(S€2) is a constant
of motion as can be seen from equation (6.2.5.8). Thus,
Tws/(S2) plays the role of Iv/Q in the conventional
theory. It should also be noted that squeezed orbits only
existin (E, u, p¢, 6) space and notin (E, u, x, 6) space from
single particle point of view. Indeed, in (E, u, x,6), the
only sinusoidal variation in @y, which can be shown to be
(vy + Ic®’/B), is associated with the equilibrium magnetic
field in vy;; and both the electrostatic potential ® in v, and the
radial electric field @’ are constant.

Examining the definition for S, itis obvious that the effects
of squeezing are significant when pp|d In E,. /dr| is of the order
of unity or larger. It is easier for ions to meet this requirement
for having larger poloidal gyro-radii. This requirement is
usually satisfied in the edge region of the H-mode plasmas
and inside the internal transport barriers. The typical width of
the trapped particles is, inferred from equation (6.2.5.3),

Tv,

~ /2 .
(AX)Sb ﬁQo\/E

(6.2.5.9)
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Thus, the width of the bananas is reduced by a factor of +/S
when § > 1[79,109,110]. The corresponding ion heat flux
is reduced by a factor of $32 [110].

6.2.5.2. Linear drift kinetic equation and its solution. Because
the width of the trapped particles is squeezed when S > 1,
the transport fluxes must be modified. The squeezed orbit is a
result of the finite width of the particle orbits. When particles
drift to a neighbouring magnetic surface, they see a different
value of the radial electric field, and thus experience a different
value of the poloidal E x B drift if the radial electric field has
a sharp radial gradient. Larger poloidal E x B drift leads to
smaller radial width of the orbits. Thus, to describe the physics
of the effects of the orbit squeezing, the radial drift motion must
be included in the linear drift kinetic equation. The linear drift
kinetic equation equation (5.4) becomes

a a
U“n-Vf1+’Ud'V94fl "‘/Ud'v)(i = C(fl)
96 ax
afm ) 9fm
—vq - VXW — evHE” ﬁ (62521)

The linear terms of the left-hand side of equation (6.2.5.2.1)
describe the particle motions. In this case, the drift motions,
especially the radial drift motion, are included to describe
orbits with finite radial width because even though | f1| < fum
but|0f1/9x| ~ |0fm/9 x| [111] Again, to treat the momentum
restoring terms, and the driving terms that are proportional to
Pi(v/v) fm, f1 is expanded as

2v 2
h== [Vn - *Lﬁyz)ﬂ] fu+h, (6.2.5.2.2)
[h 5 p
and the localized function £ satisfies
Vh+ A\ Oh + \Y oh C (h)
vin - Vq - —_ V4 - -
II d Y d X P
v2 (1 3vj ) ¢
PR ve_2pemad | yp
X vlz 2 2Vt2 fM[ sh n
(6.2.5.2.3)

Terms that are smaller by a factor of p/L, are neglected to
obtain equation (6.2.5.2.3). Note that the vq - VOO /06, and
vq - Vx0h/0x terms must be kept when parallel plasma flows
are introduced to keep the small but finite poloidal E x B
drift. The collision operator in equation (6.2.5.2.3) is the
test particle pitch angle scattering operator because ¢ < 1
is assumed. The poloidal E x B drift Mach number M,
and V| /v, are both assumed to be less than unity. With
these assumptions, only the effects of the orbit squeezing are
included in equation (6.2.5.2.3). Because ¢ < 1, vg - VO =~
Ic®' B - VO/B?. The equation to be solved is then

Icd' oh oh
v+ —— | n-VO— +vg-Vy— — C(h)
B 0 ax
v (1 3 2 q°
S Yl [ § vl 281 1. vB.
2272w fM[ S
(6.2.5.2.4)

Changing the independent variables from (x,6, E, u) to
(pe, 0, E, ), the terms for the orbit dynamics reduce to

Icd’ oh
v+ — | n- Vo
B a0

ICCD’)

oh
+Vd'VXa
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and equation (6.2.5.2.4) becomes

Icd' dh
<u‘,+ < )n v —C(h)
B 001, .,
v 1 3y 2 q°
=2—(--21 vl ZL8P1 | n.VB.
v (2 292 fM[ 570 "
(6.2.5.2.5)

Expanding @’ ®f + Py(x — xo0), and using results in
section 6.2.5.1, yield

Icd'

6.2.5.2.6
B ( )

v+

= w;.

Equation (6.2.5.2.5) can be solved by the standard subsidiary
expansion appropriate for the banana regime. The small
parameter is v, = 1,573/2 < 1, where the additional S factor
reflects the increased fraction of trapped particles. The leading
order equation is

Icd' oh
(U“+ ¢ )nVQ 0
G
LU (1 3y Al ve = 2pemd vB
TR\ 22 501 ’
(6.2.5.2.7)
and the next order equation is
Icd' oh
vy + = .ve 20 =C(hy), (62.52.8)
B 0 |, g
0B

where the subscript in 4 denotes the subsidiary ordering.

Whene < 1and M, < 1, the tips of the squeezed bananas
are still centred around v ~ 0, and the v2 /v? term on the right-
hand side of equation (6.2.5.2.7) can be neglected for being
small by a factor of ¢S < 1. Equation (6.2.5.2.7) can then be
integrated straightforwardly to yield

DS 308

ho="%%

wsfM + & (62529)

where g; is an integration constant, and D; = (vz/vf)[\/‘9+
(v?/v} —5/2)2¢°/(5p)]. Note that g is also a constant
of motion. To determine g;, the constraint condition for
equation (6.2.5.2.8)

(C (ho)); =0, (6.2.5.2.10)
is solved. The operator (-), annihilates the left-hand side of
equation (6.2.5.2.8) to guarantee that 4, is periodic. This
is accomplished by using the periodic boundary condition
for circulating particles and reflection boundary condition
for trapped particles (see equations (6.2.1.4)—(6. 2 1 6)). The
operator (-); is thus defined as (-); = (27)~! d9( )/ ws

for circulating particles, and (-); = (27)~! Zf—(a‘ do()/|wsl,

for trapped particles. Here, the turning points are defined as
ws(£6) = 0. Of course, the integral in (-); is performed
holding (p., E, u) fixed. However, it is not necessary to
express the integrand in terms of (p;, E, u) explicitly. All
that is required is that all the quantities in the integrand
are constants on the particle trajectory. The pitch angle
scattering operator dominates the test particle operator and
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is approximately C(f) = (vD/Z)BZf/B(v”/v)Z, when the
independent variables are (x, v, vj/v). This simple operator
can reproduce all standard transport coefficients in the ¢ < 1
limit for axisymmetric tokamaks [79], because for a localized
distribution the highest derivative dominates. Physically, the
second derivative corresponds to estimating the de-correlation

time in random walk argument using 7 ~ ve}fl ~ f*/v.
Changing variables to (x, v, w;) yields
92
c(f) = 71) v? f (6.25.2.11)

To perform bounce averaging along the particle trajectory, the
independent variables are changed to (xo, 0, v, k). Neglecting
terms smaller by a factor of v/¢S < 1, equation (6.2.5.2.10)
can be made explicit to become

) 0,

ks
(aTz( i

= Qm)7! [0271 dfw; for circulating particles,
and (ws)g = Qm)~! ff‘e‘ df|wy| for trapped particles. The
relation dw,/dks = —Af/(stws) has been used to obtain

equation (6.2.5.2.12).  Because g; is odd in w,, and
3g,/30 =0,

a

g5
* ok

6.2.5.2.12
oK., ( )

where (wy)g

(6.2.5.2.13)

for trapped particles. For circulating particles, the solution to
equation (6.2.5.2.12) is

gszo,

A2
C,w;

ags
ks <ws>9 ’

ok

(6.2.5.2.14)

where C; is a constant. To determine C,, imposing the
boundary condition that dh¢/dw; is localized in the velocity
space yields C; = —2[D Bye/(®*k;)] fu, and

DB()S Wy

&)\2]{5 (a)s )(-)

0gs
dw,

s (6.2.5.2.15)

for circulating particles. Combining the solutions for g, for
both trapped and circulating particles yields
dho

DB()S
Azk

M |:1 —H({ — k) ] , (6.25.2.16)

0wy (wy)g

where H is step function. Knowing dh¢/dw; is adequate for
the calculations of the parallel plasma viscosity.

6.2.5.3. Parallel viscous forces. Because effects of orbit
squeezing resulting from the finite width of the particle orbits
are described in equation (6.2.5.2.4), local transport theory
exists only in the radial averaged sense [110, 111]. Physically,
local radial transport fluxes are meaningful on a scale larger
than the typical radial width of the particle orbits but smaller
than L,,. Thus, the kinetic definition for the flux surface and
radially averaged parallel viscous force is

= </d’UfMU2 (UZ/U121_ 5/2)

o
<B~V~ o>

(e

1
2

392
2v“

B-VB

6.2.5.3.1
B ( )
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where the angular brackets with the subscript r denote both
flux surface and radial averages

<~>,=[i—’)‘(/de¢§<->//def,

and Ay is an interval in yx that is larger than the squeezed
banana width but smaller than L,,. Using equation (6.2.5.2.5),

(6.2.5.3.2)

(B - V- 1) can be expressed in terms of the collision operator
to obtain

<B-v- §>=—</2mdu/

hC(h) >
(3/2) ¢ ’
[ve =22 ] pul-

Integration over poloidal angle to annihilate w;dho/30|E .. p,
has been made to obtain equation (6.2.5.3.3), which
is quadratic in & that is related to the local rate of
entropy production. This is made possible by the radial
average. Without the radial average, the quadratic form
in equation (6.2.5.3.3) cannot be obtained. In the case
of the conventional neoclassical transport theory, a similar
quadratic form is derived without the radial average because
particle drifts that describe the finite width of the orbits in
equation (6.2.5.2.3) are not required in the theory. However,
for squeezed orbits, those drifts are indispensable in the theory.
The radial average allows the average to be performed in
(E, u, pc,0) space. The averaging process illustrated here
is valid for the finite orbit width induced transport theory.
Note that the quadratic in % in equation (6.2.5.3.3) corresponds
to the (Ax)? in the random walk argument. Integrating by
parts in k, and substituting d/(/dw; in equation (6.2.5.2.16)
in the resultant expression yield the viscous coefficient u ;, for

j=1-3[110]:
j—1
—x?
) <

2 VE [T (5
Mj:z\/;lpsm A dxvpx (x 3

~2
dk, 2
2kw

lez
2

X (6.2.5.3.3)

(6.2.5.3.4)
where I is a pitch angle integral defined as
Ips =/Ood3—]j; <<‘”—> —H( —k) & ) ~ 1.38.
0o k; lwsl /g (lwgl)e
(6.2.5.3.5)

The viscous coefficients are reduced by a factor of $%/2,
however, with the same numerical number, when compared
with the large aspect ratio limit of w; in equation (6.2.1.11).
The integration in k, corresponds to the fraction of the trapped
particles in the random walk argument. In the process of
calculating the viscous coefficients for the effects of orbit
squeezing, the one to one correspondence between the analytic
calculations and random walk argument is demonstrated. The
same correspondence can be made for most of the particle and
heat flux calculations.

6.2.5.4. Transport fluxes. Once parallel viscous forces are
known, transport fluxes follow naturally from the solutions
of the parallel components of the momentum and heat flux
balance equations, as shown in section 6.2.1, using the flux—
force relation.
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The four linearly independent equations to be solved are

<B V. ?{i> — Nie; <BEﬁ““> = (BFy).  (62.54.1)
<B V. 7?) ~ Nee, (BEﬁA>> — (BF.),  (62542)
<B V. 8) — (BFy), (6.2.5.4.3)
and
<B V. 8) = (BFy). (6.2.5.4.4)

The subscripts i and e are restored to indicate ion and electron
quantities, and the subscript r that indicates the radial average
is suppressed for simplicity.

6.2.5.4.1 Moderate squeezing. When the value of the orbit
squeezing factor § is moderate so that ion viscous forces
are still larger than electron viscous forces, the coupled
equations (6.2.5.4.1)—(6.2.5.4.4) can be solved approximately
by exploring differences in the magnitudes of these viscous
forces.

Examining equations (6.2.5.4.2)—(6.2.5.4.4) it is noted
that, when ¢ < 1, friction forces are larger than the viscous
forces by at least a factor of \/e. Thus, the leading order
solutions to equations (6.2.5.4.2) and (6.2.5.4.4) are

qi ~ 0, (6.2.5.4.1.1)

qe ~ 0, (6.2.5.4.1.2)
and

Vi ® Vie. (6.2.5.4.1.3)

The result in equation (6.2.5.4.1.3) is well known [6,7]. It
implies that electrons and ions have common parallel flow in
large aspect ratio tokamaks, as discussed in section 5.

To determine ion parallel flow or common flow, summing
equations (6.2.5.4.1) and (6.2.5.4.2) yields equation (6.2.1.26),
ie.(B-V-7)+(B V- .) = 0. Forsimplicity, itis assumed
that even though the magnitudes of the ion viscous coefficients
are reduced as a result of orbit squeezing, they are still much
larger than those of the electron viscous coefficients. With
this assumption, the ion parallel flow is determined by solving

(B-V- J?i) ~ 0, and the result is,

wai 2 g7

Ve =
i S pi

i =

(6.25.4.1.4)

or explicitly, after using equations (3.2.12) and (3.2.20),
(ViB)  IcT, e®  IcT, ( T’)

Hai Ty
(B?) " e(B?) T ¢i (B?) mi Ty

(6.2.5.4.1.5)
where woi/pm1; = —1.17. The relation between the parallel
mass flow and the radial electric field in equation (6.2.5.4.1.5)
is the same as that in the conventional theory [112]. Even
though the individual viscous coefficient is modified by the
orbit squeezing factor S, the ratio of /i is not modified.
Thus, the orbit squeezing does not modify the relation between
the ion parallel flow and the radial electric field when the
squeezing is moderate in large aspect ratio tokamaks [112].

P

pi
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For the approximation that leads to results in equa-
tions (6.2.5.4.1.1)—-(6.2.5.4.1.3) and (6.2.5.4.1.5), it is con-
venient to evaluate the heat flux using the heat viscous
force in equation (4.1.1.13). Substituting results in equa-
tions (6.2.5.4.1.1) and (6.2.5.4.1.4) into heat viscous force

13 ali

yields
c
—N; M, i (1 — ) .
wiipsi ) dy

i eiz < Bz> M3i

When § = 1, the ion heat flux in the conventional theory is
reproduced. Note that the ratio u%i /(p1ipesi) is not affected by
S. The orbit squeezing effects on the ion heat flux and ion heat
conductivity appear in the coefficient 3, which is reduced
by a factor of $%2 when § > 1 [110]. The scaling can be
understood in terms of the random walk argument using the
facts that the orbit width is reduced by a factor of +/S in x
and the fraction of trapped particles increases by a factor of
/S [110]. The S~3/? scaling in the ion heat conductivity is
also observed in a Monte Carlo simulation [113].

Electron transport fluxes are not modified because the
ratios of the ion viscous coefficients remain the same as
those in the conventional theory. The bootstrap current is
driven by the parallel viscous forces and is [7], by solving
equations (6.2.5.4.2) and (6.2.5.4.4),

o ((pv- 7)o (B v-6)).
(6.2.5.4.1.7)

where Spitzer conductivity o, = (Nee)zl /U5, — 2)2],
and e = |e.|. The ion contribution to (J, B) appears in V" by
expressing it as

b
ﬂ_ 2 12 daT;

T =

(6.2.5.4.1.6)

(/i B) =

Vi=(Vi-vi)+ V. (6.2.5.4.1.8)
The (B(Vji — Vje)) term in (V? — V) represents the
modification on the electric conductivity in tokamaks resulting
from the existence of trapped particles. Because ion dynamics
do not modify it in the approximation adopted here, the effects
of orbit squeezing do not modify the electric conductivity in
the conventional neoclassical theory. Evaluating the viscous

forces in equation (6.2.5.4.1.7) yields the bootstrap current

M, 5 i1
(J1pB) = —oy =1 [(1 + %“k) <P’+ 2 —NJ{)
N.e 122 Hie M1i Z
le
+ N T, (“26 +2 ’“‘36)} , (6.254.1.9)
Mie 122 Mie
where P’ = P/ + P/, and pje for j =1-3 is the same as

the standard viscous coefficients because orbit squeezing is
ineffective for electrons. From equation (6.2.5.4.1.9), it is
clear that the bootstrap current is not affected by the orbit
squeezing because the ratio (5;//41; remains unchanged in the
approximation adopted here. Thus, the Ware pinch flux is not
modified either.

The ambipolar electron particle flux and the electron heat
flux can also be calculated by evaluating the viscous force
in the flux—force relation. Because the ion parallel flow
is determined by neglecting the electron viscous force, the
electron particle flux in equation (4.1.1.5) is the ambipolar
particle flux, i.e. e.(Ie - Vx) —ei(I'j - Vx) within the
approximation adopted here. The (B(V|; — V|¢)) term in
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(V9 — V) now represents the Ware pinch particle flux. The
ambipolar particle flux is then

2 12 P’ 1
[P = —NeMo Sz (- + 25T+ 22017
<Bz) Ne Mie HllZ
(6.2.5.4.1.10)

Using the results for plasma flows, the electron heat flux can
be evaluated to obtain

bp 2 2 ’
qe I P L P 1
© — _NMS > Zuze<— =T+ 2T
Tc <B > Nc M2e I“Lll Z
(6.2.54.1.11)

Both the ambipolar electron particle flux and the electron heat
flux are not affected by the orbit squeezing because the ratio
W2i/ 1i remains unchanged.

Thus, in the moderate squeezing limit, only the ion heat
flux is modified by squeezed ion orbits. The rest of the transport
fluxes are not modified [110, 112].

It is important to note that in evaluating bootstrap current,
the ion poloidal flow is used in evaluating the electron
viscous forces because equation (6.2.5.4.1.8) is employed in
the process. Since the bootstrap current is neoclassical in
tokamaks, this implies that the ion poloidal flow must be
neoclassical or very close to neoclassical. This important
relation between the ion poloidal flow and the bootstrap current
is transparent in the moment approach.

6.2.5.4.2. Strong squeezing. When the squeezing factor S is
large enough so that the ion and electron viscous coefficients
are comparable, the electron viscous force also contributes to
the momentum relaxation [114]. In this case, all transport
coefficients are modified except the effect of the trapped
electrons on the electric conductivity [114].

Because | je| < Ve, and |uji| < vj, the conclusions that
Vi & Ve, qe & 0, and q; ~ 0 are still valid. However, since
NiM;|pji| ~ NeM.|pje, the electron viscous force cannot be
neglected in solving equation (6.2.5.4.1) for Vie. In this case,
V? becomes

Vo= uzl IcT! Moe IcT]
Mn NM e € (B2) e + ,}&%‘tun e(B?)
Mle |: IcP’
Hie + N M Ny | Nee (B?)
(1 ol “2°> G<E('A)B>] (6.2.54.2.1)
15, i) Nee(B?)

The (El("”B) term is obtained by approximating (JyB) =
o (E{" B)and (2/5)(qe B)/ pe = —(15,/15,)05(E|"" B) / (Nee),
which are the solutions to equations (6.2.5.4.2)and (6.2.5.4.4)
when the electron viscous forces are suppressed. Thus, be-
sides the ion temperature gradient, electron temperature gra-
dient, and total pressure gradient, the inductive electric field
contributes to the ion poloidal flow. These additional contri-
butions become important only when ion and electron viscous
forces become comparable. The Vf) in equation (6.2.5.4.2.1)
is a simplified version of that shown in [114] by neglecting
higher order viscous terms.
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The bootstrap current becomes

M I N. B2
<Jl\bB>:—Us e“;elc[<l+%ﬂze> P/_ﬁvf
Nee 155 e Ic
le
NT (Me %me)]’ (62.5422)
Hie 155 pie

where Vie is made explicit to emphasize the role it plays. It
is also clear that the neoclassical bootstrap current implies the
neoclassical poloidal flow as discussed in section 6.2.5.4.1. In
the limit where NiMi|ujil < NeMeliijel, the P’ in V¥ tends
to cancel the explicit P’ dependence in equation (6.2.5.4.2.2),
and the magnitude of the bootstrap current can be reduced as
a result. This phenomenon was first discussed in [114] and
can be used to control the bootstrap current in the pedestal
region in H-mode plasmas and, thus, edge localized modes
(ELMs) [115]. Note that the inductive electric field also
contributes to the bootstrap current through ion poloidal flow
when NiMiuj; ~ NeMcjij.. Thus, in the strong squeezing
limit, the bootstrap current is fundamentally different from
that in the conventional theory.
The ambipolar particle flux is

122 Nee<Bz> U2
M = —M,———ppe| P — ——LV2 + Z=N,. T/
e eez <B2>Mle|: Ic i Lo ele
(A)
¢ Oy <BE“ >
+ (1 + ﬁ“—z) 7] (6.254.23)
15 e Ic
and the electron heat flux is
bp 2.2 2
qe Ic , Nee(B > o, M3e /
L = Me——pine| P — —— VO ZENT,
Te eez (Bz>ﬂ26|: Ic i L2 ele
(A)
e o, (BE” >
+ (1 + ﬁ’ﬁ) 7] (6.2.542.4)
155 e Ic

where Ware pinch fluxes are also displayed. The Onsager
symmetry between the bootstrap current and the Ware
pinch is obvious by examining coefficients in front of the
thermodynamic forces.

The effect of trapped particles on the electric conductivity
is not modified by the strong squeezing as long as the electrons
are not squeezed significantly. However, if the bootstrap
current driven by the inductive electric field is viewed as
part of the ohmic current, the electric conductivity is also
modified through the ion poloidal flow even though electrons
are not squeezed. In that case, the inductive electric field
driven current should be removed from the bootstrap current
expression to avoid double counting.

The ion heat flux is, using the flux force relation in

equation (4.1.1.13),
(Mzi ) .

bp 2 g2
CC VYV [
T; e
(6.2.5.4.2.5)
6.2.5.5. Effects of finite width of banana orbits. When the
orbit squeezing factor S = 1, the theory for orbit squeezing
becomes a theory for the effects of finite banana width. The
results of the theory indicate that the finite banana width has
no effect on the transport fluxes in large aspect ratio tokamaks
[116]. The effects have been studied using numerical codes
[117,118]. The same conclusion is reached in the numerical
calculations [117].

e(B?) T/
V7o + ifl
IcT, i "3 T

(82)
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6.3. Potato orbit induced transport fluxes in the vicinity of the
magnetic axis

In the vicinity of the magnetic axis, the potato width scales
differently from the banana width. The transport fluxes must
be different from those away from the magnetic axis discussed
in section 6.2.1. The analysis of the drift kinetic equation for
potato orbits is similar to that for the squeezed banana orbits
because both the poloidal and radial drifts must be included to
describe the potato orbits in the near axis region.

6.3.1. Perturbed distribution for potato orbits. The linear
drift kinetic equation to be solved for potato orbits near the
magnetic axis is the same as that for squeezed banana orbits, i.e.
equation (6.2.5.2.3). Finite width of the orbits must be taken
into account in the transport theory. However, the width of the
orbits must be smaller than L, to facilitate a local transport
analysis.

Similar to the method used for calculating the effects of
orbit squeezing, the poloidal angle dependence in the poloidal
particle speed wy in equation (6.1.2.3) needs to be made explicit
to facilitate the solution to equation (6.2.5.2.3). Assuming

& < 1 and using ¢ = C,,/X, wy becomes [94], using
equations (6.1.2.1), (6.1.2.2), and xo = 0,
oy = iy (477 +y) (63.1.1)

where @y = (3/4)(90/1)£2k$/3, and T, is one of the

following functions: cos(8/3), sin(z /6 £ B/3), sinh(8/3) and
cosh(B/3). A typical potato has the poloidal speed of the
order of wy ~ vy f, by estimating k, ~1, where the fraction of
potatoes f; is given in equation (6.2.1.10).

In the potato regime, where v., = v[v, f7/(R)]™" < 1,
equation (6.2.5.2.3) is solved by a subsidiary expansion
procedure, i.e. h = ho + h; + ..., using the small parameter
Vsp. Employing the same procedure that solves the linear drift
kinetic equation for the squeezed orbits yields

oh 31
o _ 2 p, (1 _ ol Hp), (63.1.2)
dwg 4 Q (lwglde
where D, = (2/v})(QBo/I) fulV? + (v2/v? —5/2)2¢°/
(5p)], Hy = 1 for circulating particles, and H, = 0 for

trapped particles. To calculate parallel viscous forces, knowing
dho /0wy is adequate.

6.3.2. Parallel viscous forces. The parallel viscous forces
accounting for the physics of potato orbits are calculated from
the definitions in equations (4.1.4.1) and (4.1.4.2). Because
potato orbits have finite width, the radial average in addition
to the flux surface average must be performed over parallel
viscous forces to obtain the local transport fluxes valid over a
region larger than the width of potatoes.

The viscous coefficients 1 ; for j = 1-3 are calculated to
be [119], using equation (6.3.1.2),

2\ 1/3 i1
IvlCX Z/OdexIS/S <x2—§>
0 2

Qo

(6.3.2.1)
where the constant I, = 2.77 is a result of the pitch angle
integral over the k, space [94]. It should be noted that p;
scales as the fraction of trapped potatoes f;.

T
N

)
XU[)CX,

i =112
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6.3.3. Effects of orbit squeezing on potato orbits. When
the potato width is comparable to L,, the effects of orbit
squeezing become important. The squeezing makes the real
squeezed potato width smaller than the L,, and facilitates a
local transport analysis [116].

The analysis for squeezed potato orbits is the same as that
for squeezed banana orbits. The orbitequation for the squeezed
potato orbits that pass through the magnetic axis is [119]

12e<1>6> _ 2I%C
F—
(6.3.3.1)

M3 Q3
where the squeezing factor S is the same as that for squeezed
banana orbits defined in equation (6.2.5.6). The orbit
trajectories for potato orbits in equations (6.1.2.4)—(6.1.2.8)
can be used for squeezed potato orbits when the quantities o,
kp and X in those equations are redefined as

sed 2 (L0
Q

(vﬁo +uBy)cos® =0,
0

vjo + Ic®y/B
op = sgn (T{)O , (6.3.3.2)
L8 (1 |vjo + Ie®)/Bo|*
Y ANKIES 2 2
S190 ) (12¢,15193)? (43, + Bo)
(6.3.3.3)
and
A 1/3
2= [(1PC, /181 92) (v3 + nBo)] . (6.3.3.4)

From equation (6.3.3.4), it is obvious that the width of the
potato orbits is reduced by a factor of | §| 73 in x. For |S| > 1,
the local transport analysis is valid even when the width of un-
squeezed potato orbits is comparable to L,. The fraction of
trapped potatoes increases by a factor of |S|'/3, which can be
inferred from the modified parameter kj, in equation (6.3.3.3).

The viscous coefficients are reduced by a factor of | §|~>/3, and
become [120]
Lo 2he_ (G N
TS
* 57" .
x/ dxx '3/ <x2 - 5) vpe . (6.3.3.5)
0

As in the case for squeezed bananas, orbit squeezing does not
affect the electron potato orbits significantly.

It should be noted that for a parabolic profile for the radial
electric field in local radius r, it has a linear profile in poloidal
flux x. For this profile, ®” in the squeezing factor S is finite.
Thus, orbit squeezing is an important mechanism to make
local transport analysis valid in the vicinity of the magnetic
axis. As pointed out in [116], whenever the width of the orbit
is comparable to L,, the effects of orbit squeezing become
important to make the real width of the orbits smaller than L,,.

6.3.4. Transport fluxes in the vicinity of the magnetic axis The
transport fluxes can again be obtained by solving the parallel
force balance equations and utilizing the flux—force relation. In
the large aspect ratio limit, the formal expressions for transport
fluxes in terms of the viscous coefficients are the same as those
insection 6.2.5.4. Only the detailed expressions for the viscous
coefficients differ.

32

For the moderate squeezing case, the ion poloidal flow in
the near magnetic axis region is

(ViB) IcTi e® Il (&’ IJ«ZiE)’ 63.4.1)
<B2> e (Bz> T e (Bz) pi w1
where o/ = —1.021 for the potato regime instead of
—1.17 for the banana regime. The ion heat flux is

bp 7/3 ’

. Tvg 1/3 T.
G _ gy (22 (i) STANIL (63.42)
T Qi SIR T

which can be understood in terms of the random walk argument
in x using the fraction of trapped potatoes, the width of potato
orbits, and vegg ~ v/ fpz. For typical tokamaks, the width of
an ion potato is about 15% of the minor radius. Thus, local
ion transport theory is meaningful on a length scale longer
than this width, and ion transport fluxes are averaged over this
length scale as well. The equilibrium profiles must be relatively
flat on this length scale because ion potato orbits smooth out
the profiles. When converting qib P in equation (6.3.4.2) into
cylindrical coordinates, the radius r is only meaningful in the
radially averaged sense. Thus, r cannot be set to 0.

The transport fluxes for potato orbits of alpha particles
have also been calculated in [57]. The results are to replace the
fraction of bananas in the transport theory for alpha particles
away from the axis [121] by the fraction of potatoes just as
discussed here.

The electric conductivity is also modified by the
finite value of f,. The formal expression for oe in
equation (6.2.1.36) is still valid when the viscous coefficients
for potato orbits are used. The potato bootstrap current
is proportional to f, of electrons as can be seen from
equation (6.2.5.4.1.9), and does not vanish on the magnetic
axis. The same scaling for the potato bootstrap current is also
obtained in [122]. The existence of the bootstrap current on
the magnetic axis provides a possibility to have steady-state
100% bootstrap current tokamak equilibria without the need to
have external current drive [58, 59]. The potato orbits of alpha
particles can also drive a bootstrap current on the magnetic axis

[57,58]. The transport fluxes for electron potatoes are more
local in radius than those for ion potatoes. Thus, electron
potato transport fluxes easily satisfy the requirement for the
local transport theory.

6.3.5. Intrinsic steady-state tokamak: 100% bootstrap current
equilibria.  Conventionally, tokamaks are not intrinsically
steady state devices because the poloidal magnetic field is
created by the plasma current, which, in turn, is driven by the
inductive electric field EW. This is one of the main criticisms
for tokamak fusion power plants. To maintain a steady-state
tokamak discharge, plasma current must be driven externally
using either neutral particle beams or radio frequency waves
to deliver momentum to electrons or utilizing a self-generated
bootstrap current. However, because bootstrap current in the
standard theory vanishes on the magnetic axis, a seed current
is needed to maintain plasma equilibrium [24, 123]. Because
the bootstrap current driven by potatoes does not vanish on
the magnetic axis as shown in section 6.3.4, the steady-state
tokamak equilibrium can be sustained with bootstrap current
alone. Thus, tokamaks are intrinsically steady-state devices
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Figure 11. Flux surface grid of a steady-state tokamak equilibrium
forA=14,8 =3.0and « = 0.522.

Figure 12. Safety factor ¢, and pressure gradient P’ profiles as a
function of normalized radius /X .

without the need of the external current drive. The steady-
state tokamak equilibrium can also be maintained by the potato
bootstrap current from fusion-born alpha particles [58].
Tokamak equilibria with 100% bootstrap current are
obtained by solving the Grad—Shafranov equation [48,49]
including the bootstrap current induced from the potato orbits
[59]. The function I and I’ in the Grad-Shafranov equation
can be calculated from [124]

=—IcP' — LBZ)I/.

{/1vB) -

(6.3.5.1)
An example for the 100% bootstrap current equilibrium which
is stable against ballooning modes is shown in figures 11-13
for a tokamak with A 14,6 3.0, and triangularity
k =0.522 [59].

The equilibrium has a reversed g profile as shown in
figure 12, which may have better plasma confinement than
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Figure 13. Pressure and toroidal current density profiles as a
function of the major radius R.

the monotonically increasing g profile. Thus, a tokamak with
100% bootstrap current may have more than one beneficial
trait.

From the economic point of view, it is attractive to operate
thermonuclear fusion power plants in a steady state. This
will relax the requirements for the plasma facing materials.
Issues related to steady-state tokamak fusion reactors have
been reviewed in [125].

6.3.6. Potato plateau regime. The resonance in the plateau
regime in the vicinity of the magnetic axis does not occur
at vy = O anymore; instead it occurs at wp 0, as
can be seen from equation (6.2.5.2.3), which are also the
turning points of the potato orbits. However, this shift in
the resonance position in the phase space does not change
the transport fluxes in the plateau regime because f, <
1. The reason is that vﬁ < v? in the driving terms
of equation (6.2.5.2.3) by a factor of fp2 < 1. Thus,
the parallel viscous forces in the plateau regime away
from the magnetic axis are still valid in the near axis
region [126].

However, for the sake of practical applications, because
in the potato regime the viscous forces are both flux surface
and radially averaged, it might be convenient to radially
average the potato plateau viscous forces. This has been done
in [127] using the orbit trajectories in section 6.1.2.

6.4. Non-linear plasma viscosity

In the edge region of H-mode plasmas and in the core region
inside transport barriers, the poloidal E x B Mach number
M, can be of the order of unity or higher. The plasma viscous
forces become a non-linear function of M, [128]. The poloidal
momentum equation can have bifurcated solution for the radial
electric field that leads to turbulence suppression and thus
improved plasma confinement [15,129]. Here, it should be
emphasized that M, ~ 1 does not necessarily imply that the
toroidal rotation speed is sonic. The more relevant physics to
the edge region of H-mode plasmas is that the poloidal flow is
sonic if the diamagnetic flow speed is not adequate to cancel
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the poloidal E x B flow. In that case, a poloidal shock can
form [130-132]. However, usually the poloidal diamagnetic
flow almost cancels the poloidal E x B flow to make the real
poloidal speed subsonic.

As can be seen from the method developed to solve the
drift kinetic equation, the way to treat the momentum restoring
terms in Coulomb collision operator, and the driving terms that
are proportional to Pj is to introduce parallel flows. This goal
can also be accomplished by using the drift kinetic equation
derived with the assumption of the large mass flow [82].
However, the flow velocity is interpreted to be the velocity
for each species [83]. One of the advantages of using the drift
kinetic equation with the large mass flow is that the parallel
flow with arbitrary geometric angle dependence is treated
rigorously in the kinematic part of the drift kinetic equation.
Compressible plasma flow, i.e. V - V' 2£0, can also be treated
using this approach [83]. This feature for compressible flow is
not needed for sonic M, but the real mass flow is subsonic. This
condition can be satisfied when the poloidal E x B flow cancels
approximately the poloidal diamagnetic flow, a phenomenon
often observed in tokamak experiments. Thus, even though
the drift kinetic equation with large mass flow is adopted here,
the gyro-radius ordering is also used so that the equation is
valid for sonic M,, but subsonic mass flow.

The drift kinetic equation with a large mass flow is [82]
af af
or a0~ )
The independent variables in equation (6.4.1) are (x, f, i, w),
where w = v?/2. Components of particle velocity vy, and vy
together with v are all defined relative to the mass flow velocity
V for each species. The drift velocity vy is defined as [82]
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B
><|:;LVB/M+ vyn - VV+V .V (yn)+vin- Vn],

(yn+va+ V) -Vf+w (6.4.1)
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where the force Fyw is
Fszi(E+lV><B>—i—V~VV. (6.4.3)

M c Jt

The approximate expression for  is [82]

—%) (vi —nB)n

‘n-VV +vq - Faw. (644)

The full expression for w is tedious and only first-order (in
gyro-radius ordering) terms are displayed. For the case where
the flow velocity V is first order, the neglected terms are second
order.

To solve equation (6.4.1), the solution is expressed as

[128]
2v;2¢g)

L2 fa+h,

f=f- (6.4.5)

v25p
where fy is the shifted Maxwellian distribution because
particle velocity v is defined relative to the flow velocity
V. Note that the (2v}V;/v?)fu term used in treating the
momentum restoring terms and the driving terms proportional
to P in the standard drift kinetic equation is already included
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in f through the shifted Maxwellian fy. The role of the g
term is the same as before. The g term is assumed to be the
first order in the gyro-radius ordering in equation (6.4.5).

Substituting equation (6.4.5) into equation (6.4.1) yields
an equation for /4, for incompressible flows,

[(v) + VPn+ Vg +vg] - Vh — C(h)

(1

3 v}
= 2_21)12)fM
[V~VB (2 5) ]
X + s
B

v
2
where Vi = cE x B/B?is the E x B drift velocity. To obtain
equation (6.4.6), the steady-state density and temperature
evolution equations, i.e. V- VN = 0,and V - VT = 0, in
addition to an approximate expression Fuyw ~ Vp/(NM),
have been used. Equation (6.4.6) is valid for subsonic
incompressible flow. For compressible flows, both V - V' and
V - q also contribute to the right-hand side of equation (6.4.6).
These compressible terms dominate when shocks form in sonic
rotating plasmas [130-133].
The time-dependent dh/dt term can also be added to
the left-hand side of equation (6.4.6). In that case, time-
dependent density and temperature evolution equations must
be used. However, this does not change the right-hand side of
equation (6.4.6). The d4/d¢ term has been used in the drift
kinetic equation to develop the theory for the time-dependent
plasma viscosity to calculate the poloidal flow damping rate
[13,72,133].
The key difference between equations (6.4.6) and
(6.2.5.2.3) is the appearance of the Vyn - VA term in the
kinetic part. Thus, only the combination of Vg and V|n
appears in equation (6.4.6) and in the solution for tori that
possess symmetry. The flux surface averaged viscous forces
determine this combined quantity and, subsequently, all the
transport fluxes as a consequence. Withoutthe Vyn-Vh termin
equation (6.4.6), the parallel flow speed and the component of
Vi appear as two independent entities even in tori that possess
symmetry. The averaged parallel force balance equations alone
are not adequate to determine plasma flows and transport fluxes
if that is the case. In addition, when Vn + V% is in the toroidal
direction in axisymmetric tokamaks, the resonant shift of the
tips of the banana particles does not occur, as evidenced in
[134]. Thus, to have proper physics when Vg is important,
the parallel flow velocity must be included in the drift kinetic
equation. This important physics is often ignored, however.

U2

2
LA

q-VB
B

— 6.4.6

6.4.1. Plateau—Pfirsch-Schltiter regime. In the ¢ < 1
limit, the VB and curvature drifts can be neglected and
equation (6.4.6) reduces to

2
[(v) + V) + Vi ] - Vh — C(h) = 22 (;
Ch

sG]

In the plateau—Pfirsch—Schliiter regime, equation (6.4.1.1) can
be solved using a Krook model to approximate the collision

v 5

2
Uh 2
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B
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operator, i.e., C(h) = —vrh. The viscous coefficients
are [135]
2 00 Jj—1
Ve & 5 52 2 5
= d _ =z
H Rq2v%ﬁ£ e (x 2)

1
B-V6
xf dy (1 —3y?)’ <UT> Rio. (6.4.12)
—1

where Ry = vT/(a)ga + v%) and wp, = (v +V))B-VO/B +
Vg - V6.

In the plateau regime where vy approaches 0, the resonant
function R;¢ reduces to a delta function. The resonant

singularity, however, is no longer at vy = 0 as in the
conventional theory. Instead, it is at
Vi - Vo Icd’
v ==V — BT = v = = (6.4.13)
B-V0o
Because |vj/v] < 1, the resonance condition in
equation (6.4.1.3) can be satisfied only when
v V” Icd’ V” CEr
s L =L - (6.4.1.4)
Ut UVt By, Ut Bpl)t

Since the equilibrium distribution function is a Maxwellian, the
number of particles that can satisfy the resonance condition
diminishes exponentially, and the viscous coefficients in
equation (6.4.1.2) decrease exponentially as |Up |
[Vi/ve — cE./(Bpv)| increases. This exponentially decay
dependence is the characteristic behaviour for the resonant
transport when the radial electric field becomes important to the
particle dynamics. The viscous coefficients scale linearly with
Up,m when |Up ;| < 1, reach an extreme when |Uj, ,,| is of the
order of unity, and decrease exponentially when |U, ,,| > 1.

In the Pfirsch—Schliiter regime, the resonant function can
have two distinct scalings. One is when vy > |wy,| and
Rio ~ vy . This reproduces the standard viscous forces
in the Pfirsch—Schliiter regime shown in section 6.2.3. The
other limit is when |wg,| > vr, and Ry ~ vr/wga. The
viscous forces in equation (6.4.1.2) decrease as 1/|Up | in this
limit. This algebraic decay dependence is the characteristic
behaviour for the non-resonant transport.

The integrals in the viscous coefficients w; properly
describe the transitions from various limits in the plateau—
Pfirsch—Schluter regime. It is important to note that plasma
viscous forces are a non-linear function of Uy, ,,. When |Uy |
increases, plasma viscous forces decrease either exponentially
for the resonant transport mechanism or algebraically for the
non-resonant transport mechanism.

6.4.2. Banana regime. The non-linear dependence of the
viscous forces on U, ,, also exists in the banana regime [136].
In the edge region of H-mode plasmas, the effects of orbit
squeezing are also important. Thus, it is better to combine
these two pieces of physics in the theory for the non-linear
plasma viscosity in the banana regime.

To have the non-linear plasma viscosity dependence on
Up,n for axisymmetric tokamaks, the theory for squeezed
orbits must also include the parallel mass flow V| in addition
to the customarily included poloidal E x B drift, as shown
in [136]. Using this generalized theory for the squeezed orbits
and the method in solving the drift kinetic equation developed
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for the effects of orbit squeezing yield the viscous coefficients
for the non-linear plasma viscosity in the banana regime for
large aspect ratio tokamaks, for j = 1-3, [79, 136]

8V2  JE [ 5\/7!
Wy = —ﬁ IP"W dxvp Fex* (x2 — 5)

p.m

2 =3/2
(1 302, Upm
xe~ ¥ (2 _ 5 ;2 ) <1 + % R (6.4.2.1)

where I, = 1.38, and

2
p.m

U,
Ff=<1_

2
v Upm
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The factor F; results from the energy dependence in the
resonant condition that makes the energy scattering operator
important in the de-correlation of the squeezed banana orbits.
The viscous coefficients in the banana regime have a similar

dependence on U, , as those in the plateau regime. They

U,

. —y? .
decrease exponentially as e”“r» when |U, | is larger than

unity.

6.4.3. Approximate analytic expressions for non-linear viscous
coefficients and electrode-induced bifurcation. ~To facilitate
modelling of the bootstrap current and the neoclassical
transport processes in the pedestal region it is convenient to
have approximate analytic expressions for viscous coefficients
that join asymptotic limits in the banana and plateau—Pfirsch—
Schluter regimes that include effects of orbit squeezing
and finite values of |U,,,|. This can be accomplished by
using rational approximation [6, 7] that reproduces asymptotic
limits, and the results are [115]
8§ [ ) 5\/7!
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for j = 1-3, where
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(v + Upn /%) + o/ (xeo)?
and w; = v B - VO/B. The first term on the right-hand side
of equation (6.4.3.1) represents the resonant contribution in
the banana—plateau regime and the non-resonant part from the
Pfirsch—Schliiter regime. The second term is the non-resonant
contribution in the Pfirsch—Schluter regime.

A schematic dependence of the non-linear plasma
viscosity in the plateau—Pfirsch-Schliiter regime on U, ,, [15]
is shown in figure 14.

The dynamics of the L-H transition theory based on
the non-linear plasma viscosity [15] has been observed in
electrode-induced L-H transition experiments [137]. The
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electric conductivity when U, ,, is finite because the ratios of

1.00 L T T T T : . . .
ion viscous coefficients are no longer the same as those in the
0.75 conventional theory.
0.5 The equation for ion poloidal flow is a non-linear equation
for Uy, by casting Vi as
0.25
U IcT; p!
T O T (6.4.4.1)
(B?) e (B?) pi
-0.25
in large aspect ratio tokamaks. =~ When NiM;i|u;| ~
-0.5 NeM.| e, the equation for Vie in equation (6.2.5.4.2.1) can
-0.75 be expressed explicitly as a non-linear equation for Up ,,:
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Figure 14. Typical nqn-linea.r plasma viscgsity ip the . Uie + AI\]"Mi i € (Bz> Uie + %Hli
plateau—Pfirsch—Schliiter regime as a function of U, ,, in a tokamak. e o
The extrema occur at |U,, ,,| of the order of unity. It decays IcP’ e o, < EﬁA) B>
exponentially when |U,, ,, | is greater than unity. When |U,, ,,| is 4 (1 + 12 Mze) R W & (6.4.4.2)
much larger than unity, it decays algebraically. Nee <B 2> 15, e ) Nee (B 2)

radial current driven by the orbit loss in the banana regime in the
theory is replaced by the electrode current. When the electrode
current vanishes, the standard neoclassical poloidal flow is
reproduced in the theory as expected because it is Uy , not
poloidal E x B drift that is employed in the formulation of the
theory. As the current in the biased electrode increases, Uy, .,
and, thus the radial electric field, deviates from the neoclassical
value. When the electrode current is further increased, U, ,,
bifurcates as predicted by the non-linear plasma viscosity [15].
The bifurcation in experiments provides a direct test of the non-
linearity in the viscous forces. Because the compressibility is
not included in the theory, the shock formation is prevented.
This implies that the real poloidal flow speed is assumed to be
subsonic. Physically, this assumption implies that improved
plasma confinement due to turbulence suppression results in a
steep pressure gradient that almost cancels the increased E x B
drift [132, 133]. If the real poloidal flow is sonic, the plasma
flow velocity becomes compressible, and shock formation will
occur. In that case, the shock viscosity becomes the relevant
force for the electrode-induced bifurcation [132, 133].

The concept of the perpendicular conductivity or
resistivity in toroidal plasmas [138] has often been used to
describe the electrode-induced bifurcation. The conductivity
or resistivity has been calculated by following the pioneering
work in [139, 140]. The work in [139, 140] is also extended
to describe the L—H transition in [141].

6.4.4. Transport fluxes The neoclassical transport fluxes
associated with the non-linear plasma viscosity are different
from those in the standard neoclassical theory when U,
is of the order of unity or higher and when § > 1. The
transport fluxes are smaller than those in the conventional
theory. Thus, neoclassical plasma confinement is improved
in the edge region of tokamaks after L—H transitions.

The specific transport fluxes can be obtained by
substituting the viscous coefficients in the expressions for
the fluxes in equations (6.2.5.4.2.1)-(6.2.5.4.2.5). Unlike
when only the effects of the orbit squeezing are included,
all transport fluxes are now modified except the neoclassical
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This non-linear equation is similar to the bifurcation equation
in the L-H transition theory in [15, 129] to determine U, ,, in
H-mode plasmas.

Ion heat flux qib P /T; decreases exponentially as e U in
addition to the reduction as S~3/2 resulting from effects of orbit
squeezing in the banana regime [110]. In the plateau regime, it
decreases as e~ Unn [142]. In both regimes, there are additional
dependences on the complicated rational functions of U, ;.

The bootstrap current and Ware pinch flux are also
modified through ion poloidal flow Vi6 or Uy,,. When
the magnitudes of the ion and electron viscous forces are
comparable, the bootstrap current can be reduced and can be
used to control ELMs in the pedestal region.

6.5. Orbit loss

In the edge region of a tokamak, parallel plasma viscosity in
the banana regime in the conventional neoclassical theory is
no longer valid because collisionless particle orbits intersect
the plasma boundary, which is either determined by a limiter
or a divertor. There exists a loss region in the velocity space,
analogous to the loss cone in a mirror machine [143-145].
When particles collisionally scatter into the loss region, they
move out of the confinement zone. However, the loss process
in tokamaks differs from that in mirror machines. In mirror
machines, particles scatter into the loss region locally. In
tokamaks, particles first transport radially to the edge region
and then collisionally scatter into the loss region [146]. The
process involves both spatial transport and velocity space
scattering. It transports particle, momentum and energy from
the core region to the edge region. Physically, this is to set
a gradient scale length in the edge region so that the radial
transport rate is the same as the orbit loss rate. This modifies
the parallel plasma viscosity in the edge region, and thus, the
parallel momentum balance equation.

The loss cone is not isotropic in the velocity space. It
results in a toroidal flow even without obvious dissipation
processes [147,148]. This is another important aspect of
the orbit loss process for the physics of plasma flows in the
H-mode plasmas.
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6.5.1. Estimated orbit loss rate. ~The detailed orbit loss
rate depends on the position and the configuration of the
limiter or the divertor. Thus, it varies from configuration to
configuration. However, the gross scaling of the loss rate
should be robust and only depend on the fundamental physics
processes involved. Because the width of the ion orbits is
greater than that of electrons, ions dominate the orbit loss
process. In rare occasions when the electron temperature is
much higher than the ion temperature, electrons can dominate
the orbit loss process.

Particle, momentum and energy losses in the banana
regime are all modified by the presence of the orbit loss
region in the edge of tokamaks. The theory for energy loss
was first developed in [146] using model orbits in a divertor
configuration. By balancing the radial ion energy transport
rate to the edge energy loss rate to determine a temperature
gradient scale length, the corresponding ion energy flux at the
separatrix is [146]

M

1 iv?
Tl 2” fo.  (65.1.1)

T, W

oF dvvpv®
where €2, is the ion gyro-frequency evaluated at the outer radius
in a square well magnetic field model, I = 3¢'/? — 2¢3/2,
W = 0.8¢, and fj is the equilibrium ion distribution function
which is non-Maxwellian [149] because the radial transport
rate is comparable to the collisional energy scattering rate of
the Coulomb collision operator. The rate of the energy loss
does not depend explicitly on the plasma gradients. The effects
of orbit squeezing are not included in equation (6.5.1.1). It is
argued that because particle transport is intrinsically ambipolar
in tokamaks, ion orbit loss does not affect the radial electric
field [146].

However, from the flux—force relation and the theory for
the poloidal flow damping discussed in section 4, the particle
flux prior to the damping of the poloidal flow is proportional
to the flux surface averaged parallel plasma viscosity, which is
not governed by the intrinsic ambipolarity. When parallel flow
is neglected, the poloidal flow is driven by the radial gradients
of the plasma potential and pressure. In the edge region, the
orbit loss process dictates that the gradient scale length is of
the order of the squeezed orbit width [150]

Tvg
QS

in equation (6.2.5.9). This is also the scaling of the width of
the orbit loss region and effectively the scaling for the pedestal
width in H-mode plasmas [150]. In the banana regime,
the parallel plasma viscosity driven particle flux prior to the
poloidal flow damping must be balanced by the collisional
orbit loss rate. Thus, the parallel plasma viscosity scales as

Ax ~ 2 (6.5.1.2)

Vii
~ —NiMiBU[if.

5 (6.5.1.3)

<B V. ﬁ’i)

This yields an estimated orbit loss rate in the banana

regime [151]
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The radial electric field is negative when the parallel
viscous force due to orbit loss in the banana regime is coupled
to the viscous force in the plateau and Pfirsch—Schliiter regimes

[15,129]. The radial electric field is to make ion particle loss
vanish approximately to satisfy the ambipolarity constraint.
This process also corresponds to the poloidal flow damping in
the presence of the orbit loss region. When electron dominates
the orbit loss process, the sign of the radial electric field
becomes positive in the edge region.

It should be noted that the existence of the separatrix does
not change the collision frequency scaling of the orbit loss rate
because it merely changes the shape of the loss region in the
phase space but not the fundamental physics of the coupling
of the core transport with the collisional scattering into the
loss region to determine the gradient scale length in the edge
region [152].

Ion orbit loss flux when coupled to the electron anomalous
particle flux leads to a non-linear equation for the radial electric
field, first obtained in [153]. It has bifurcated solutions. It is
the first theory to explain the L-H transition in tokamaks.

6.5.2.  Non-linear momentum equation and L—H transition.
The parallel momentum balance equation in the core region
of axisymmetric tokamaks is a linear function of Uy ,,. In
tokamaks, only this combined quantity is determined from
the parallel momentum balance equation. In the edge region,
however, Uy, is of the order of unity, i.e., sonic because the
radial gradient scale length of the radial electric field is of the
order of the ion poloidal gyro-radius in the pedestal of H-mode
plasmas. This makes the non-linear plasma viscosity relevant
to the parallel momentum balance equation. Coupling the non-
linear plasma viscosity to the ion orbit loss in the parallel
momentum equation leads to a non-linear equation for U, ,,
and it has bifurcated solutions [15, 129].

A model for the non-linear equation based on the orbit
loss for a bi-Maxwellian distribution function

_ Nc 71',2/”2 NH 71/2/“2
S = o P (6.5.2.1)
is [129]
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where the subscript ¢ indicates that the quantities are for the
cold component of the distribution, the subscript H is for the hot
component, the left-hand side is the ion orbit loss associated
with the parallel plasma viscosity for the hot component that is
in the banana regime, the right-hand side is the parallel plasma
viscosity for the cold component, v{ is the v, for cold ions,
V, = V?B/vy, and Ar is A in cylindrical r coordinate. The
Ips is defined as
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Figure 15. Bifurcated solution for U, ,, as the ion orbit loss rate
increases by increasing the ratio of Ny /N, from 0.1 (a) to 0.13 (b)
and to 0.15 (¢). The dashed line is the orbit loss rate, and the solid
line is the non-linear plasma viscosity.

where  Kpn f_ll dy(1 = 3y2)2v,5i832(vy Jvx) x
{(y + Up.m/x)2 + [V*xig3/2(VT/Vx)]2}71» Kbs Z'SU:si X
(x*|S13/?). Tt is a formula that joins the non-linear plasma
viscosity in the plateau—Pfirsch—Schliiter regime and the orbit
squeezing viscosity in the banana regime. The poloidal heat
flow in the plasma viscosity for the cold component and the
electron viscosity are neglected in equation (6.5.2.2). The non-
linear equation (6.5.2.2) has bifurcated solutions for Uy, ,, over
a wide range value of v{ ;. An example is shown in figure 15.
When the orbit loss rate from the hot component is small, U, ,,
is the standard neoclassical value when the ion heat flow term
is restored in the plasma viscosity for the cold component.
This is the L-mode solution (figure 15(a)). As the orbit loss
rate increases, there can be three solutions for U, ,. Besides
the L-mode solution, two more solutions appear; only one of
them is stable. The new stable solution is the H-mode solution
(figure 15(b)). As the orbit loss rate further increases, only
H-mode solution for Uy, , exists (figure 15(c)). The L-mode
solution and H-mode solution are separated by the extremum
of the viscous force, which occurs at a critical value of Up, ,
defined as Ulfm. This critical value of Uy, as a function of
V4 that separates L-mode from H-mode is shown in figure 16
fore =1/4and S = 1.

The orbit loss also drives a poloidal flow as can be seen

38

Visi

Figure 16. Critical value of U}, that separates L-mode from

H-mode discharges as a function of v, fore = 1/4and § = 1.

from equation (6.5.2.2). The direction of the flow is in the
direction of the poloidal flow in the plateau—Pfirsch—Schliiter
regime in the standard neoclassical theory [6,7]. Thus, as far
as the poloidal flow is concerned, the orbit loss mechanism is
to increase the nominal value of v, effectively. In the L-mode
case, the magnitude of this flow is insignificant. In H-mode,
because of the large value of U, ,, and S, it should not modify
the neoclassical poloidal flow in (6.2.5.4.2.1) significantly
either. In both cases, the poloidal flow should be determined
by the neoclassical processes.

There are other observed L-H transition phenomena that
can also be understood in terms of the theory presented here.
The ion orbit loss mechanism provides a natural explanation for
the dependence of the H-mode power threshold on the direction
of the ion gradient B drift [154]. Neutral particles also affect
the L—H transition. Through the charge exchange momentum
loss mechanism, the extremum of the effective viscous force
disappears when the density of the neutral particles exceeds a
critical value [155]. This prevents the bifurcation, and thus
the L-H transition. The effects of the guiding center shift also
affect the radial electric field and, thus, L-H transition [156].

Neoclassical theory is usually employed to calculate the
radial electric field. However, using the physics of the Pfirsch—
Schliiter flow, the electrostatic potential variation in the edge
region of the H-mode plasmas is also predicted in [157-159],
which is in agreement with the experimental observations.

6.5.3. Shock formation. When the poloidal flow speed
becomes sonic, i.e. the poloidal Mach number My,
Vo B/(Bpvy) is of the order of unity, a poloidal shock can form
as a result of the resonance between the parallel components
of the inertia NV - VV and plasma pressure VP [130—
133]. A Bernoulli equation along the magnetic line can be
derived. Because the magnetic field is not uniform on the
magnetic surface, the poloidal flow along the field line is
similar to a nozzle flow in gas dynamics. However, because
the magnetic field is periodic in 6, the Bernoulli equation
satisfies the periodic boundary condition, which differs from
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the boundary condition for the nozzle flow. The plasma density
and temperature vary on the magnetic surface resulting from
plasma rotation. When M, < 1, the density and temperature
variations are negligible. However, when |1 — M| < /€,
a shock forms that is characterized by sharp variations of
density and temperature with a width that depends on the
dissipation of the system. This sharp variations of the density
and temperature lead to a large viscous stress in the region
where |1 — M| < /e [130-133,160,161].

The viscosity is still calculated from the kinetic equation,
but with an important difference. The equilibrium Maxwellian
distribution is no longer a flux function. The density and
temperature are allowed to have angle dependences. The
drift kinetic equation is derived using the full density and
temperature evolution equations including compressibility
terms as illustrated in [132, 133].

7. Neoclassical quasilinear theory and turbulence
suppression

Toroidal plasmas are plagued with turbulent fluctuations.
The quasilinear theory can be adopted to give qualitative
explanations to the observed anomalous particle, energy
and momentum transport fluxes [162-171]. The effects of
turbulence fluctuations on the bootstrap current, Ware pinch
flux and modification on plasma resistivity are not usually
addressed in the theory. In this regard, the conventional
quasilinear theory is not as sophisticated as the neoclassical
theory. However, the methodology of the neoclassical theory
is well developed and should be used to describe transport
related phenomena in toroidal plasmas. The purpose of the
neoclassical quasilinear theory is to apply the methodology
of the neoclassical theory to the quasilinear theory to unify
both theories. The emphasis here is on the methodology and
not on the magnetic geometry. Indeed, the methodology of
the neoclassical theory can be applied even to unmagnetized
plasmas.

The unification of neoclassical theory and quasilinear
theory is first accomplished in [19,21]. The methodology
of the neoclassical theory is applied to solve the drift kinetic
equation in the presence of turbulent fluctuations. The
quasilinear transport fluxes including not only particle and
energy fluxes but also bootstrap current [19,21,172], Ware
pinch flux, and modification of plasma resistivity [19,21, 167]
are obtained in the theory.

There are several important implications and conse-
quences as a result of the unification. It is first noted that the
turbulence fluctuation spectrum can be affected by the radial
electric field [21,173]. This eventually leads to the devel-
opment of the turbulence suppression theory [17]. The fluc-
tuation driven bootstrap current, Ware pinch flux, and mod-
ification of the electric resistivity are shown to be relatively
small compared with the corresponding transport coefficients
in the neoclassical theory. This provides a natural explanation
as to why even in turbulent tokamak and stellarator plasmas
these transport fluxes are close to the values of the neoclas-
sical theory. When the neoclassical methodology is applied
to calculate the toroidal component of the stress in tokamaks,
the toroidal momentum convective flux and the residual stress
emerge naturally [174—178] besides the conventional toroidal
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momentum diffusion flux [179] similar to the constituents
of the axisymmetric neoclassical toroidal plasma viscosity
[68-70, 134, 180-188].

7.1. Particle, energy and current transport

Particle and energy transport fluxes are routinely calculated
in quasilinear theory for toroidal plasmas [162-171]; the
bootstrap current and its conjugate, i.e. Ware pinch, are
not. The bootstrap current density parallel to the equilibrium
magnetic field can be calculated in the theory using the
neoclassical methodology. This puts the quasilinear theory
on the same level of sophistication as the neoclassical theory.

7.1.1. Flux—force relation. ~As in the neoclassical theory, the
flux—force relation is important to identify the forces that drive
transport fluxes. For the sake of simplicity, only electrostatic
fluctuations are discussed. When the electrostatic potential
and, subsequently, the plasma density and temperature are
allowed to have spatial and temporal random fluctuations,
plasma transport losses are enhanced due to perturbed radial
E x B drift.

Using the procedure that leads to the flux—force relation in
the neoclassical theory, the electrostatic potential fluctuation-
induced radial particle flux I'*"and heat flux ¢*" are, in Hamada
coordinates, [21]

an_ € <NB v&>>
_m e i
X
C ~
—W<(Bl-n)Nen-V<D>, 7.1.1.1)
X
and
wm__ [ (3NF-NT)B, vé
q9 = "le € 2 te
X
¢ [B-B (3.~ - .
< e(2ZNT—NT)B-Vv®), (7.1.12)
x'v'e\ B? 2

where the angular brackets denote both flux surface average
and ensemble average in this section, the tilde denotes
fluctuation quantities, the overbar denotes equilibrium
quantities and prime denotes d/dV. The definition for heat
fluxis (- VV) =(Q - VV) — (5/2)(NV - VV)T. From the
expressions for ['*" and ¢, it is obvious that these fluxes are
driven by the coupling between the perturbed potential and the
perturbed density and temperature. To calculate these fluxes,
the forces on the right-hand sides of equations (7.1.1.1) and
(7.1.1.2) must be evaluated from the solution of the kinetic
equation.

7.1.2. Linear drift kinetic equation. — Low frequency
fluctuations, with frequency w < |2|, usually cause larger
step size. Therefore transport fluxes are larger than higher
frequency modes, and the drift kinetic equation is appropriate
to use, in neoclassical quasilinear theory. The gyro-kinetic
equation can also be used [189]. However, the important
qualitative results do not depend on which kinetic equation is
employed in the theory.
The drift kinetic equation is [29]

9,

3E cf.
(7.1.2.1)

+ymn- Vf +vq - Vf+ 6‘@ +€UHE(A)
dt at I
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Assuming |e|<i>/T ~¢g<l,andw ~ wqg < w = v /(Rq) ~
v, equation (7.1.2.1) can be linearized. Here, wy is the typical
drift frequency, which is of the order of mv4/L,. The lowest
order equation is

vin-Vfo=C(fo), (7.1.2.2)
which has a solution
N V2 2ed
fo=fu= iy 3 exp <_v‘2 — va) . (7.1.2.3)
The next order equation is
% +yn-Vfi+vg-Vfi+vg-Vfu
+ (eaa(f + ev|E<">) v _ ¢ (f), (7.1.2.4)

where both neoclassical and quasilinear effects are included.
Again to treat the momentum restoring terms in the collision
operator, and the driving terms that are proportional to Pj, the
solution is expanded as [19,21]

. ) i

(-2
5 p

Substituting equation (7.1.2.5) into equation (7.1.2.4), keeping

only the perturbed E x B drift terms that are first orderin p /L,

ordering, and neglecting neoclassical VB and curvature drift

terms yield

(7.12.5)

t

oh 9P
—+v

e
+ V %L(:;/z)qP EE f
5 T 96

2 (3/2)% e dP
+(Vi— <L = — 7.1.2.6
<‘ : 97 (7.1.2.6)
where equilibrium flows are
T BxVV.-V0 ed
=n-VOVj+ ——— _+ — ],
M BQ p T
(7.1.2.7)
T BxVV-V¢ [(p eci>’
=(n- VC)VH+MT —+—=.
p T
(7.1.2.8)
5T BxVV.-VOT
ey I
p p 2M BQ T’
(7.1.2.9)
and
qt gy 5T BxVV.-V¢T
5= VO e
P 2M  BQ T
(7.1.2.10)

It is important to note that if the neoclassical VB and
curvature drift terms are kept in equation (7.1.2.6), neoclassical
viscous forces and, subsequently, all neoclassical fluxes can
be obtained as demonstrated in [21]. Thus, the unification is
accomplished.
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The standard quasilinear theory corresponds to the
‘plateau’ regime in the neoclassical theory. In the
‘plateaw’ regime, where @y |ePn/ T2 v
|a)mn| Wunn, the dissipation mechanism is the resonance
between the transit frequency wy,, = [v/ (Rq)]|m —ngq|
and the Doppler shifted mode frequency wZ, w +
WE. Here, d>mn is the amplitude of the fluctuating
electrostatic potential with mode number (m, n), and wg
(c®'/B¥)(mB x VV - VO —nB x VV -V¢).  The lower
limit of this regime prevents electrostatic particle trapping from
occurring. The upper limit is the lower bound of the fluid
regime. In this regime, neoclassical theory and quasilinear
theory are decoupled, and modes are also independent of
each other because plasmas are collisional enough to prevent
particles moving along the magnetic field line from sampling
all the modes.

In the plateau regime, equation (7.1.2.6) can be solved by
using a Krook model for the collision operator and expanding /
and®ash =3, 0 tmn Xpliet +i(m6 — ng +ny,)], and
b = Zmn#o D, expliwt +1(mO — n¢ + nyy)l, where 9,
represents the random phase. Substituting these expressions
into equation (7.1.2.6) and taking the v — 0 limit, which
corresponds to the asymptotic limit of the plateau regime, yield
the resonant part of the solution

o+ V) (- VO) (m = nq)| Dy,

>( ) eq)mn
T

(7.1.2.12)

< <

B = 1708 [ (7.1.2.11)
where

e(bmn

2 2 6m% 9o
5 p

)

Dy =

fM+fM(

Y (w - %L?/Z)q—_‘) (n) (
P

7.1.3.  Transport matrix. =~ The distinct feature of the
unification is to include the bootstrap current, Ware
pinch flux and the modification of the plasma resistivity
in the quasilinear theory. The Ware pinch flux is
obtained from the parallel flows in the components of
the electrostatic forces <eNBt V®), (B -n)Nen - V),
(e[(3/2)NT NT]B, - V®), and (B, - B/B*e[(3/2)NT —
NT]B - V®). These forces play the same roles as the
viscous forces in the neoclassical theory. The bootstrap
current and the modification on the plasma resistivity are
obtained by solving the parallel force balance equations for
electrons

(NeeBn - V®) = (Nee [ B) + (BFye) =0, (7.13.1)

and

<e (%Nje - Nje) Bn - V<D> +Te (BFye) =0, (7.13.2)

obtained by taking the vj and v (M.v?/2 — 5T, /2) moments of
equation (7.1.2.6). Thus, it is obvious that the forces that drive
the fluctuation-induced bootstrap current are the electrostatic
forces (NeeBn - V&) and (e[(3/2)NT — NT1B - V®).
Evaluating the fluxes using the resonant solution and
solving the parallel force balance equations yield the
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electron transport matrix [21], in approximate cylindrical

coordinates,
I Dy, —3D,,/2 wpP
qu/Te = _3sz/2 13Dnn/4' —0.87wPp
Jy/T. wpP —0.87WP e/ Te
Xle
x| X2 |, (7.1.3.3)
E®
where
X <a)> eBr T, 1 dP, edd T.+T;1dP
= " \mleel. T.P dr T.dr T. Pdr
3 1dT.
27T, dr’
1 dT,
XZe - 5
T. dr

@\ 2
oo L) )
4 " Rq | 4= \J2T,) |m—nq|
wp— YT v N Zm(m—nq) <e¢mn>2’
2 By Rquei | 4= Im—nql \V2T,
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1= 01757 e/ (RD

]

Bl

m,n

Ue¢ = O’5|:

x Zmn |m — ngq| (

-1

@ )o Jo| -
and @,y = | Dn -

The transport matrix is Onsager symmetric because the
collision operator is self-adjoint [7]. Itis important to note that
transport coefficients have different wave vector dependences.
The diffusion coefficients depend on the perpendicular wave
vector and are strongly anomalous. The bootstrap current and
modification on the plasma resistivity on the other hand depend
on the parallel wave vector and are not affected significantly
by the turbulent fluctuations.

2
me ) m

-2 (

m,n

lm — nql |m — nq|

7.1.4.  Physics implications of the unified theory. — The
bootstrap current, Ware pinch fluxes and the modification on
the plasma electric conductivity are not usually calculated in
the conventional quasilinear theory. The unification of the
neoclassical and quasilinear theories is to extend the standard
particle and energy fluxes in the conventional quasilinear
theory to include these additional transport quantities related
to the plasma current. The quasilinear transport matrix
in equation (7.1.3.3) is also obtained in [190] using the
conventional method for the neoclassical theory.

It is important to note that the fluctuation driven bootstrap
current is proportional to the parallel wave vector, i.e. (im—ngq).
Thus, it vanishes for symmetric modes that centre around the
mode rational surfaces where m =ng. There are at least two
possibilities that the fluctuation driven bootstrap current does
not vanish. The first possibility is that when the modes are
not symmetric relative to the mode rational surface, e.g., as
shown in figure 17. The second possibility is that when the
fluctuation spectrum has a radial gradient, i.e. >, |®,,|* has
a radial gradient as shown in figure 18, which is often the
case in tokamaks and stellarators. However, in both cases,
the fluctuation driven bootstrap current is small relative to
the equilibrium bootstrap current [19,21]. This provides
an explanation as to why in turbulent tokamak and stellarator
plasmas, the bootstrap current is close to the value predicted
by the neoclassical theory.

Similarly, because the modification of the plasma
resistivity resulting from the fluctuations is proportional to
|m — ngq|, the experimentally observed plasma resistivity is
close to that predicted by the neoclassical theory.

One of the most significant implications of the unified
theory is that the parallel momentum and heat flux balanced
equations in turbulent toroidal plasmas can be approximated
by those used in the neoclassical theory for localized modes
that have m — nq =~ 0. This implies that the poloidal flow in
tokamaks is close to what predicted by the neoclassical theory.
It follows that both the bootstrap current and the modification
on the plasma resistivity are well approximated by values in
the neoclassical theory.

There is a radial electric field in the thermodynamic force
X . in the particle flux. However, because for low frequency
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m=nq

Figure 17. Schematic diagram for a mode that is not symmetric to
the mode rational surface.
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Figure 18. Schematic diagram for the fluctuation spectrum that has
a radial gradient. The black dots indicate the positions of the mode
rational surfaces.

electrostatic fluctuations quasineutrality is imposed to obtain
the dispersion relation, ambipolarity is not maintained by
setting the ion particle flux to the electron flux. Thus, when
there is a change in the radial electric field, the fluctuation
spectrum must change to maintain ambipolarity. This leads to
the turbulence suppression theory.

7.2. Toroidal momentum transport

Neoclassical theory usually cannot explain toroidal momen-
tum confinement in tokamaks because the predicted toroidal
flow relaxation time is too long [68-70, 134, 180-188]. The
theory for the neoclassical toroidal angular momentum flux has
been evolving. The recent accepted form has been established
basically in [184, 185], where the key insight, that when the
potential and density variations along the magnetic field line
are taken into account the magnitude of the gyro-viscosity re-
duces to that of the perpendicular viscosity, is advanced. In
terms of Braginskii classification, these are viscosities that de-
pend on v° and v! respectively. Neoclassical toroidal angular
momentum flux consists of both perpendicular viscosity and
gyro-viscosity. The perpendicular viscosity yields the mo-
mentum diffusion, which determines the relaxation time scale,
and the gyro-viscosity, independent of the flow, acts like the
momentum source. Thus, it has constituents similar to that ob-
served in experiments. To understand the physics of toroidal
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rotation in experiments, fluctuation driven toroidal stress can
be important. The quasilinear theory for the toroidal momen-
tum flux provides a qualitative description for the toroidal ro-
tation when the turbulent fluctuation level is high enough to
compete with other mechanisms.

The drift kinetic equation is adopted. In the quasilinear
theory, as in most of the neoclassical theories for the axisym-
metric toroidal stress for tokamaks [67-70, 134, 180-188], the
toroidal stress is derived in the laboratory frame, where the
notion of the Coriolis force is not applicable. In the theory
for the sonic toroidal rotation [134],the Coriolis force appears
in the drift velocity. However, the diamagnetic flow is higher
order and is neglected in that theory. A quasilinear theory de-
veloped using the same sonic ordering is presented in [191].
Experimentally, the toroidal rotation speed, measured in the
laboratory frame, is usually subsonic and is of the order of
Vi 0pi/ L. Thus, the diamagnetic flow must be kept in the the-
ory for toroidal momentum confinement to model experiments.
For these reasons, the standard drift kinetic equation for sub-
sonic flow is employed. The gyro-kinetic equation can also be
used for the same purpose [192].

7.2.1. Linear drift kinetic equation. The toroidal stress can be
derived from the second-order linear drift kinetic equation in
the gyro-radius ordering, i.e. (pyi/L)>. Again, the perturbed
distribution function is expanded as

20V
P+t —g— s+,
t t

2y V)
2

fi=h+ (7.2.1.1)

where ¢ is neglected for simplicity. Assuming ¢ < 1, the
toroidal flow speed is approximately the same as the parallel
flow. Substituting equation (7.2.1.1) into equation (7.1.2.1)
and keeping only the perturbed E x B drift terms yield the
second-order equation [174]

+(UH'I‘L+VE)~Vh—C(h)=—<D()+D1+D2+l§3),

ot
(7.2.1.2)
where
- 2u _ ¢cBxVy 3D 3d av”
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T M R ( 36 a;)
5 € 2 <3/2>qp 0®
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~ e 2v R
D, —*JfMVH[(Vp L(z/z)CIp) <39)
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Dy=—=fm— 1+ .
’ TfM at ( v2
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Because g is neglected, it does not appear in the definitions for
gp and g in equations (7.1.2.9)=(7.1.2.10). Some of the first-
order terms in pp,;/L are kept in equation (7.2.1.2) because
these terms contribute to the residual stress that is proportional
to m — nqg ~ 0 for localized modes.

Equation (7.2.1.2) can be solved in the plateau regime
using the method in section in 7.1.2, and the resonant part of
the solution is

hypp =176 [a)f;:n +vy(m —ng)n- V@] Mo,

fM (1 + )
Vg

e % 2 6o
+?fM|:m<I>,,m (Vp - ng -

~ 2
_ncbmn (VI - 7L§3/2)qfl>i|
5 p

(7.2.1.3)

where
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T2 fm \||:m mn ( 5 B
~ 2

_ncbmn (VL - 7LE3/2)qf_‘) ]
5 p

2v“ ¢B x V)( ~ 3VH

2 fM : (m(bmnve ncbmnVC) X

The resonant solution is used to calculate the toroidal
component of the stress.

7.2.2. Toroidal momentum equation in neoclassical quasilinear

theory. The toroidal angular momentum equation is, in
tokamak coordinates,
2 2 s\ 1
(R V§~NMV)=—<R V§~V-P)+7(J~VX).
c
(7.2.2.1)

As shown in section 4.2, the radial current density (J - V)
is related to d(FE - Vx)/dt, and can be neglected because it
is smaller by a factor of (V4 /c)?. The flux surface averaged
toroidal stress can be expressed in a conservative form [68]

1d_,
— v

7.2.2.2
V7 dy ( )

<R2v;-v-§>: <R2V§-§~vx>,

where the kinetic definition for the toroidal momentum flux
for the electrostatic fluctuations is [68, 134, 186—188]

<R2V§ ﬁ . VX> = </ deR2V§ -nvy (ve - Vx) f>,
(7.2.2.3)

where vg is the E x B drift velocity. The quantity

(R*V¢ - B - Vx) is the toroidal angular momentum flux I'y.
Using the resonant solution in equation (7.2.1.3) to evaluate
(R*V¢ - P - V) in equation (7.2.2.3) yields [174, 175]

Fo= (szf P VX) = (P1) +(P2) + (P3), (7.2.2.4)
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The xp = wE, /v |m —ng|n - V6. It is obvious that the

magnitude of the ion stress is usually larger than that of
electrons.

The toroidal momentum flux consists of three types of
fluxes [174, 175]. One is the diffusive flux that is proportional
to 0V)/0x [179]. Another is the convective flux driven by V),

[174,175,177,193]. The other is the residual stress that is
independent of V|, [174-176]. The convective flux cannot be
expressed as 'V, a property consistent with experimental
observations. The residual flux is proportional to m — ngq,
which is the same as that in the fluctuation driven bootstrap
current. Thus, it changes sign across the mode rational surface.

Itis clear that I'y depends on the fluctuation spectrum. For

E mTB x Vy -V P T’
Oy =——— >\ bp—+2rr— |, (7.2.2.5)
MBS p T
'y can be expressed as
A
o ==Xo5 -~ VeVit (P, (7.2.2.6)

where A, and Ay are two parameters to model the mode
frequency, and

NMI v = (wE, 2 |e®yn/ TI
Ay
X m,n, (Ut |m_n9|’lve)
T BxVy-Vo\’
X\m——m—- .
M QB

The convective velocity Vj for this specific frequency is, after
neglecting terms that are either proportional to (m — ng) or
smaller by a factor of B,/(g B),

/ 5 T/
V¢:—X¢ [(AP—I)%+<)\T+E>?

(7.2.2.7)

(7.2.2.8)
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For different frequencies, the convective velocity will be
different.

The residual stress plays a role similar to the toroidal
momentum source when there are no externally imposed
momentum sources. There are at least two possibilities that
make the residual stress finite [174]. One is the asymmetric
modes and the other is that the fluctuation spectrum has a
radial gradient. They are the same as those that drive a local
bootstrap current discussed in section 7.1.4. Here, both of
these mechanisms drive a local toroidal flow. The magnitude
of the toroidal flow generated from the residual stress is of the
order of
Ppi

VH ~ Tvﬁ. (7.2.2.9)

The magnitude of the toroidal flow generated is of the
same order as that by the neoclassical toroidal plasma
viscosity [194].

7.3. Theory for turbulence suppression

As indicated in the quasilinear theory, when there is a change
in the radial electric field profile the fluctuation spectrum must
change accordingly to maintain quasineutrality [21, 173]. This
leads naturally to the development of the theory for turbulence
suppression resulting from the change of the radial electric
profile. The theory was first published in 1988 [17]. It
is primarily motivated by the need to explain the improved
plasma confinement in H-mode in the theory for the L-H
transition [15]. The radial electric field profile is usually
strongly modified inside the pedestal region of the H-mode
and inside the internal transport barriers.

The turbulence suppression theory is not specific for any
particular instability by design. It is a dramatic departure from
the traditional approach to plasma turbulence theories. It is a
generic theory for the consequence of a change in the radial
electric field profile. This type of theory is preferable because
not only specific underlying instabilities in turbulent plasmas
are usually difficult to identify but also turbulence usually
already manifests itself without a discernible quiescent phase
in toroidal plasmas. This motivates the development of the
turbulent suppression theory. The theory is not the same as the
theory for the stabilization of the linear instabilities, because
usually prior to the change in the radial electric field profile,
the plasmas are already turbulent.

7.3.1. De-correlation time  The suppression theory is focused
on the change of the de-correlation time when the radial electric
field profile changes resulting from the momentum balance
equation. The fluctuation spectrum and the fluctuation level
will respond accordingly.

The basic physics mechanism for turbulence suppression
does not depend on the toroidal curvature of the magnetic field.
Thus, the theory can be demonstrated in magnetized cylindrical
plasmas using the (r, 6, ¢) coordinates. The magnetic field is
in the ¢ direction. Plasmas are assumed to rotate in the poloidal
angle 6 direction. Suppose that there are two fluid elements
located at two positions (ry, 601, 1) and (12, 65, &) with a
separation (r_, 6_, {_) that is smaller than (kal, mal, nal).
Herer_ =ri—r,0_ =01 -0, = —0, (k' )

-1 1
my -, n,
are, respectively, the typical radial mode width, and typical
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Figure 19. Normalized de-correlation time as a function of the
normalized w'.

poloidal and toroidal mode numbers. When they are inside the
correlation volume, these two fluid elements do not diffuse
independently [195]. As a matter of fact, the diffusion
coefficient must vanish when (r_, 6_, ¢_) approaches (0, 0, 0).
To simplify the illustration without loss of generality, it is
assumed that there is no de-correlation mechanism in the ¢
direction. Thus, (¢2) remains constant. The angular brackets
demote ensemble average here. The de-correlation frequency
7! can be estimated from

(r2) = D (k3 (r2) + mg {62

-1
T

D

where D is the turbulence diffusion coefficient when
(r—,6_,¢_) is outside the correlation volume. The factor
(ké(ri) +m%(«93)) is used to model the effect that when
(r—, 6_) approaches (0, 0) the two fluid elements are correlated
indefinitely. If the plasma rotation frequency w in the 6
direction has a radial gradient, (6) is not a constant, and can
be estimated to be

1071(93)1/2 = o/ (22,

(7.3.1.1)

(7.3.1.2)

where prime denotes d/dr. The de-correlation frequency thus
satisfies a cubic equation
) : Dm3

( )3 _< oy

This equation is first derived using a two-point theory in [17].
However, the heuristic derivation given here is more physically
transparent and is developed in [16]. The dependence of
7! /(k% D) as a function of normalized ' is shown in figure 19,
which is also observed in a numerical simulation [196].

The plasma rotation frequency w can be either poloidal
E x B drift, or E x B drift and diamagnetic flow depending
on the origins of the turbulence [16]. The simplest case is
poloidal E x B drift only. In that case,

cE,
Br’
When plasmas rotate in the toroidal direction, the roles of 6
and ¢ are exchanged, and the frequency becomes [17, 173]
cE,
Br’

—1
T

k2D

—1
T

k2D

2

=0.

(7.3.1.3)

(7.3.1.4)

w =

(7.3.1.5)

w=q
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In the limit of Dm%a)’z/ (kSD)3 < 1, the de-correlation
frequency has the approximate expression

(kiD)*
(D)’ + Dmw?

(7.3.1.6)

This scaling has stronger effects on the improved plasma
confinement because the de-correlation time decreases as 1/’
[17]. In this limit, the denominator in equation (7.3.1.6) can be
expanded to obtain the expression of 7. in [17] exactly. In the

limit, where Dm(z)a)’2 / (kéD)3 > 1, the approximate t. is [197]
1

- W' (7.3.1.7)

This scaling has a weaker effect on improving the plasma
confinement due to the »'~>/* dependence.

In the derivation of equation (7.3.1.3), the turbulent
diffusion coefficient D is not assumed as a function of w.
However, in general, D can be a function of w. This
effect is addressed in [198]. It is shown that in the
limit, where DmZw'?/ (kéD)3 < 1, the expression for 7. in
equation (7.3.1.6) is not affected by whether D is a function
of @ or not. In the limit, where Dm2w/(k2D)’ > 1,7, in
general has stronger than ' ~%/3 dependence if D is a function
of w. The theory of turbulence suppression used for static
E x B flow can also be applied to time varying flow as long
as the time variation is much slower than the characteristic
fluctuation frequency as shown in [199, 200].

The turbulence suppression theory has often been invoked
to explain the observed improved plasma confinement in not
only toroidal plasmas but also in mirror machines [201].
The theory has been reviewed in [18] as well, although
the work that first presented all the relevant physics, its
implications on plasma confinement, and correct 7. in the limit

of Dm(z)a)’z/(kéD)3 < 1,1.e. [17], is not referenced.

8. Tokamaks with broken toroidal symmetry

Tokamaks are toroidally symmetric in principle. However,
there are always error fields or MHD activities present in real
tokamaks, which break the toroidal symmetry. The broken
symmetry leads to enhanced particle, momentum and energy
transport in tokamaks. The recent development of the theory
for neoclassical toroidal plasma viscosity (NTV) in the low
collisionality regimes in part is motivated by the need to
understand toroidal rotation damping observed in experiments
[38,202,203]. The importance of weak broken symmetry on
plasma confinement in other symmetric devices has also been
recognized [204, 205].

Because of the toroidal symmetry, the axisymmetric
neoclassical toroidal plasma viscosity is small; the toroidal
momentum diffusion coefficient is of the order of viipiz
[67-69, 180-188]. When the toroidal symmetry is broken,
the neoclassical toroidal plasma viscosity is enhanced. For
perturbed magnetic field §B/B ~ 10~ or higher, the toroidal
momentum dissipation associated with the neoclassical
toroidal plasma viscosity can become the dominant mechanism
in determining the toroidal momentum confinement in
tokamaks.
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There are two mechanisms that contribute to the |B|
spectrum for tokamaks with broken symmetry. One is the
direct addition [206] and the other is the magnetic surface
distortion [207]. The combination of these two mechanisms
for the non-resonant magnetic field perturbations is first
presented in [208]. Later, aterm Lagrangianis used to describe
the same combined mechanisms [209].

When there is a perturbed magnetic field B
B, (V, 0, ¢) in Hamada coordinates, the | B| spectrum is

|B| = [Bo + Bil, 8.1
where By is the equilibrium magnetic field. If Bj is
perpendicular to By, the contribution of the direction addition
mechanism to |B| is quite small for being of the order of
(8B/B)?. Suchis the case for the perturbed magnetic field that
forms a magnetic island. However, there is another mechanism
that is important for the | B| spectrum when the symmetry is
broken. That is the surface distortion [207]. Neoclassical
transport fluxes are calculated relative to the magnetic surface.
When the flux surface is distorted due to the existence of
the perturbed magnetic field, the transport fluxes are defined
relative to the distorted flux surface. Thus, it is the |B|
spectrum on the distorted magnetic surface that is relevant
to the transport fluxes. This mechanism is important even
when B is perpendicular to By. In the case of the magnetic
island, the contribution to the | B| spectrum due to the surface
distortion mechanism is of the order of \/§ B/B [207], which
is significant even for B/B ~ 10~*. For the non-resonant
perturbations, i.e. m # ng, both mechanisms are important.
The |B| on the distorted surface due to surface distortion
mechanism can be approximated as [208]

B—B(veg)+8—BsV+a—Bs9+a—Bs‘ (8.2)
- T av°d T ap T ar Y :
where E‘Y , Sde and éj are contravariant components of the

plasma displacement vector &;.
The |B| spectrum in a doubly periodic torus can be
expressed as

B = 30{1 - Z[bm cos (mf — nt)

+byps SIN (MO — n{)]}. (8.3)
The standard equilibrium ¢ cosé harmonic is included in
equation (8.3). The presence of the ¢ dependence in |B]|
spectrum implies that the toroidal component of the viscous
force is finite. This leads to the damping of the toroidal
flow. Physically, this mechanism is analogous to the fluid flow
damping in corrugated pipes.
Defining

A, (0) = Z {binnc cos[(m — ngq)0] + by sin[(m — ng)01},

m

(8.4)
and

B, (0) = Z {=bune sin[(m — ng)01 + by cos[(m — nq)61}

m

(8.5)
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Sb-P

a more compact form for B

B =By (1l —ecosbf) — By Z[An (6) cosngp

+B, (0) sinngo] (8.6)

is used in the theory to solve the bounce averaged drift kinetic
equation, where {p = g6 — ¢ is the field line label.
An alternative form for equation (8.3) is

B =By |:1 — Zemnei("le"“} ,

m.n
where ¢,,, is the Fourier amplitude of the (m,n) mode. Because
B is real, €,,, = €*,,_,, where the superscript * denotes the
complex conjugate.

The theory for neoclassical toroidal plasma viscosity in
tokamaks differs from those for rippled tokamaks [210] and
stellarators [3] in that there is only one class of trapped particle.
To avoid creating new classes of trapped particles, i.e. particles
trapped in the perturbed helical magnetic field, the perturbed
magnetic field strength must be weak enough so that there
should be no new local maxima or minima of B along the
magnetic field line. Thus, the approximate solutions to the
equation B - VB = 0 to locate local maximum and minimum
shouldbe & = O or z. Forasingle (m, n) mode, the creation of
anew class of trapped particles can be approximately prevented
when [211]

8.7

&

> 1, (8.8)

o= —-

|m - mI| bmn
where b,,, = 2 e + 0%, The quantity o is a simple
extension of o, = &/(ngd;) in the criterion for local ripple
trapping, i.e. in o] a,sind =1 in rippled tokamaks
[211]. Here, &, is the amplitude of the rippled field B =
Bo(1 — ecos6 — §; cosn¢). Equation (8.8) can be generalized
to multiple modes to yield

&
N (lm - nql bmn)M UM

> 1, (8.9)

243

where (|m — nq|by,)m is the maximum value of |m — nq|by,
for all modes, Uy is the absolute maximum value of the

v

Figure 20. Neoclassical toroidal plasma viscosity m, versus collision frequency v in a log—log plot. The superbanana (Sb), superbanana
plateau (Sb-P), 1/v, collisional boundary layer (B-L), collisionless detrapping (C-D), plateau, and Pfirsch—Schliiter (P-S) regimes are
shown. The dotted line indicates the bounce-transit and drift resonance.
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function

2

x sin[(m —ng) 0 —n&o — xmnl |

bmn (m - HQ)

U= —_—
m,n (bmn |m - ”fI|)M

(8.10)

and x,, is a phase factor defined as cos xun

bmnc/ bsmc + brznns and sin Xmn = bmns/ bzmc mns*

Comparing with the parallel viscous forces in axisym-
metric tokamaks, the collision frequency dependence for the
neoclassical toroidal plasma viscosity is rather complex and
is summarized schematically in figure 20. The theory and
the physics involved for each known collisionality regime,
which are extensions of the stellarator transport theory [3], are
reviewed here.

8.1. Bounce averaged drift kinetic equation

In the limit, where v, < 1, itis trapped particles, i.e., bananas
that dominate the transport processes in tokamaks with broken
symmetry. Because the toroidal canonical momentum p; is no
longer conserved, bananas wobble off the magnetic surface to
form drift orbits. These drift orbits have a typical width that is
of the order of the (vg - VV),/(vq - VEo)b. Here, (vq - VV)y
and (vq - V{o)p are the bounce averaged radial drift speed
and toroidal drift frequency, respectively. The physics of the
drift orbits dynamics is governed by the bounce averaged drift
kinetic equation [212].

The physics of wobbling bananas induced transport flux
in rippled tokamaks have been reviewed in [210], where
stochastic transport loss [213] and transport fluxes in the 1/v,
and v regimes [210, 214, 215] are discussed. However, physics
related to superbanana plateau resonance, superbanana, and
collisional boundary layer has not been addressed. In this
regard, the results reviewed here are also applicable for rippled
tokamaks when local ripple trapping is insignificant. There
is a topical review on the effects of three-dimensional (3D)
magnetic perturbations on toroidal plasmas [217], and a
summary on the neoclassical toroidal plasma viscosity in [218].

The drift kinetic equation is

yn-Vf+uog-Vf=C(f). (8.1.1)
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Because v, < 1, trapped particles are basically collisionless
during their bounce motion. Using v, as the small parameter,
the leading order equation for equation (8.1.1) is

yn- V=0, 8.1.2)
where the subscript 0 in f indicates the ordering. The solution
to equation (8.1.2) is

Jfo=fo (V. 5o, E ). (8.1.3)
The next order equation is
vymn - Vfl + vq - Vf() =C (f()) . (8.1.4)

Equation (8.1.4) is bounce averaged over the trapped particle
trajectory subject to the reflection boundary conditions at the
turning points of the trapped particles where v = 0, i.e.

,f1+ (V’ ;05‘911E!M) =fl— (V’ EO,Q‘,E,M), (815)

and

Sie (V. 80, =0, E, ) = fi— (V, 0, =6, E, 1), (8.1.6)

to annihilate vyn - Vf; term, where the subscript +
in f indicates the sign of v and +6; are the turning
points of the trapped particles, i.e. v (£6) 0.
Applying the bounce average operator, defined as (), =
Y, ($d6C)B/|vy])/($ A6 B/|v)|) to equation (8.1.4) yields

a a
(va - Vo) 872; +{va - VV)y, 37}:(/) =(C (/). B.L7)

where  d§ = ff‘ﬁ( d6. Note thatall the Py (v /v) fy like terms,
including momentum restoring terms, vanish after bounce
averaging.

A subsidiary ordering is used to solve equation (8.1.7).
A maximum ordering scheme is adopted by ordering
(va - V0)vdfo/3%0 ~ (C(fo)lb > (va- VV)pdfo/dV. This
implies that the radial width of the drift orbits is much smaller
than L,. Thus, the transport process is local in radius. The
leading order equation is

3 foo
(wa - Vio)y —— = (C (foo))p »
9%0
where the second subscript in f indicates the subsidiary
ordering. The solution to equation (8.1.8) is a Maxwellian
distribution, i.e.

(8.1.8)

Joo = fm(V). (8.1.9)
The next order equation in the subsidiary ordering is
d d
(va - Vioy o +(vg - VV)y O ={(C (fon)p, (8.1.10)
%o v

where fp; is the first order correction to foo = fm(V).

Equation (8.1.10) governs the physics of wobbling trapped
particles and is the equation to be solved to obtain transport
fluxes in the regime where v, < 1. However, the exact analytic
solution to equation (8.1.10) is unattainable for arbitrary
plasma parameters. The asymptotic analysis is employed to
seek its solution.
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The explicit expressions for the bounce averaged toroidal
drift frequency, the radial drift speed and the collision operator
are [208]

o _cuBo [2E(k)
(va - Vol = X o [T(k) 1], (8.1.11)
_ cuBy 1
(vg - VV), = ex KK
» Z?gd@ A, (0)(—nsinngy) + B,(0)(n cosn{o),
n k? — sin? (%)
(8.1.12)
and
__m 2 - for
(C(fo))y = NTCYE {[E(k) (1 — kK (k)] Yo }

(8.1.13)

where the prime denotes d/dV, and K (k) is the complete
integral of the first kind. The pitch angle parameter k2 is
defined as
k> =[E —e® — uBo (1 — &)1/ 21 Boe). (8.1.14)
The symbol E without an argument denotes the particle
energy and with an argument k denotes the complete elliptic
integral of the second kind. The pitch angle parameter k>
separates trapped particles that are parametrized by 0 <
k* < 1 from circulating particles categorized by k> >
1. The curvature drift, and effects of magnetic shear and
finite B, in equations (8.1.11) and (8.1.12) are neglected by
assuming ¢ < 1. Thus, uBy ~ E. Note that only the pitch
angle scattering operator is needed because it contains an
enhancement factor of 1/¢. The effective collision frequency
Vefr 1 Up /€ as can be seen directly from equation (8.1.13).
Examining the derivation of equation (8.1.10) and the
general property of its solution, several important physics
conclusions can be drawn. It should be noted that the
momentum restoring term in the collision operator vanishes
after bounce averaging. Thus, the parallel flow velocity does
not appear in the bounce averaged collision operator. This also
reflects in the thermodynamic forces where the parallel mass
flow and parallel heat flow do not appear. In addition, this
implies that the solution of the bounce averaged drift kinetic
equation does not contribute to the parallel momentum and
parallel heat flux balance equations. Thus, transport fluxes
derived from the bounce averaged drift kinetic equation only
contribute to the momentum balance in the direction that is not
parallel to the magnetic field. It has been shown rigorously
in a theorem that the solution of the bounce averaged drift
kinetic equation (equation (8.1.10)) does not contribute to
the parallel viscous forces (B - V- 7?) and (B - V- (3), i.e.
(B-V-7) = 0,and (B-V-®) = 0, because fy; does not
vary along the magnetic field line, i.e. for = foi1(V, &) [53].
This also implies that (By - V-7) = —(By,-V-7), and
(By-V-©) = —(Byy- V- ©), where B = By + B, for
any two vectors By and B,,. A particular case of interest is
that By = By = ¢'VV x V6, and By, = B, = x'V¢{ x VV
in Hamada coordinates. This theorem is also valid for fy
that is piecewise constant along the magnetic field line. Thus,
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the solution does not contribute to the bootstrap current. This
implies that to calculate the bootstrap current one must solve
the non-bounce averaged drift kinetic equation [53].

The boundary conditions for equation (8.1.10) are that

for=0 (8.1.15)
at k> = 1 where particles are barely trapped and that
0
[E() — (1 — kz)K(k)] Ao =0 (8.1.16)

0k?

at k* = 0 where particles are trapped at the bottom of the
magnetic well [3]. The boundary condition fy 0 at
k* = 1 is a statement that barely circulating particles do not
wobble off the magnetic surface significantly relative to the
trapped particles after circulating around the torus a few times.
Because the distribution function must be continuous, fy; = 0
for barely trapped particles. At the bottom of the magnetic
well, the flux in the pitch angle space must be continuous when
the pitch angle scattering operator dominates, which implies
[E(k) — (1 = k2K (k)10fo1 /9k> = 0 at k* = 0.

8.2. Neoclassical toroidal plasma viscosity derived from
bounce averaged drift kinetic equation

Equation (8.1.11) is solved by examining the relative strength
of the toroidal drift frequency and the effective collision
frequency. This leads to several collisionality regimes.
Because the toroidal drift frequency can vanish at a particular
pitch angle parameter k2, particles having k> = k2 can drift
off the flux surface unbounded. This indicates that there is
a resonance process occurring at k2. Thus, the solutions are
categorized in terms of the non-resonant and resonant fluxes.

8.2.1. 1/v regime. In this asymptotic regime, the transport
fluxes scale as 1/v. It occurs when the toroidal drift frequency
is much smaller than the collision frequency and can be
neglected. Equation (8.1.10) reduces to

dfm
(vg - VV)y Y (C (fo))y - (8.2.1.1)
Integrating equation (8.2.1.1) over k? yields
Oor _ e Jy 0K o VYLKV
k2 vp E (k) — (1 —Kk*) K(k) ’ o

after imposing the boundary condition that dfy,/9k> remains
finite at k2 = 0. -
The flux surface averaged particle flux I" is defined as

2r T
(ivv);/ di/ %/dvad.vv. (8.2.13)
o 2w J_p2m

It is convenient to use dv = 27/M>Y " dEduB/|vy|, and
duB =~ —2uBye dk? in performing velocity space integrals
equation (8.2.1.3). Only fo; contributes to the transport fluxes.
Because fj; is not a function of the poloidal angle 6, it only
contributes to the non-axisymmetric flux '™ and

T d dE 4K (k
rm :/ & jv*I/ZMBoede#
0o T M V2e

X {vq - VV)y for, (8.2.1.4)
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Replacing (vq - VV ), inequation (8.2.1.4) by (C (fo1))b, using
either equation (8.2.1.1) or equation (8.1.10), and imposing the
boundary conditions for fy; yield

"= 4 2]1% d—Evv
\/Z 0 g M b
E(k) — (1 =K)K®)] [afor )
x/de[ ® - JK®] (37 . (82.15)
afm/oV ak?
The flux surface averaged particle flux is [208],

after substituting 9fy;/0k> in equation (8.2.1.2) into

equation (8.2.1.5),
N— 7 —t
NG ( )

/ q)/ T/
P

T ) T
where v, = \/inNieflnA/(MimTia/z) for ions, and v
V2r NiZize‘e‘lnA/(Mel/sz/z) for electrons,

2 (M

ex'

; &
r?}iv = -

(8.2.1.6)

1
II/U:/ A [E(k) — (1 =K K(0)]
0

o o2\
X Zn2|: (/9 de <k2 — sin? 5) A,,)

o o2\
+ (/ deo (k2 — sin? E) B,,) ] (8.2.1.7)
—6,
n; for j = 1-2 is defined as
00 . 5 Jj—1
nj = / dxxfe™ <x2 - 5) 1‘)’—‘ (8.2.1.8)
0 D

The turning points of the toroidally trapped particles +6, are
defined as k2 = sin®(6,/2).
In this regime, the heat flux is [208]

Q??v _ g3/2 Mc\? vt4
W, = (7) v
p/ ed’ T'
X [772 (; + T > + 713?] , (8.2.1.9)

where 73 is defined in equation (8.2.1.8) with j = 3.

The symbol n; for j 1-3 is used to denote the
coefficients in front of the plasma gradients for neoclassical
plasma viscosity in various regimes. Their definitions are valid
only in their specific subsections.

The bounds for this asymptotic regime in the collision
frequency space are v, < 1, but v/e > ¢|®'|/x/, if finite VB
drift is neglected as is appropriate for ¢ < 1. The scaling in
this regime can be understood in terms of the random walk
argument. In the 1/v regime, the drift orbit trajectories are
interrupted by collisions and the step size is Ar ~ gvg /v,
where, vg; is the bounce averaged radial drift speed. The
fraction of particles that participate in the transport process
is of the order of /¢, namely, the fraction of bananas. The
de-correlation time is ¢/v. Note that for bananas, the bounce
averaged vg; is proportional to the magnitude of the perturbed
fields. Substituting all these estimates in the random walk
argument leads to the scaling for transport fluxes in the 1/v
regime.
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8.2.2. Collisional boundary layer v — /v regime. ~When
the collision frequency decreases further so that (C(fp1)), <
(vq - Vo), equation (8.1.10) can be solved by a subsidiary
ordering using the small parameter (C(fo1))b/{vd - Vi0)b.
Note that because (v4 - V&o)p # 0 for non-resonant transport
fluxes, the ordering is meaningful. The ordered equations are

) 9
(v - Vaohy L0040y v vy, ;“;‘ -0, (8221
and
9
(va - Vo) af(;ol =(C (foro))y » (8.2.2.2)

where the third subscript in the perturbed distribution f
denotes the ordering for this regime.
The solution to equation (8.2.2.1) is [208]

foro = — cuBy 1 %
OO = e (g - Vo), AK (k) 9V

Z%(wAn(G) cosnéy + B, (0) sinngy

k2 — )

The integration constant fy; o is found to be zero by solving
the solubility constraint of equation (8.2.2.2). The solution
in equation (8.2.2.3) is adequate to calculate the transport
fluxes by expressing them in terms of the collision operator
as illustrated in equation (8.2.1.5). However, the resultant
fluxes diverge logarithmically as k> — 1, i.e. approaching the
boundary that separates the trapped and circulating particles
[216]. This unphysical behaviour must be resolved. The
physics origin of the singularity is the logarithmic dependence
in the bounce averaged radial drift (vq - VV),. When fo10
in equation (8.2.2.3) is substituted into the bounce averaged
collision operator, the dfy;o/dk> diverges as k> — 1.
This indicates that the ordering scheme used in obtaining
equations (8.2.2.1) and (8.2.2.2) becomes invalid in the vicinity
of k? = 1, and implies that the original bounce averaged drift
kinetic equation, i.e. equation (8.1.10) must be solved in the
boundary layer region. The solution in equation (8.2.2.3) is
perfectly acceptable outside the vicinity of k> = 1. This
leads to the conclusion that the singularity can be resolved
by a collisional boundary analysis [3]. The solution in
equation (8.2.2.3) becomes the outer solution to be matched to
the boundary layer solution. In addition because the 8 fy; o/ 9k>
varies slowly relative to the rapid variation of the boundary
layer solution, fp; ¢ is also an approximate particular solution
to equation (8.1.10). Thus, the boundary layer analysis is to
find the homogeneous solution for equation (8.1.10) that is

localized in the vicinity of k% = 1.
The homogeneous equation that is valid in the vicinity of

4

k> =1is
(5=)
1—k?

Because the layer is narrow, only the highest derivative term
82f01/8 (kz)2 is kept in (C(fo1))b. The complete elliptic
integrals in the vicinity of k> =1 are also expanded to obtain
equation (8.2.2.4). The (1 —k?) in the argument of the
logarithm can be replaced by the width of the layer because

(8.2.2.3)
6

sin” (4 g

% for
3(k2)2'

VD
&

(8.2.2.4)
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the value of the logarithm is not sensitive to its argument.
Equation (8.2.2.4) can be cast into a dimensionless form

o
3’

where f_ is the distribution function inside the layer, o,, =
+1 indicates the direction of the toroidal drift frequency
(vq - Vo), Yo s the stretch variable defined as

—1/2
:(1—k2)<‘;—D) [va/In(16/v5)] 2, (8.22.6)

and v.q = 41/ (e|(va - VEo)pli—ax2). From the definition for
Y, Yo = 0 at k> = 1, and y, becomes large when k’<1 in the
asymptotic limit of the boundary layer analysis where v,q < 1.

The width of the layer Ak? estimated from equa-
tion (8.2.2.5) by setting yy 1, the edge of the layer, and
Vp = vy, i.e. neglecting the energy dependence in vp, is

= [va/n (16/va)]".

Note that in defining the stretch variable yy,, the width of the
layer in equation (8.2.2.7) is used which in turn is used to
estimate Ak®. This procedure yields an accurate solution in
the asymptotic limit. The iteration procedure may be solved
numerically to yield an accurate value in the transition region
from one asymptotic limit to the other [219, 220].

The layer equation equation (8.2.2.5) is solved in y, that
varies from oo, the region of trapped particles, to 0, the trapped-
circulating boundary. Fourier analysing the solution f in terms
of sinn¢pand cos n¢y yields the homogeneous solution

ZA _\/‘T.Vb
X <cos v ||y sin ngy — o, sin/|n|y, cos ng’())

+Y B, eV

n

X (cos\/ |n|yp cos n&y + oy, sin+/|n|yp sin n;0> ,
(8.2.2.8)

where A,_ and B,_ are coefficients to be determined from the
boundary conditions. Two other linearly independent solutions
that diverge as eV are discarded.

Setting the complete solution, which is the sum of the
outer solution equation (8.2.2.3) evaluated at the edge of the
boundary layer, i.e. k> = 1 — Ak?, and the layer solution
equation (8.2.2.8), to zero at yb =0,ie. k? = 1, yields

B, = [ cuBo deA ®)
A 4K(k)

192
2 9y}

(8.2.2.5)

(8.2.2.7)

v4 - Vo)p
/ VK2 —sin (9/2)]1%;(2%’ (8.2.2.9)
an
A= [ex’ s Ve & § B ©
/ k% — sin® (9/2)]]7“2%, (8.2.2.10)

where the subscript 1 — Ak? indicates that the quantities inside
the square brackets are evaluated at the edge of the boundary
layer.



Nucl. Fusion 55 (2015) 125001

Review Article

The solution inside the layer is completely determined.
It consists of the outer solution equation (8.2.2.3) evaluated
at the edge of the boundary layer, the layer solution
equation (8.2.2.8), and the coefficients for the layer solution
equation (8.2.2.9) and equation (8.2.2.10).

The boundary layer solution including both the
homogeneous solution and the particular solution needs to
match to the outer solution given in equation (8.2.2.3) to obtain

for = — cuBy % 1
N ey (g - Vo), V4K (k)

X{Z% do

X [A,, ) (1 — e~V cog |n|yb)

k% — sin® (%)

+0,B, (Q)e’*/myb sin |n|yb:| cosniy

do
+ S —
;?g VK2 —sin* (%)
X |:B,, ) (1 — e~V cos |n|yb)

—00An (@)Y sin /10| yb] sin n;o}. (8.2.2.11)
As yy, approaches infinity, fp; in equation (8.2.2.11) reduces
to the outer solution given in equation (8.2.2.3).

Substituting fo; into the expressions for the flux surface
averaged transport fluxes yields [216,221]

2
na ——N Ut4 M
v=Vv T 732 \ ed’

i P edD’) T’]
X —+— )+ =, (8.2.2.12)
Roe [771 <p T 2 T
and
q‘ljli\/g __N vf‘ M \?
T Va2 \ed
i p efb’) T/]
X ml—+ +n3— |, (8.2.2.13)
/326 [ : (p T) "T

where for j =1-3, n; is defined as

Xmin of 2 5 J—1
- d _ 2
K /0 . (x 2)

1
e 2 / AR [ER = (1= k) K®] Y (a2 +62),
0 n

Wt
(8.2.2.14)
and &, and ﬁ,, are defined, respectively, as
. 0 (=1/2)
n =502 TS
ak Vk2 —sin%(0/2)
x [ A(@) (1 — eV cos(/Inlys)
Fy
K@) |’

+0, By (@) sin(/Jn] yb)] (8.2.2.15)
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5_1{ o 12
Tk Vi —sin?(0/2)

X[B,(0)(1 — e~V cos(y/|n|y))

—00 A, (0)e V" sin(y/[nlyy)] % } :

The factor F, in equations (8.2.2.15) and (8.2.2.16) is
defined as

(8.2.2.16)

1
F, = N , (8.2.2.17)
10w £ [ 38 1]
where & ey’ 2
) | ex
Xpin = X Mc e | (8.2.2.18)

The energy integral and the pitch angle integral are coupled
even in the case where the energy dependence in y, is
neglected. The maximum of the dimensionless energy integral
Xmin 1S defined so that the toroidal drift frequency does not
vanish. This upper limit defines the non-resonant transport
fluxes.

The asymptotic limit can be defined when the E x B
drift speed is assumed to be much larger than the VB drift
speed, which can be satisfied in large aspect ratio tokamaks
or for low energy particles. In this case, the upper limit
of the dimensionless energy integral can be extended to
infinity. Transport fluxes are valid when v/e < ¢|®'|/x’ but
(v/e)/(c|®’|/x") > [(§B/B)/e]* where (§ B/ B) is the typical
magnitude of the perturbed field, e.g., typical values of | b, | or
|bimns |- The fluxes consist of two collision frequency scalings.
One scales as v resulting from the outer solution and the other
as /v from the boundary layer solution. The boundary layer
contribution usually dominates and the transport fluxes can be
simplified as [216,221]

2
rma — _ 1 Nv:‘ vV Vxd ﬁ &
W 42ndn T eldd/dy| ex’

<n(29)] S e+ 82)]

n

p/ ed’ T
— — |, 8.2.2.19
X[nl<p+T>+n2T] ( )
and
q7%; 1 N Mc\?
Vv = — I\I'U:1 Ved \/E 7C
T 427312 cld®/dx| ex’
16 12 5 5
()] S
p/ e(b/ T/
—+ — — |, 8.2.2.20
X|:'72<p+T>+773T] ( )

where o, = [4K®]" (%, d0A,0)/Vk —sin’ (6/2),
G = Upli—aws B = [AKE]' x ff‘g[deBn(e)/

VK2 —sin® (6/2), Bow = Bul1—ar» and for j = 1-3,

nj = / dx <x2 - f) x%e™ IV—D.
0 2 Yt

Both oy, and By, are evaluated at the edge of the boundary
layer where k> = 1 — Ak? if they diverge as k> — 1 as

(8.2.2.21)
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indicated in the subscript, and are evaluated at k> = 1 if
they are well behaved at k> = 1. There is a possibility that
op, and By, vanish at a particular radius. In that case, the v
scaling becomes important. For this reason it could be better
to use the expressions in equations (8.2.2.12) and (8.2.2.13)
for modelling purposes.

The transport scaling in this regime can be understood as
follows when E x B drift frequency dominates. The fraction
of particles that participate in the transport process is /e Ak,
the step size is vy /wg,, where wy, = c¢|d®/dx| is the angular
E x B drift frequency, and the de-correlation frequency is
(v/e)/(Ak?)?. The Ak? is given in equation (8.2.2.7). The
scaling of the transport fluxes in this regime follows from the
random walk argument.

8.2.3. Collisionless detrapping/retrapping regime. ~ When
(v/e)l(c|®'|/x") < [(8B/B)/e]?, the collisionless detrap-
ping/retrapping layer becomes wider than the collisional
boundary layer and the transport fluxes are dominated by par-
ticles that undergo detrapping and retrapping processes when
the E x B drift frequency dominates [3,28,222]. The detrap-
ping here means that a toroidally trapped particle, i.e. a banana,
becomes a circulating particle without suffering collisions.
The reverse process is called retrapping. This detrapping-and-
retrapping process is unique to tori without any symmetry. The
trapping state of particles can change even when there are no
collisions involved [3,28]. This transport mechanism is non-
resonant because the E x B drift speed is assumed to be much
larger than the V Bdrift speed. The transport fluxes scale with
collision frequency in this regime. The particle and heat fluxes
are [222]

V2 M \?
e = _WN (5) viv(8B/B)m
I ed’ T’
X [771 (p; + T ) + 772?] , (8.2.3.1)
and
q" V2e M \?
=N % v/ v (8B/B)m
’ qD/ T/
x [nz (ﬁ + eT + n3?] , (8.2.3.2)
where

(8B/B)y = Max{ [4K (ka)]™!
[
(8.2.3.3)

kq is approximately the same as k defined in equation (8.1.14),
and

5\/7! v
nj = / dx <x — 5) x6e_)‘2—D,
0 Y

for j = 1-3. The notation Max[s] in equation (8.2.3.3)
means the maximum value of the argument s along ¢,. The
fluxes in equations (8.2.3.1) and (8.2.3.2) are a simplified
version by approximating an integral as discussed in [222].
This simplified version is easier to implement. The more

Z (A,cosnip + B,sinng) ¢,

—SlIl 5

(8.2.3.4)

complicated version in [222] can be adopted if more accuracy
is preferred.

The random walk argument for this regime is similar
to that for the collisional boundary layer /v regime
except that the layer width is replaced by the collisionless
detrapping/retrapping layer width Ak3

8B/B
Ak§~7/<l.
&

(8.2.3.5)
Note that the ratio (6 B/B) /¢ is a measure of asymmetry in
the | B| spectrum.

8.2.4. Superbanana plateau regime. When the E x B
drift speed is comparable to or smaller than the VB drift
speed, these two frequencies can resonate, i.e. the toroidal
drift frequency vanishes, and the radial step size becomes
unbounded if the singularity is unresolved. This leads to the
superbanana plateau regime and the superbanana regime. The
collision frequency is large enough to resolve the singularity
but small enough to prevent the drift orbits from forming in
the superbanana plateau regime where v, < cMv?e'/(ex’),
but v/ (8B/Bo) > (8B/Bo)'* e 2cMv2e' /(ex’) [223]. In
the superbanana regime, the singularity is resolved by the non-
linear orbit trajectories [224].

8.2.4.1. Resonance away from the phase space boundary.
When superbanana plateau resonance occurs at a pitch angle
parameter k2 that is away from either kK> = 1 or 0, the
dependence of the complete elliptic integrals in the toroidal
drift frequency on k2 can be approximated by a Taylor series
expanded in the vicinity of the resonance k2. Specifically,

c®  cuBy ,[2E (k)
(va - Vo), & o € [K(k,) —1]

X'
()0,

where G(k) 2E(k)/K(k) — 1 [66]. From equa-
tion (8.2.4.1.1), the resonance condition that determines the
resonance pitch angle parameter k? is

_ cuBog,[zE k) _ 1] o

ex’ K (k,)
the toroidal drift becomes

(8.2.4.1.1)

c®’
X/

(8.2.4.1.2)

In the vicinity of k2,

cuBy , (dG 2 12
- — | (k" —k;), (82413
ex’ © (dk3>( ) )

(va - Vo), ~

which describes the collisional resonance broadening. The
collision operator can be approximated as

E (k) NS
(C(fio))y ? |: —(1- kr)] ) (kz)z’

K (k)
for a narrow resonance layer in the vicinity of k2.
Substituting results in equations (8.2.4.1.1)—(8.2.4.1.4) into
equation (8.1.10) yields the equation that governs the physics
of the superbanana plateau resonance:
By ,dG afq
_¢nbBo 4G ¥ - 1) fol
ex'  dk?
_ v [ E)
e LK (k)

(8.2.4.1.4)

dfm
aJjor .V, ZM
2% + {vg )b 3V

2 82f01
—(1 —k,)} el

(8.2.4.1.5)
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Equation (8.2.4.1.5) can be solved by expanding fo; as
ﬁ)l — Z (ﬁleing‘o + fn*efin;'o)’

n

(8.2.4.1.6)

where f, and its complex conjugate f,* are Fourier coefficients.
The equation for the Fourier amplitude f,, is

_cuBy ,|dG afm
aJn -VV n ays
e g et o VY 50
E (k 3% f,
= (k) -(1-k) f , (8.2.4.1.7)
& | K (k) 3y?2
where y, = k? — k?, (dG/dk?) = —|dG/dk?| because
(dG/dk?) is negative, and
By 1 % B, (0)+1iA, (0
(W -VV)p, = e ,0 n QM.
ex' 4K (k)2 VK2 —sin® (6/2)

(8.2.4.1.8)

Equation (8.2.4.1.7) can be cast into the standard dimension-
less form for the plateau regime in general [6,225-227]

9% g
—zg, =1, 8.2.4.1.9
92 8 ( )
where
v
- (va - VV ) frmﬂgn, (8.2.4.1.10)
leuBog'n/(ex")| |dG /dk2| av
E (k)/K (), — (1 — k2
f;:‘LD[ k)/K®), — (1= K)] (8.2.4.1.11)

£ [cuBoe'/(le| x)] |[dG/dk?|’

z =io1p, and p = y,D~!/3. The notation o, is the combined
sign of the electric charge e and mode number n: o7 = +1 if e
and n have the same signs otherwise oy = —1. The transport
fluxes do not depend on the sign of o;. Thus, o = +1 is
chosen without loss of generality. The width of the resonance
layer can be estimated by p ~ 1 and is

AK? ~ D13,

(8.24.1.12)
There are two scales in the pitch angle space. One is of the
order of unity associated with the equilibrium such as those in
(va - VV)p, and the other is of the order of Ak? ~ A1/3 <1
resulting from the resonance. The goal is to find the short
scale variation, of the order of the width of the resonance
layer, of the perturbed distribution function. Within this
scale, the equilibrium variation of k? is treated as a parameter.
This approximation is the same as that used in the collisional
boundary layer analysis in section 8.2.2 [216] and is used in
evaluating the transport fluxes.

In the asymptotic limit where D < 1, the layer variable
z describes the fast variation in the pitch angle parameter k>
space. Because the resonance is far away from k> = 0 or 1,
the boundary condition for equation (8.2.4.1.8) is that g, — 0
as | p| — oo. The solution for equation (8.2.4.1.9) is then

&n = ﬂHi(Z)y (824113)

where THi(z) = [;° dre¥=**/3 [228]. This is the standard
dimensionless solution in the plateau regime when the pitch
angle scattering operator dominates [6, 225-227].
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Substituting equations (8.2.4.1.9)—(8.2.4.1.11) into the
definitions for the particle and heat fluxes yields the transport
fluxes in the superbanana plateau regime [223]

pa b4 2 cM Nv? P ed N T’
oo = TN e o2 M\ T ) TP
(8.2.4.1.14)
and
qu‘_p 2 cM Nvt p ed T
=7 5 ||\ —+ +m= |-
T 4 |8 | lelx’ 3/ p T T
(8.2.4.1.15)
The coefficients n; for j = 1-3 are
= af 2 5\
n-=/ dx2x (x —7>
! Xmin 2
e K&)
X2
o+ , 8.2.4.1.16
|dG/dk2‘Z| nl(ey + B, ( )

where the subscript k, indicates that the quantity is evaluated at
k = k,, the lower integration limit of the energy integral is set
by the resonant condition and is given in equation (8.2.2.18).
Note that all the k& dependences inside the energy integral in
equations (8.2.4.1.16) are evaluated at k,. The transport fluxes
are identical to those obtained in [223] using a Krook model
as expected.

When the radial electric field vanishes, k> ~ 0.827 [3],
and fluxes reduce to [223]

na 2 cM Nv? p ed T’
e lelx’ 772 [”‘ (? * 7) * "27] ’
(8.2.4.1.17)
and
95—p 2 cM Nv? P ed T
=7 T lely 772 [” (?+T>+”37]’
(8.2.4.1.18)

where n; = C;4K (k)k>(1 — k3 Y, [nl(a? + B2)y,, and C;
for j = 1-31is deﬁned in section 6.2.2.

The random walk argument for the superbanana plateau
scaling goes as follows. Balancing the residualVB drift
frequency w,,z(Ak?) with the effective collision frequency
(v/e)/(Ak?)?, after evaluating (vq-Vio)p at k ky,
determines the width of the layer in the k* space (Ak?) ~
[(v/s)/lwv3|]1/3, which is basically $'/3, where wi,
da)vg/dkr and the VB drift frequency wyp is wvp
—[c,uBo/(eX’)]8’[2E(k)/K(k) — 1]. The step size is Ar
[var/ (|w’VB|Ak2)], which remains finite due to collisional
resonance broadening. Recognizing that the fraction of
particles that participate in the transport process is /e Ak2,
i.e. the particles that are centered around the resonance k2,
and the de-correlation frequency is (v/¢) / (Ak?)?, superbanana
plateau scaling is obtained as D ~ \/Evgr/ |w§ 5|, which
is the same scaling as those given in equations (8.2.4.1.14)
and (8.2.4.1.15).

The theory discussed here is for the superbanana plateau
resonance occurring away from the phase space boundary,
ie. k2 = 1 or 0. The boundary conditions at the phase
space boundary can be ignored when the resonance pitch angle
parameter k> is away from the boundary by more than the
width of the resonance layer Ak?> ~ $1/3. However, when the

~



Nucl. Fusion 55 (2015) 125001

Review Article

resonance occurs in the vicinity of the phase space boundary,
the boundary conditions at k> = 1 or 0 cannot be ignored and
these conditions modify the resonance physics as first noticed
in [219, 220].

8.2.4.2. Resonance in the vicinity ofk> = 1. When resonance
occurs in the vicinity of k> = 1, the toroidal drift frequency
can be approximated as [66]

@ B
(va - Violy = < — - e /08/
X ex
x é—kf+(kf—k2)
In (4/\/1 - k2)

(8.2.4.2.1)

The proper interpretation of equation (8.2.4.2.1) is that the
resonance k2 is determined from the resonance condition

2
In (4/«/@) -

c®  cuBy ,
- €

o ex!

kz

=0.

(8.2.4.2.2)

The 1 — k> = Ak? in the argument of the logarithmic function
is the width of the resonance layer to be determined. Thus, in
the vicinity of the resonance,

cuBy
(vg - Vo) ~ o (k2 — k%), (8.2.4.2.3)
which describes the collisional resonance broadening. For a
narrow resonance layer, the collision operator is approximated
in the vicinity of k? = 1 as [66]

VD 1 82fol
C =2— , 8.2.4.2.4
(€ (fo)) e In[16/(1—K)] 032 ( )
where y; = kf — k%. Thus, the equation that governs the
resonance in the vicinity of k> = 1 is
B, ) )
_CH /Og’ylﬂ +(vg - VV), afm
ex a¢o av
1 2
' fu (8.2.4.2.5)

e In[16/(Ak2)] 9y

Using the same procedure in solving equation (8.2.4.1.5), a
dimensionless equation for the Fourier amplitude fj,, defined

in fo = Zn (flneinio + fla;lefin{o)’ is

82gln
dz]

—Z2181n = 1, (82426)

where z; = o1y Pyi, B = Qup/e) [In (16/AK2)] " x
[lel X’/(cuBos’)], and o7 is the combined sign of the charge

e and the mode number n as defined previously. The
dimensionless function gy, is defined as

-VV a
Fin = (a - VVi _ 5239/m (8.2.4.2.7)

“rlenBoen/ex)l T av e
The width of the resonance layer can be estimated from the
definition for z; to be Ak? =~ \31]/3, and can be used in the
argument of the logarithmic function. An accurate numerical
evaluation for the layer width can be made using the iteration
procedure for the best fit to the numerical solution of the bounce
average drift kinetic equation in the transition region [229].
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Equation (8.2.4.2.6) is the standard equation for the
plateau resonances derived previously. It is to be solved
subject to the boundary conditions that g, = 0 at k* = 1
and vanishes far away from the resonance kf, ie. g, — 0
when k? « k2. These boundary conditions are different from
those that require the perturbed distribution function vanishes
far away from the resonance for standard plateau resonances
away from the phase space boundary in section 8.2.4.1. There,
the boundary conditions at the phase space boundary are not
important because the resonance layer is narrow.

The solution to equation (8.2.4.2.6) consists of the
particular solution and the homogeneous solution. The
particular solution g1, , that is compatible with the boundary
condition is [6, 66,225-227]

gunp =7HI(z1). (8.2.4.2.8)

Note that gi,p is the standard solution for the plateau
resonances because it satisfies the boundary conditions given
in section 8.2.4.1 and there are no homogeneous solutions
that are compatible with the boundary conditions when the
resonance is away from the phase space boundary. However,
to impose the boundary condition at k> 1, homogeneous
solution must be included. For o = +1, the homogeneous
solution that is compatible with the boundary conditions is
Ai (z]e*izn/"%). Here, Ai is Airy function [228]. Foro; = —1,
it is Ai (ze""/3). These two functions are mirror images of
each other [228]. Thus, oy = +1 is chosen without loss
of the generality. The complete solution compatible with the
boundary conditions is

gin = I1Ai (z1e”>P) + T Hi (z1) (82.4.2.9)

where /.| is a constant determined from the boundary condition
that g, = 0 at k> = 1 and is

wHi(z11)
I =———7———, 8.2.4.2.10
cl Ai (lee—12ﬂ/3) ( )
where z;; is defined as z1; = iﬁfl/3 (k2 —1).

Substituting the solution into the expressions for the
transport fluxes yields [66]

(8.2.4.2.11)

7 Nv} cM 24/2¢

4 732 le| x’

p/ e®/
<K (k;) [m | — +
p T

/

D Inl e+ 57)
€ n
T/
+m3 |
> 3 T]
where for j = 1-3

n; = / dx2x4<x2—§) e Cp,  (82:42.13)

‘min

o0
/—u—kz)a;‘“

Ai (z1e777) ] }

ke

(8.2.4.2.12)

and

Hi
Con i (z11)

Ai (Z”e—iZn/S)

dlzllRe{Hi (ZI)—[

(8.2.4.2.14)
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1.2

508

L

(1 — k2) s>, Cp1 approaches unity.

The factor Cy; as a function of (1 — k?) ¥ 5~ is shown in figure
21 [66]. When (1 —&2) 9, > 1, Cpi = 1, which is the
same value obtained when the resonance occurs away from
phase space boundary discussed in section 8.2.4.1. When
the resonance occurs at k> =1, Cp1 &~ 1/6, an indication
that the strength of the resonance is weakened. There is an
overshoot in the transition from the phase space boundary to
the interior. The integrand of C,; is shown in figure 22 [66].
The boundary condition at k* = 1 modifies the shape of the
resonance significantly when (1 — k2) D] D% « 1. When the
resonance is away from k> = 1, the shape of the resonance
becomes centrally peaked.

8.2.4.3 Resonance in the vicinity of k> = 0.
k2 =0, (vq - Vo) can be expressed as [66]
c®  cuBy ,

In the vicinity of

(vg - Vo), ~ e [1 =k + (K = k?)].
v - LR - (- )]
(8.2.4.3.1)
Thus, the resonance for (v4 - V&p)p occurs at
@’ B
=Ty 1-) =0, (82.43.2)
X ex

which is an equation for the resonance k. The residual
(vg - V&o)p for the collisional resonance broadening is

K.

0, the collision operator can be

(%)

It should be noted that even though the resonance layer is
narrow, the 3/9k> term is of the same order as 82/(8k2)2
because k% is small. Employing equations (8.2.4.3.3) and
(8.3.4.3.4), the bounce averaged drift kinetic equation in the
vicinity of k> = 0 that governs the resonance becomes

/“LBO / (k2

(va - Vo), = (8.2.4.3.3)

In the vicinity of k>
approximated as [66]

vDB

w0 (0o
2¢ k2

(C(fi0))y =~ YE

(8.2.4.3.4)

C,U«Bo , 2 0fo1 3fm
—k -VV
e (k} ) —— 2% + (vg )b 3V
vwp 9 23f|0
= —— |k"=— 8.2.4.3.5
2¢ k2 ( k2 )’ ( )

6 10 12

(1-&2)

Figure 21. The form factor C},; as a function of (1 — k2) 57173 is shown. When resonance is at k> = 1, Cp1 ~ 1/6; when
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which can be solved by expanding fy; > fonel"o04

fi; e7"%). The function fy, satisfies
C/LB() , .
eX ( ) lnf()n

('Ud vV)bn
k23f0n )
0k?
Defining u k? [alﬁo/(i |n|)]71/2 and u
(i |n])]7"/2, equation (8.2.4.3.6) is cast into
aszn 1 afOn
2 - - fOn =
ou u ou
8 1/2 1 B\ !
U —(SE20) (8.2.43.7)
BV Vo \ lel x’

where Vg = (2vp/¢) [|e| X’/(cuBos’)]. Defining g, = «/u fon
to remove the first derivative, and then changing variable from
u to w = 2u, equation (8.2.4.3.7) becomes a Whittaker’s
equation [66]:

dfm

k2
Vv
VD d

= —— 8.2.4.3.6
2¢ k2 ( )

= = kZ[o1Do/

u — ugy

<'Ud . VV)bn

1)

i|n|

32gn 1 M0/2 ﬁ
ST =Y (v VV
awz (4w2 ) ” &n 4«/@ ('Ud )bn
3 5\ 12 /
A (orB0) 7 1 Jelx’. (8.2.43.8)
“ov \ilnl)  Soeubo

Solving equation (8.2.4.3.8) in terms of Whittaker’s functions
yields

\Y %o\ 8
o= 2 VWb (”1”°> My (82439
Do lcuBog’/(ex )| \ i |n] av
where
Yy Y-
hy = 12 4 2 / 2/
Jw f Zf w (Y1, 1)
Y Y,
42 N/ , (8.2.4.3.10)
2w )y T W, )

and 7, and I, are constants to be determined. The Y, and Y,
are Whittaker’s functions defined as [228]

1
Y =e Y2 J/uM (5 1, w> , (8.2.43.11)

and

1
Y, = e "2 /wlU (E — 1, w) , (8.2.4.3.12)
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Figure 22. The integrand of the integral Cy, as a function of |z;|. When (1 — k?) §~'/* « 1. The boundary condition at k> = 1 modifies the
resonant integrand significantly. When (1 — k) 9~/ > 1, the integrand becomes centrally peaked as expected.

where M (a, b, w) and U (a, b, w) are Kummer’s functions

[228], and A, ug/2. The W (Y1, Y,) = —1/T(a) is
the Wronskian, and a = (1/2 — A,). Because Y, diverges
logarithmically as w — 0, I = 0. For localized solution, the
dimensionless function g, — 0 as w — o0, and the constant

I is
w Vo /w
W (Y1, Y2)'

The function g, that satisfies boundary conditions is then
Y o Y2 //w Y, (¥ Yi/Jw
dw + dw
2Jw Jy 2Jw Jo

W (Y1, Y2) W (Y1, Y2
(8.2.4.3.14)
and fj, is also determined.
The transport fluxes calculated using the solution for fy;
are [66]

(8.2.4.3.13)

8n =

7 Nv cM 24/2¢

My o= —F—35—— »_lnl (a7 + 7). K (k)
4732 el x' & & G
Py, T (8.2.4.3.15)

X — — |, 2.4.3.
m » T Up T
and
d%p0 7Nl cM 226 .
T __ZT[Z»/Z le| x” & Xn:|n|(an+ﬂn)k,zK(kr)
p/ ed’ T’
—+ +n3— |, 8.2.4.3.16
X [ﬂz (p T ) o ( )

where coefficient n; is defined as, for j = 1-3,

.
X,

and the form factor that describes the transition is

dx2x*

‘min

57
<x2—§> e Cp,  (8243.17)

1 [ V2 T (a)
= RelXZ(1—i
Cao znfo djul e{ -
x ReN ooeWdu/ £ +£ w’ h }
Jw Sy Jw’ ﬂ 0 Jw’ '

(8.2.4.3.18)

Note that Cpy depends on the parameter A, = u/2 which is a
function of energy. If thermal quantities are used for the energy
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to evaluate A, Cpo becomes a function of temperature and can
be taken out of the energy integral. If the energy dependence
in A, is treated rigorously, there can be a different collision
frequency scaling in the transition region.

The factor Cpy as a function of A, is shown in figure 23 [66].
When the resonance occurs atk? = 0, Cpo &~ 1/4, anindication
that the resonance strength is weakened. When 1, > 1,
Cpo — 1 as expected. There is also an overshoot in the
transition region. The integrand of Cp for several values of
A, is shown in figure 24 [66]. When X, > 1, the effects of the
boundary condition at k> = 0 diminish.

8.2.5. Superbanana regime. In this regime, the singularity
resulting from the resonance between the E x B drift frequency
and the V B drift frequency is resolved by the non-linear drift
trajectories, i.e. superbananas, similar to the standard banana
regime. It onsets when the effective collision frequency for
superbananas is less than the superbanana bounce frequency,
i.e. verr ~ v/(8B/Bo) < (8B/Bo)'*e ™ 2cMv?e'/(le|x’) so
that collisionless drift orbits can form [3,224].

To solve the bounce averaged drift kinetic equation,
it is necessary to know the toroidal drift frequency for
superbananas. To this end, the constant of motion of the
second adiabatic invariant J, = § df|vy| is needed, which
is valid when curvature drift like terms and magnetic shear
are neglected. Here, the integral is performed in between the
turning points of the trapped particles, i.e. § df = ff‘g‘ do,
where v)(£6;) = 0. Using the magnetic field spectrum for
| B| in equation (8.3) and assuming that |4, (0)|, and | B, (0)|
are much smaller than ¢ yield

,LLB()S
M

1 [uB _ .
+E\/T Z (Apcosngo+ B, sinng),  (8.2.5.1)

where A, = §dOA,0)/Vk>—sin*(0/2), and B,
¢ d0 B, (0)/vk* — sin*(6/2).

Because the toroidal symmetry is broken, trapped particles
drift off the flux surface following a constant J, surface. Thus,
at any two points on the constant J, surface,

Jy=8 [E(k) — (1 — k) K (k)]

D (V, o) = J2(Vy, oo), (8.25.2)
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Figure 23. The form factor Cyy as a function of A,. When resonance at the k* =0, Cpo ~ 1/4. When the resonance is far away from

k? = 0, Cy approaches unity as expected.
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Figure 24. The integrand of the integral Cy as a function of |w|. When the resonance occurs at the k* = 0, the integrand is modified
significantly by the boundary condition. When the resonance is far away from k> = 0, the integrand approaches a centrally peaked resonant

function.

where (Vo, oo) are the coordinates of the reference point on
the drift trajectory. Assuming the width of the orbits is smaller
than the radial gradient scale length of J,, equation (8.2.5.2)
can be expanded to obtain an equation for the orbit width
(V= Vo) [224]:

3

3%
v 2+(v vo)—

/ MBOEO
280 Z [A, (cosngy — cosnépo)

+B,,(smn§0 —sinngy)] =0,

= (v vo>2

(8.2.5.3)

where J, =8/uBoe/M[[E(k) — (1 — k*)K (k)], and the
additional subscript ‘0’ is to indicate the quantity is evaluated
at (Vo, oo). Solving equation (8.2.5.3) yields the orbit width
V=V =

an\ _9h1

-5 ={GR)
Vo IVZ &

v
X Z [A, (cosngy — cosnéoo)
n

82f2 1 [LB()S()

M

12 —1
+Bn(sinn;0—sinn;00)]} ][aziz/avg] . (8.2.5.4)
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The toroidal angular velocity wy, can now be calculated. The
bounce averaged toroidal drift velocity can be written as

Mc 0J,/0V
ex' MdJy/dE’
Because MdJ, /9 E appears in all terms in the bounce averaged
drift kinetic equation, it is not necessary to perform any
operation on it. Expanding 9J,/0Vin the numerator of
equation (8.2.5.5) in the vicinity of Vj yields

wp = {vg- Vi) = — (8.2.5.5)

Wi X wo + w6 V-V, (8.2.5.6)

where wq (vg - V&o)p evaluated at V. To obtain
equation (8.2.5.6), it is noted that the variation of wy, on a
given flux surface is much weaker than that of wy on the
drift surface. Substituting the width of the superbanana given
in equation (8.2.5.4) into equation (8.2.5.6) yields a simple
expression for wg, on the drift surface [224]

Wy = Ogb@rpy/ k2 — F(z),

(8.2.5.7)
where oy, denotes the sign of wy,,
_ 172
. Mc|| 921, 8B/By { wBoe\'? !
Wip = - 272
ex Vg 2 M
172
x%(k) (“f;’g> , (8.2.5.8)
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the effective pitch angle parameter is
(8.2/8V0)?

( ) 1727
the effective magnetic well is

F(go) = Z [A, (cos ngo — cos ngeo)

~y

(8.2.5.9)

32
vy

3B/By
2e

wnBoe

2 M

BB/B

+B,,(sinngy — sin nZ)]1, (8.2.5.10)

the normalized perturbed magnetic field strength is
3B -
B Z [A, (cos néom — s nom)

+B, (sin nzom — sinncom)1, (8.2.5.11)

Com is the angle at which Y, (A, cosniom + B, sinngom)
is the global maximum, ¢, is the angle at which
> (A,, €OS nLom + By sin ng“o,,,) is the global minimum, and
o; denotes the sign of 32/,/3VZ. The angle o is chosen
according to the sign of 32J2/dVZ. If 82J,/8V¢ > 0, ie.
0j = +1, {oo = Zom, otherwise {oo = ¢om. Thus, superbananas
can be trapped either on the side of ¢, or on the side of {om
depending on the sign of 3%J,/9 VOZ. There is a possibility
that the quantity Zn (A,, cosngy+ B, sin n;o) can have local
maxima and minima. In that case, there can be multiple
trapping regions. The function F (o) is an effective magnetic
field well that can trap bananas to form superbananas. The
effective pitch angle for the superbananas is k2. Because
F(g) < 1, &2 < 1 for superbananas, and &2 > 1 for
circulating drift bananas.

The superbanana orbits have wy ~ 0, i.e. the E x B
and VB drifts almost cancel each other. In order for the
cancellation to occur the normalized energy x> = v?/ v‘ must
be larger than x2, . Note that the resonant condition wy ~ 0
can be satisfied for any species regardless of the electric charge
of the species and the sign of the radial electric field.

The typical magnitude of @y is of the order of
(8B/By)"/? £71/2|w,|, where wy is the typical angular frequency
of the circulating drift bananas
cuBy

&'l
ex’
Thus, the onset of the superbanana regime is when veg ~
v/ (8B/By) < (8B/By)'/?e Y?|w]. The collisions are
so infrequent that trapped particles can complete their drift
trajectories before suffering collisions. The fraction of the
superbananas f, can be inferred from the definition of &g, Itis
the fraction of the banana particles 1/ times the fraction of the
superbananas among the bananas, which is (§B/By)"/? ¢1/2,
and fy ~ (8B/Bo)'"%.

The bounce averaged drift kinetic equation is solved using
the same method used to calculate transport fluxes caused by
orbits with finite width such as the drift orbits in bumpy tori,
the potato orbits, and squeezed banana orbits in tokamaks in
section 6 [110, 111, 120].

The linear bounce averaged drift kinetic equation for
trapped particles is

(8.2.5.12)

wy ™~

3for dfor fm
(va - Vo) 2% +(vg - VV), 3V +{vg - VV), 3V
= (C(fo)y - (8.2.5.13)
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The normally higher order (vq-VV)pdfoi/0V term must
be kept because 9fy/0V afm/oV. In the
superbanana regime, equation (8.2.5.13) is solved by
a subsidiary expansion exploring the small parameter
[v/ (8B/By)1/[(8B/Bo)"/? €7 1/2|w|] < 1. The leading order
equation is

~

afo1,1 dfor1 afm
-V —_— -VV VV), —=0,
(va - Vol 0% +{vq )b +{vg - VV), 3V
(8.2.5.14)
and the next order equation is
dfor2 afo1,2
\% -VV =~ =(C
(va - Voly, 2% + (g )b 3y (C(forn), -
(8.2.5.15)

where the second set of the subscript denotes the subsidiary
ordering. Changing independent variables from (V, ¢, E, )
to (Ja, ¢, E, 1), equations (8.2.5.14) and (8.2.5.15) become

dfor1 v _
(va - Voly 2%, +{vg-VV), oy =0, (8.25.16)
and
a
{(va - Vo g‘;.i = <C(f‘”'1)>b , (8.2.5.17)

Equation (8.2.5.16) is solved either by integrating it directly
or utilizing the fact that J; is a constant on the drift surface
[212,224]. Because J, is constant on the drift trajectory,

dJ

—dV +
A%

aJ
224g0 = 0.
%o

Since (vq - VV)y, is proportional to 9./, /93¢y, and (vg - Vo) iS
proportional to dJ,/9V, equation (8.2.5.16) can be integrated
to obtain, utilizing equation (8.2.5.18),

)
o1 = —AV% +Cy,

dJ, = (8.2.5.18)

(8.2.5.19)

where AV is the width of the orbits, and Cy is an integration
constant. Using (V — Vj)) in equation (8.2.5.4) and expressing
it in terms of wy, yield

W fm

= 8.2.5.20
Sor1 o, 3V ( )

+ &sb;

where gy, iS an integration constant with dgs,/d¢p = 0. To
determine gg,, the constraint equation of equation (8.2.5.17) is
solved so that fy; » is periodic. For superbananas, g, vanishes,
ie. go = 0, because of the reflection boundary condition at
the turning points and dgy,/9¢y = 0. To determine gy, for
circulating bananas, an explicit form for the collision operator
is needed.

The approximate collision operator in equation (8.1.13) is

dwyp
k2

appropriate for (C(fo1,1))b in equation (8.2.5.17). Changing
(1=
X == . (8.2.5.21)
< ka)tzb ok kc?)lzb 9 ]C

variable from k to wy, and expressing it in terms of & yield
K (k)
wp 0 ow dfor
The physical meaning is that the dominant effect of collisions

E (k)
(ctml~2 ]
€
>2
is to scatter particles across the boundary marked by
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wp X wy ~ 0. The effective collision frequency deduced from
equation (8.2.5.21) scales as vp/ (§ B/ By).

Substituting fo;,; in equation (8.2.5.20) into the constraint
equation for equation (8.2.5.17), i.e. f d¢o(C(for.1))v/ww =0,
yields

dgs kéd?
8 (8.25.22)
ok (W) g,

where C, is an integration constant, and (A),, = § d{oA/2m.

The constant C, is determined from the condition that
dfor.1/0k —0as k — co. Thus,

fort ( 1 Hk-1

ok Wib (@),
where H (12 — 1) is the step function. There is a boundary layer
between the trapped and circulating bananas in the vicinity of
k = 1. This leads to a modification to the transport fluxes and
the plasma viscosity that scales as +/v. Such a modification
is neglected here. With 9fp; 1/ 812, the transport fluxes in the
superbanana regime can be calculated.

The transport fluxes must be radially averaged besides
the usual flux surface average because the width of the orbits
is finite as discussed in section 6. Thus, the particle flux is
defined as

ka}, afu

v’

! (8.2.5.23)
)

([-VV), = <[ dv fog - vv> , (8.2.5.24)

Vv

where the angular brackets denote both the flux surface and
the radial averages:

=[5 ) 5 5

Expressing the particle flux in terms of the collision operator
and using dfy;,1/0k given in equation (8.2.5.23) yield [224]

(8.2.5.25)

82 Nvt P ed T’
F:];‘ = 713/2 w(SB/BO |:T]| <;+T +772? s
(8.2.5.26)
and
% 82 Ny, P ed T
T = " g VOB/Bo|m p+T o
(8.2.5.27)
where the coefficients n; for j = 1-3 are defined as
s\V7 e
nj:_/ dva 2()62—*) e le
oVt 2 /6§B/By
dwyg N }
E(k) — (1 - kK (k —
{[ ) = K ®] K2 | (9w /3V )2

(8.2.5.28)

and all terms inside the curly brackets are evaluated at wy = 0.
Specifically, k? is determined from wy = 0 equation in terms
of the energy and the radial electric field. After that, the energy
integral is performed. The pitch angle integral /; appeared in
equation (8.2.5.28) is defined as

Iszoodlé k <‘2""> g , (8.2.5.29)
0 lwwl [, (lowl)e,

where |@n/wp| =1/

— F (o).
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The transport fluxes in the superbanana regime can be
understood as follows. The superbanana orbit width scales as

(Ar)sp ~ry/(8B/B) /¢,

which only depends on the geometry. Strong magnetic
field strength cannot reduce the step size. The fraction of
superbananas is estimated to be fy, ~ +/(6§B/B). Thus, the
scaling for the transport coefficients is [3, 224]

V(8B/B)

D~y 2
3

(8.2.5.30)

(8.2.5.31)

which can be significant even for small § B/B. It should be
noted that superbananas discussed here are an ideal rendition
of the real orbit trajectories, which can be more complicated.
However, superbanana transport scaling becomes relevant to
plasma confinement when the tips of the superbananas exist
inside the confined region because they experience the largest
radial drift in the vicinity of those tips.

It should be emphasized that the same transport fluxes in
the superbanana plateau regime can also obtained by solving
equation (8.2.5.13) as demonstrated in [230]. By including
the radial motion in the theory, the mirror like force that pulls
the drift orbits back from the resonance positions in the phase
space becomes explicit. Neglecting the mirror like force sets
the lower bound in the collision frequency domain for the
superbanana plateau regime.

8.2.6. Approximate analytic expression for neoclassical toroidal
plasma viscosity. The results presented in sections 8.2.1—
8.2.5 are the asymptotic limits for not only the transport fluxes
but also the neoclassical toroidal viscosity from the flux—force
relation in section 4. Knowing these limits a formula that
joins all of them together can be constructed. There is only
one requirement for the formula that is that it reproduces all
the analytic asymptotic expressions in the appropriate limits.
The rational approximation inside the energy integral that has
been used to join neoclassical transport fluxes in tokamaks and
stellarators is adopted [6,7, 105,231].

Three non-resonant regimes, namely, 1/v, collisional
boundary layer v—./v, and collisionless detrapping/retrapping
v regimes are joined by defining energy dependent kernels for
these regimes [218],

kl/v = %11/1)7 (8261)
7N\ 2
Vl X VD 2 g2
ky_ 5 = <c<I> ) " / dk? [E(k) — (1 — k%) K (k)]
xy (&3 + /Sn) (8.2.6.2)
d
h = ﬂz(sB/Bm. (8.2.6.3)
(c®'/x")

The deflection frequency vp = vi for ions and vp = V& +
vy for electrons. The logarithmic function In (16/4/1)*(1),
causing unphysical result in the transition region between the
collisional boundary layer regime and the 1/v regime when

via > 1, is modified to In [16/+/v.a/(T+vsq)] [218]. The

reason for this approximation is that the slope in Inv at the
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transition region is determined by the asymptotic limit, which
can be extrapolated to the transition region. This is a proper
procedure as evidenced by the excellent agreement between the
connection formula and the numerical results shown in [219].
The factor F, in &> and ,33 is modified slightly to
accommodate the possible singularity in the expression. The
modified form is [221]
2 (320 — 0ex® REK) /K (k) — 1]}
[x2, — oewrx? RE(K)/K (k) — 11} + (Ak2)*
(8.2.6.4)
where Ak? is the width of the layer for the superbanana plateau
resonance and can be approximated as Ak ~ $!/3 defined in
equation (8.2.4.1.12).
Using these kernels, a single expression that joins three
non-resonant regimes to obtain the flux surface averaged non-
resonant particle flux Iy, is [218]

1/2 Mc 2
(&)«

X
Fy

&

LCpon = —

Ni
42732 \ex’
ed’ T’
— ) + )VZ R

’
X |:)\1 (g + )
p T T

and the corresponding Onsager symmetric heat flux gpop, is

(8.2.6.5)

Gnon — _ 51/2 & : v4
T 42732 \ex' )
p/ e@/ T/
X )\.2 — + T +)\.3 7 s (8266)
p
where for j =1-3
Xmin 5 j-1 5
Aj= / dxx$ (xz — f) e ™
0 2
k,_
Ll (8.2.6.7)

X .

(T koo o/ ko) (1 + ko i/ ki)
Note that the upper limit of the energy integral is xp,, which
is unambiguously defined in equation (8.2.2.18). The reason
for the limit is because only normalized energy less than xp;,
can participate in the non-resonant transport processes.

The resonant transport fluxes, including superbanana
plateau and superbanana regimes, are also joined in the same
way. However, because the 1/v regime is the collisional end of
the superbanana plateau regime, it should also be included in
the single expression for the resonant transport fluxes. Two
kernels for the superbanana plateau regime kg, and the
superbanana regime kg, can be defined and they are [66]

[1 - ef(lfkf)/w“]

8w 2\ /51/3
ksp—p = +C ef(lfk,)/v
TP e My 4G /di?| P!
XK (k) Y Inlep + Bk, (8.2.6.8)
for 0.827 < k2 < 1,
ksvp = — o= CooK (k) Y Inl(e + DL, (8.2.6.9)
Telx" “t n
for 0 < kr2 < 0.827, and
64 ex’ \° )
kg = — I [Ek) — (1 — k) K (k
b 8<Mcvfx) VDk{[ (k) —( )K (k)]
3&)0 C?)
X |— | ——. (8.2.6.10)
Ok* | (3o /0V)
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Of course, quantities inside the curly brackets and /; should be
evaluated at wy = 0 as indicated in the theory for the transport
fluxes in the superbanana regime.
Using the same rational approximation procedure, a single
expression for the flux surface averaged resonant particle flux
e

Tres is [218]
2
N———— (=) v
=t

/7 q)/ T/
(G F) ]
P T

+ }\.2 —
and the Onsager symmetric resonant heat flux gy is

2 Me

l—‘rcs = - t

8.2.6.11
T ( )

s _ el/? (Mc>2v4
T sz \ex' )
X |:)»2 (% + e;)’) +23 %] ) (8.2.6.12)
where for j = 1-3
Aj= /:O dxx® (x2 — ;)j_l e
Kooy (8.2.6.13)

x :
(1 + ksp—p/ ksp) (1 + kso—p/k1/0)

The lower limit for the energy integral is xy, because only
particles with energy higher than x, can contribute to the
resonant transport processes. In the collisional limit of the
resonant transport fluxes, the asymptotic limit of the 1/v
regime is reproduced. The interval of the energy integral in
the collisional limit of the combined resonant and non-resonant
fluxes is from O to oo as expected to reproduce the asymptotic
limit of the 1/v regime.

The overall flux surface averaged transport fluxes, and
thus neoclassical toroidal plasma viscosity, derived from the
solutions of the bounce averaged drift kinetic equation, are the
sum of both the resonant and the non-resonant transport fluxes,
ie. [218]

' = Thon + Dres (8.2.6.14)
and

1=ty I (8.2.6.15)

T T T

Because typical magnitude for the perturbed fields §B/B
resulting from the error fields or MHD activities is of the
order of 1073 or smaller in experiments, the collisionless
detrapping/retrapping regime and the superbanana regime are
not usually accessible for most tokamak plasmas. In that case,
one could choose to neglect both of these regimes and simplify
equations (8.2.6.14) and (8.2.6.15) by setting quantities
(1+k,—y3/ky) in equation (8.2.6.7) and (1 +kep—p/ke)
in equation (8.2.6.13) to unity. These simplified analytic
expressions reproduce the asymptotic limits accurately as
shown in [229].

The accuracy of the connection formula can be further
improved by determining the layer widths in the theories for the
collisional boundary layer and superbanana plateau resonance
using iterative procedures following their definitions as is done
in [229].
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8.2.7. Implications on the modelling of toroidal flow and
steady-state intrinsic toroidal flow. The non-axisymmetric
particle flux I'™ is proportional to the toroidal plasma viscosity

(B - V- T ) from the flux—force relation in equation (4.1.1.6).
Thus, it can be responsible for the toroidal flow damping
observed in experiments when the perturbed magnetic field
strength is of the order of 10™* or larger.

Except in the 1/v regime, the transport fluxes depend on
the radial electric field non-linearly. The resonant transport
fluxes decrease exponentially when the magnitude of the radial
electric field increases. The non-resonant transport fluxes,
on the other hand, decrease algebraically. These non-linear
dependences can cause the toroidal momentum equation to
have bifurcated solutions for the radial electric field [208], as
demonstrated in [229].

The steady-state solution of the toroidal momentum
equation determines the radial electric field that makes plasmas
ambipolar. If the ion particle flux dominates, the radial electric
field is negative and is [208], approximately,

(ﬁ . eiq”) __ml

Pi T; mi T
The radial electric field is positive when the electron particle
flux dominates and is approximately [208]

(ﬂé N ee“’) _nee I

Pe T. nie Te

When electron and ion particle fluxes are comparable, there
can be multiple solutions just like the bifurcated solutions in
the L-H transition theory.

The thermodynamic forces can also be expressed in terms
of the components of the plasma flows. Using the radial force
balance equations in the Hamada coordinates [208]

e

/ CD/
(5 7)--5
p T

)

all the transport fluxes presented in sections 8.2 can be
expressed in terms of the components of flow velocity. The
existence of the ambipolar radial electric field implies a steady-
state intrinsic toroidal flow. The poloidal flow V? can be
determined from the parallel component of the momentum
equation as shown in section 6. The intrinsic steady-state
toroidal flow is, when ion viscous force dominates [208],

nu T/

(8.2.7.1)

N2e Te/

(8.2.7.2)

X' VE—y'v?) (8.2.7.3)

’

o, michi T

mieix' Ti
When electron viscous force dominates, V¢ can reverse the
direction and becomes [208]
7726 cT T +
Nie eeX T
In between these two limits, the toroidal flow can have
bifurcated solutions. The magnitude of the intrinsic steady-
state toroidal flow is of the order of v p,i/L, [208], which is
the same as that determined from the residual stress discussed
in section 7.

From the flux—force relation, the transport fluxes derived
from the bounce averaged drift kinetic equation can be
employed in modelling the toroidal flow damping when there
are error fields or MHD activities present in tokamaks. This
can be accomplished when the neoclassical toroidal plasma
viscosity is implemented in the NCLASS code [89].

C=gqV (8.2.7.4)

P/
Nee)(/'

vi=¢qVo+ (8.2.7.5)
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8.3. Neoclassical toroidal plasma viscosity derived from the
drift kinetic equation

When v, > 1, the collision frequency is high enough to
interrupt collisionless orbits, the proper equation to solve for
the neoclassical plasma viscosity is the drift kinetic equation
shown in equation (6.4.6). There are two regimes in this limit.
One is the Pfirsch—Schliiter regime and the other is the plateau
regime. The plateau regime is the resonance between the
parallel particle motion v n and the (Vjn + Vg). The results
of these two regimes can be unified with a judiciously chosen
collision frequency in the Krook model [135].

In the limit of v, < 1, the toroidal drift frequency can
resonate either with the bounce frequency of the trapped
particles [232-236], or with the transit frequency of the
circulating particles [236]. These resonances result in a
toroidal viscosity that is independent of the collision frequency
similar to that in the plateau regime. The magnitude is also
similar. Theory for the superbanana formation and its transport
consequences for the resonance between the bounce frequency
and the toroidal drift frequency has also been developed in
detail in [233,234], and a superbanana transport scaling
similar to D in equation (8.2.5.31) has been obtained.

8.3.1.  Plateau—Pfirsch-Schliiter regime. The perturbed
distribution function in this regime can be obtained by solving
equation (6.4.6) with a Krook model, where the collision
frequency vy is chosen to be vy = 3vp + vg. The resultant
components of the viscous forces in Hamada coordinates
are [135]

<Bp V. 7z’> - ?NMMB

%ZWW%C

2
+ bmns

)m

(mV9 — nVE)]

2
;: |:Ir512n) bfnm + bﬁms) 5[7 (mqg - nq{)i” )
(8.3.1.1)
<Bt V. ?r’) = ?NMvtB

+b2

mns

Z [I(]) (bimc

m,n

) (nq) (—mVe + an)]

|

Zpﬁ%ﬁ%wmzbmhmﬂ}
m,n Sp
(8.3.1.2)
and
<B V- 5’) — T N Mus
4
x {Z [ 7511n) (bﬁmr +b72nns) (m - ”q) (mv(-) - nVC)]
mn an‘ mns 51) k)

m,n

(8.3.1.3)
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where R, = vy /[(mwg — nwy)? +vi], 09 = (v + V}) x'/ B+
Ve - V0, w; = (UH + VH)lﬁ,/B + Vg - VC, and

[oe] .
JA (2/n)/ dxxde™ (x* — 5/2)”1
0

(8.3.1.4)

1
X f dy (1 - 3y2)2 (UX,/B) Rmns
1

for j = 1 and 2. The expressions for (B, - V- (:5), (B - V- (3)

and (B - V- (3) are the same as the corresponding viscous
forces except replacing 1) by 12 and 12 by I&), with 1$)
is defined in equation (8.3.1.4) with j = 3. The non-linear
viscous forces in equations (8.3.1.1)—(8.3.1.4) are valid for an
arbitrary magnetic field spectrum in a doubly periodic torus,
including stellarators. It should be emphasized that the mirror
force terms for all modes are neglected by the definition for
the plateau resonances.

It is important to note that the upper limit for the energy
integral in 1,5,’,,) is 0o. This indicates that I,EIJ},) is the asymptotic
limit of the plateau—Pfirsch—Schliiter regime. For practical
applications, it is often chosen to limit the upper limit to
WA where v = vRq/(vgnn |m — ng|) and v is
the minimum value of v}"" for all (m, n) modes [237]. Thus,
for particles with normalized energy x2 < (v"")!/2 are
in the plateau—Pfirsch—Schliiter regime; while particles with
x2 > ("m)1/2 are in the low collisionality regime for that
particular (7, n) mode. This is an approximation to model a
torus with complicated magnetic field spectrum.

The components of the viscous forces are a non-linear
function of the radial electric field. The generic dependence
on the radial electric field is similar to that in the non-linear
plasma viscosity for the axisymmetric tokamaks. The only
possible difference is that as the magnitude of the radial electric
field increases, viscous forces can have more than one local
maximum as demonstrated in [238]. They can have several
local maxima and minima depending on the magnetic field
spectra. This can lead to bifurcated solution for the radial
electric field.

8.3.2. Bounce-transit and drift resonance. When v, < 1,
either the bounce frequency of the trapped particles or the
transit frequency of the circulating particles can resonate
with the toroidal drift frequency. The physics of bounce
and drift resonance on plasma transport has been discussed
for tandem mirrors [232]. The resonance between the
bounce frequency and toroidal drift frequency has been found
to enhance transport loses for energetic particles in rippled
tokamaks [233,234]. The theory includes not only the
superbanana plateau like scaling but also the superbanana
like scaling. The same mechanism is used in the context of
the theory for neoclassical toroidal plasma viscosity. This
leads to the plateau-like neoclassical toroidal plasma viscosity
[235,236]. However, because the bounce averaged toroidal
drift frequency is smaller than the bounce-transit frequency by
a factor of p/L,, the magnitude of the superbanana plateau
fluxes is larger than that resulting from the bounce-transit and
drift resonance scaling wise.

The bounce averaged drift kinetic equation cannot
describe the resonance between the characteristic frequency
of the bounce motion and the toroidal drift frequency. The
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drift kinetic equation is used for this purpose. The standard
approach is to solve the drift kinetic equation by integrating
along the unperturbed orbit, i.e. by following the banana orbits
[93,239,240]. This is Lagrangian in nature. In this approach,
only a Krook model can be used when collisional dissipation
becomes important. An Eulerian approach is developed to
complement the Lagrangian approach [236]. The advantage
of the Eulerian approach is that it can treat dissipation using a
realistic collision operator. The method can be used to describe
transit and drift resonance as well.

The kinetic part of equation (6.4.6) is two dimensional
when toroidal symmetry is broken. Changing variables from
(6, ¢) to (0, &) in the low collisionality regime yields

+V oh
[(v+ V) n+Vi] VA = (MX/+VE : ve) =
c® oh
=0 8.3.2.1)
X' 9%

To focus on the bounce-transit and drift resonance, equa-
tion (8.3.2.1) is simplified by neglecting (VHX//B + Vg - VG)
term. This term is related to the effects of orbit squeezing
[110] and the shift of the tips of the bananas to higher energy
that leads to non-linear plasma viscosity [135].

The drift kinetic equation to be solved for the bounce-
transit and drift resonance is then

/ 2
U” ,Bh cd 8h U2 1 31)”
bl s D _cmy=2S (-2
B 90" v CPW=rplz o)
V.VB 2 VB
x ( — - §L§3/2)qu), (83.2.2)

where magnetic drift is neglected assuming ¢ < 1.

8.3.2.1. Bounce and Drift Resonance. For the bounce and
drift resonance to occur, the two terms in the kinetic part
of equation (8.3.2.2) must be comparable. In the Eulerain
approach, the Jacobian elliptic function is used in solving
equation (8.3.2.2). The parallel particle speed |UH| can be

expressed as
g\ /2
(kz — sin? f) .
2

The pitch angle parameter k> is the same as that in
equation (8.1.14); for trapped particles, k> < 1, and for
circulating particles, k> > 1.

For trapped particles, an angle n is defined such that [236]

/,LB()8

vy| =2 i

(8.3.2.1.1)

o7 /‘” dx 7
2K(®) Jo (k2 —sin?x)"? 2K ()

F (siIf1 (sm(p) ,k) ,
k

where F(¢, k) is the elliptic integral of the first kind, and
@ = 6/2 [241]. When trapped particles complete their full
bounce trajectories, i.e. particles make a round trip from one
turning point to the other and back, n goes from —z to . Thus,
in terms of 7, trapped particles are periodic with a period of 2.
Using the angle 1, the operator |v” | d/06 in equation (8.3.2.2)
can be cast as

n

(8.3.2.1.2)

Mi:l 1Boe 1 9
Wao — 2V M K@)y

(8.3.2.1.3)
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The magnetic field variations also need to be expressed in
terms of n. Using Fourier series, d B/96 and 0 B /3¢y become

1 9B : i[(m—ngq)6+ngo] i(In+n&o)
E% = - ;l(m - nq)gmne 0l = Zlanle 0 I}
(8.3.2.1.4)

and
1 0B . )

— H i[(m—ng)0+ng] _ i(In+ngo)
—— == ine,,e = b€ .
Fig = > D bu

m,n n,l

(8.3.2.1.5)

The complete 6 dependence in | B| spectrum is expanded in
terms of the angle n, because the poloidal mode number m
is not a good quantum number. Since a,; and b,; are Fourier
coefficients of real quantities, a,; = a*,_; and b,; = b*,_,.
The sin 6 term resulting from the equilibrium magnetic field
is excluded in equation (8.3.2.1.4) because it only yields the
standard transport fluxes and does not contribute to the toroidal
plasma viscosity.

In the bounce-drift plateau regime, the role of the
collisions is to remove the singularity in the kinetic part of the
drift kinetic equation and the details of the collision operator
are not important after the momentum conservation property
of the collision operator is taken into account. For this reason,
the Krook model is adopted, i.e. C(h) = —vh.

Equation (8.3.2.2) is solved by expanding the perturbed
distribution function % as

h= Zhn,ei“"”fo), (8.3.2.1.6)
n,l

where h,;s are Fourier coefficients. For each (n,l) mode, h,;

satisfies
> fM

(8.3.2.1.7)

1)2

dl

1 3vf

iO‘la)bh,,[ +inwghy, +vh, =2 5 22

2
X (anlD(? + bnlD;‘) s

where wy, = (7/2) /uBoe/M (x'/B) [K ()], Dg = V? —
@/5) LY g% /p,and D, = V - Vo — (2/5) LYPq - Vio/ p.
If bounce average had been performed over the trapped particle
trajectory, the driving term D, would have been averaged to
zero and only D, would have survived as evidenced in the
bounce averaged drift kinetic equation discussed in section 8.1.
The solution to equation (8.3.2.1.7) is

. —i(olwy + nwg +1v)

(oloy + nwg)? + 1?2

X (an1D9 + bnlD[) s (83218)

which contains both the resonant and non-resonant parts. Only
the resonant part contributes to the flux surface averaged
transport quantities. The resonant part of 4,;, denoted as
hnl T is

v
(clwy + nwg)? + v2

(8.3.2.1.9)
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Because the transport fluxes are even moments of v; of the
distribution function, an even function A, ,. is defined:

1 2

U2 3 1)”
v? 2 v?

hnl,re =
X [

Only one term inside the square brackets in /4, ,, can resonate
for a given set of parameters in the bounce-drift resonance
plateau regime. Both terms contribute when all the (n,/)
modes are summed. In the asymptotic limit of the bounce-
drift resonance plateau regime, i.e. v —0 so that v/e < |[|wp,
hy1.re becomes

2
=n—
v2 22

X [§(olwy, + nwg) + §(—olwp + nwg)] .

2 )fM (anlD€+bnlD§)

% v

+ .
(olwy + nwg)? + 2 (—Ulwb+nw5)2+v2]
(8.3.2.1.10)

hnl.re

) fM (anlDG + bnlD{)

(8.3.2.1.11)

Substituting A, . into the definitions for the viscous
forces yields [236]

(B v 7) = Nm(B?)

o 2 4’ g
X [ p1 V7 + 743 —Mp2— + —up— |, (8.3.2.1.12)
57p 5 7p
and
(Bi-v-6)=nNm(5?
6 2 e
x| VO + 1o VE+ 2 + S |, (83.2.1.13)
57p 5 7p
where the viscous coefficients are defined as, for j = 1-3,
Moj) — ﬁ v’
iy "2 By

K (ko) (x —5/2)/"
-~ 7/2  |dG,/dk2|

% <_ (anlb—n—l + qlbnllz))
ky

|bnl |2
and the subscript &, indicates the quantities are evaluated at
the resonant pitch angle k, for a given energy. The resonant k,.
is defined as the zero of the function G determined from the
argument of §(s) and is

1 o° P
m dx2x%e™

>

Xmin

(8.3.2.1.14)

P’ 2B 2
Gty = ! [*] 2 __ T2 (832.1.15)
X' lxveExve K (k)
Thus, the resonant pitch angle k, satisfies
Gy (k) =0. (8.3.2.1.16)

Because 1 > (7/2)/K (k) >0, equation (8.3.2.1.16) can be

satisfied if
2B 1
X 2 Xmin = s
& X UVt

The vﬁ /v? factor is neglected in evaluating the viscosity as is
appropriate for ¢ < 1.

ncd’
I x

(8.3.2.1.17)
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8.3.2.2. Transit-drift resonance. The characteristic frequency
of the circulating particles can also resonate with the toroidal
drift frequency [236]. There is a difference between the non-
linear plasma viscosity and the transit-drift resonance viscosity
to be discussed in this subsection. In the plateau regime of the
non-linear plasma viscosity, the collision frequency is high
enough to prevent the particle trapping inside the equilibrium
and perturbed magnetic fields from occurring. Thus, the mirror
force is neglected completely, and each individual mode is
independent from each other. For the transit-drift resonance
viscosity only the mirror force of the equilibrium magnetic
field is included. The role of the mirror force is to modulate
the parallel particle speed of the circulating particles. For
circulating particles having k > 1, a different angle [236]

£ = wk /"" dx
T KAk Jo (k2

F(p,1/k),

4
2 K(1/k)

— sin x)l/2 Bl

(8.3.2.2.1)

is defined. When a circulating particle goes from —x to 7,
so does &. The operator |v;|d/d6 in equation (8.3.2.2) can be
written as

0 _ nBoe w/2 i
luil 55 =2y =, KD 06 (83.22.2)

Using the same solution procedure for the bounce-drift
resonance, the perturbed distribution for circulating particles is

—i(olwy + nwg +1v)

M (lwy + nwg)? + v2
X (cn1 Dy +dyn D) (83.2.2.3)
where o, = 2./ uBoe/Mk (r/2) (x’/B) [K(l/k)]_1 is the

transit frequency for circulating particles, and ¢,; and d,,; are
Fourier coefficients defined as

1 0B _
Boao > i(m — ng)ep,e om0l
m,n
= Z ¢, e e 83220
n,l
and
1 0B . iLm—ng)d+nz]
ETQ) - ;;lnemne 0
(8.3.2.2.5)

— Zdﬂlei(lé"m(n).
n,l

The difference between the solution for the trapped particles
and that for the circulating particles is that the bounce
frequency wy, of the trapped particles is replaced by the transit
frequency w of the circulating particles and the Fourier
coefficients a,; and b, are substituted by c,; and d,,;.

Only the resonant part of the solution that is even in |vy||
contributes to the flux surface averaged transport quantities,
and it is

v (1 3 Uﬁ
hnl,re Uilz 5 - Eﬁ fM (CnlD9 + dnng')
Vv v

dl

(—olwy + nwg)? + vz] '
(8.3.2.2.6)

5 +
(olwy + nwg)” + v?
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Taking v — 0 limit, which corresponds to v < |/|w, yields

2
) fs (@ Dy + by D)

X1 [8(olwy + nwg) + §(—olwy + nwg)] . (8.3.2.2.7)

The transit-drift resonance toroidal plasma viscosity calculated
using A, . has the same form as those for the bounce-drift
resonance except the viscous coefficients are different and they
are [236]

(Mpf)vﬁ v Zi oode)cSe_x2
wi) N By il
n,l min
Kk (x = 5/2) " (k)
_ 2
x (C"’d*"*’zq dul)) (8.3.2.2.8)
|dnl| k,
where
o) — Inlc|®| B 7/2 2ek>
T T I xxn K(Jk\ 26k + (1 —¢)
(8.3.2.2.9)
F k) V2ek? 13 22 7
U e+ -7 L2 220+ -e)]
(8.3.2.2.10)
and
| B 1
Xin = ( 2c —,—). 83.2.2.11)
I x| x' w

The subscript &, indicates that the quantity is evaluated at k,
which is the zero of the function H,;(k), i.e.

Hy (k) = 0. (8.3.2.2.12)

The origin of xp, is from the fact that the term involves
K (1/k) in H, (k) is bounded between O and 1 when k
varies from 1 to co, and to have solution for H,; (k,) = 0,
the dimensionless energy parameter x must be equal or
greater than xp,. The xpi,for circulating particles shown in
equation (8.3.2.2.11) is smaller than that for trapped particles
giveninequation (8.3.2.1.17) by a factor of 4/¢. Thus, particles
need to have higher energy to have bounce-drift resonance.
The poloidal angle variation in |vj| is neglected when
evaluating [(1/2) — (3/2) (v /v)z] approximately to obtain
viscous coefficients. The terms inside the large square brackets
of F (k,) are results of such an approximation. The qualitative
behaviour of these terms is consistent with the expectation. In
the limit, where k, — oo for very circulating particles, the

factor (3/2) (UH / v)2 approaches (3/2). When k, — 1, namely,

at the trapped-circulating boundary, (3/2) (v” / v)2 approaches
(3/2)(2¢) in the large aspect ratio limit.

8.3.2.3. Validity and relation to non-linear plasma viscosity.
For trapped particles to contribute to the plasma viscosity in
the bounce-drift resonance plateau regime, v/e < |l|wp. In
this asymptotic limit, both trapped particles and circulating
particles contribute. When v/e > |l|w, but v < |l|wy, only
circulating particles contribute to transit-drift resonance. If
resonances overlap, particle trajectories in the phase space
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become chaotic, and bounce-transit and drift resonance plateau
regime persists. If the resonances do not overlap, the bounce-
transit and drift resonance plateau regime ends when the closed
collisionless non-linear trajectories in the phase space form.
This is similar to the superbanana regime [224,233,234].
When v > |l|wy, the plasma viscosity enters the Pfirsch—
Schliter regime [236].

Viscous coefficients for bounce-transit and drift resonance
have a similar scaling to that for the non-linear viscosity in
the plateau regime, because the physics mechanisms involved
are similar. The difference is only in the treatment of the
parallel particle speed in the drift kinetic equation. Thus,
when the bounce-transit and drift resonance viscosity becomes
important, the non-linear plasma viscosity should be important
as well.

When the radial electric field vanishes, the resonance
occurs at k, 1 and the neoclassical toroidal plasma
viscosity in the bounce-transit and drift resonance plateau
regime vanishes in the approximation adopted here. In that
case, the superbanana plateau regime becomes important.

8.4. Neoclassical toroidal plasma viscosity in the vicinity of a
magnetic island

Symmetry breaking effects in tokamaks are most pronounced
in the vicinity of a magnetic island. Because the perturbed
magnetic field is perpendicular to the equilibrium magnetic
field, the surface distortion mechanism dominates [207]. The
magnitude of the perturbed | B| on the island magnetic surface
scales as «/6B/By. Thus, even for §B/By ~ 10~%, the
symmetry breaking effects are significant. This leads to the
enhanced neoclassical plasma viscosity, and the corresponding
increases in particle, energy and momentum losses in the
vicinity of magnetic islands. The most interesting feature of
the enhanced neoclassical plasma viscosity is that it determines
aradial electric field in the vicinity of the magnetic islands that
can suppress turbulence fluctuations and improve confinement.
This provides an explanation as to why plasma confinement
is improved in the vicinity of the magnetic island observed
in experiments or in the vicinity of the low-order rational
surface [207, 242].

8.4.1. | B| on the island magnetic surface. Because transport
processes are defined on the magnetic surface, when the
magnetic surface is distorted, transport fluxes are calculated
on the distorted magnetic surface. In low B plasmas, the
perturbed magnetic field resulting from the magnetic island
can be described by the perturbed poloidal flux 6 x = x cos&;.
Here, yx is the amplitude of the perturbed poloidal flux, & =
0 — ¢ /g for a static magnetic island, and g is the safety factor
at the rational surface y; where the island resides. The island
magnetic surface can be described by a helical flux function
W, where

_ 4
2g5

= (X — xs)* + X cosmé;, (8.4.1.1)
and g, = dg/dx|,, [243]. All the transport fluxes are now
defined on the constant ¥ contours.

The |B| on the constant W surface can be obtained from

the equilibrium magnetic field B = By (1 — € cos 6) by Taylor
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expansion of the radial dependence in the vicinity of the
magnetic island, i.e.
B__ [
By
where rg is the minor radius at ys, normalized helical flux
function ¥ = —W/%, and r, = [qu)Z/(q;Bors)]l/2 is
proportional to the island width [207]. The =+ sign in
equation (8.4.1.2) is chosen to be ‘+’ for x > xs and ‘-’
for x < xs. In general, for a finite aspect ratio tokamak, |B|
on the island magnetic surface can be obtained is

B = Bs+(3B/0xs) (X — Xs) -

s | Tw
S4v

2t (P + cos mé,)l/z] cosd, (8.4.1.2)

(8.4.1.3)

8.4.2. Transport fluxes in the vicinity of a magnetic island and
implications on plasma confinement. It is most convenient to
solve the drift kinetic equation (equation (8.1.1)) in (\V, 6, &)
coordinates for the perturbed distribution. For v, < 1, the
bounce averaged drift kinetic equation is [207]

J 0
(1 - qi) %H (e — ) + (va - V&), 3% +(vg - VW),
i)
x% = (C (o) - (8.4.2.1)

where foo = fm(¥), for is the correction to fy(V), H is
the step function, and p. is the critical magnetic moment that
separates trapped particles from circulating particles.

When the collision frequency is larger than the (vq - V&),
itis in the 1/v regime. The particle flux in this regime is [207]

wm CrUn-VO? (gl N L, P (P)VI+ P
MN=—-———\=rw) miée/'——FF—
2 Q2 qs K (kp)
52 5
x / 4 L (8.4.2.2)
1%)) ow
where T} = (NV .VW); is the particle flux that is

averaged over the island magnetic surface, C; 0.684,
Fr (V) = §désin® mér (A/e)*? /W +cosmé;, A
g5 £ 8y \if+cosm$,, & = rs/R, 6y = ryw/R, and k%
2/(1+W). This flux is valid outside the island separatrix
where k% < 1. It is assumed that dfy/0W vanishes inside
the island. However, this does not have to be the case. The
gradients inside the island separatrix can be maintained by
good plasma confinement due to turbulence suppression by
the steep gradient of the radial electric field.
If both electrons and ions are in the 1/v regime,
>_; T'1} = 0 determines a radial electric field
/ ’
by ) — oxrk,
Ti T

(55

where prime denotes d/dW. The radial electric field in
equation (8.4.2.3) is well known for the 1/v regime in rippled
tokamaks and stellarators [3,210,211,244].

The non-axisymmetric flux I'}* in the collisional boundary
layer regime has also been calculated [245]. The particle flux
from the outer solution has been used to demonstrate that there
can be bifurcated states for the radial electric field similar to the
L—H transition processes [242]. The resultant radial electric
field can suppress turbulence fluctuations and improve plasma
confinement according to the turbulence suppression theory in
section 7 because it has a scale length of the order of the width
of the island.

eiCID’

(8.4.2.3)
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9. Neoclassical transport theory for stellarators

The |B| spectrum for real stellarators does not possess any
symmetry even with modern optimization [27]. In the low
collisionality regimes, particle dynamics, especially that of the
trapped particles, is crucial to the solution of the linear drift
kinetic equation. Particles can be trapped either inside the
toroidal magnetic field well or inside one of the many helical
magnetic wells as shown in figure 5. Thus, in stellarators
there can be at least two or more classes of trapped particles.
This makes the development of an analytic transport theory
for stellarators in the low collisionality regimes much more
difficult. However, in relatively collisional regimes, there are
analytic theories for arbitrary magnetic field spectrum at least
in the large aspect ratio limit.

Because there does not exist a unique configuration, it
is more difficult to develop a neoclassical theory that is
valid for all collisionality regimes for all stellarators currently
operating around the world. Some of the gross features of the
transport consequences of the neoclassical theory, however,
might have been observed in all stellarators. One such
example is the transition of the radial electric field from a
negative value to a positive value when the electron loss
rate dominates the ion loss rate as the collision frequency
decreases [246-249]. The other is that neoclassical losses can
be reduced by manipulating the |B| spectrum in stellarators

[249,250]. When neoclassical theory is applicable, the
machine performance is more predictable. The goal here
is to discuss the basic physics involved in each asymptotic
limit where an analytic treatment is possible. As the collision
frequency decreases, the analytic model for |B| becomes
simpler and is less able to describe subtler physics.

9.1. Pfirsch—Schliiter regime

In this regime, collisions are frequent enough to dominate the
kinetic part in the linear drift kinetic equation. Following
the expansion scheme developed for calculating the plasma
viscosity in the Pfirsch—Schliiter regime for axisymmetric
tokamaks and using |B| = B(#, ¢) yield

1 3y

L )5

<2 2 vz) (
9.1.1)

=C(h).
The difference between equations (9.1.1) and (6.2.3.1) is
that besides the 6 dependence |B| spectrum also has the ¢
dependence in stellarators.

02
e
Uy

V.VB 2 L(3/2)q -VB
B 5p 1 B

Equation (9.1.1) can be solved either by expanding % in
terms of Laguerre and Legendre polynomials or approximating
the collision operator by a Krook model, i.e. C(h) = —vrh

[7]. The later approach is chosen here to obtain
vl 2

2
vi\2 2v?

T 2
V.-VB 2 -VB

« o —LES/Z)q
B S5p B

1 3
h=2v ll}

9.1.2)

I
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(9.1.3)

9.1.4)

el

vr

Substituting % into the definitions for the parallel components
of the viscous forces yields
<B V. 7‘?) = NM (B
9B/d0 B-VB o 2 q°
Vit —pr—
XR B B ><‘“ 5"
dB/d¢ B-VB 2 4°
+ _— VE+ S
< B B > (Ml 5#2 »
and
(B v-6)=nm (B
dB/d6 B-VB 0 2 q°
Vit —pu3—
(e S [
0B/t B-VB 2 q¢
+ Vi+ Zus— )|,
< B B > (Mz 5#3 »
where parallel viscous coefficients are
8 , 1 o ( 5 S)f“
= v d - = e ,
M 5\/7?11[ <B2> |:[0 xx" | x 3
9.1.5)
for j 1-3. The geometric factors can also be absorbed
into the definitions of the viscous coefficients, and viscous
coefficients become
wjp = m;([(0B/36)/B1[(B-VB)/B]), 9.1.6)

and

wje=w;([(8B/3¢)/B] (B - VB)/B]).

Similarly, the toroidal components of the viscous forces are

(Bi-v-7) = Nm(B?)
3B/30 B, - VB ,
L) (e
<aB/a; Bt»VB> (
+ n
B B
and

(Bi-v-6)=nNm(B?
9B/00 B, - VB

XR B B

2
> (MzVe + *qu*)
5°°p
dB/3¢ B, - VB 2 g
+ —_— Vi+ =
(2222 TE) (have s S

¢
)]
In Hamada coordinates, B, = ¥'VV x V@. The poloidal
components of the viscous forces have the same forms as
the toroidal components except that B, is replaced by B, =
x'V¢ xVV inequations (9.1.8) and (9.1.9). The more accurate
viscous coefficients obtained by inverting the collision operator
can be found in [7,53,236]. The components of the viscous
force obtained here are the parallel viscosity with coefficient 1o
in terms of Braginskii’s classification except that the heat flow
is included as an independent variable [1]. The same viscous
components are also obtained in [251,252].

The importance of the components of the viscous forces
is that they determine the flow damping and, thus, the steady-
state radial electric field and the components of plasma flow
velocity in stellarators. The viscous driven particle and heat
fluxes are subdominant in this regime for large aspect ratio
stellarators.

9.1.7)

0

9.1.9)
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9.1.1. Plasma flows and radial electric field. ~Because the
radial electric field and parallel flow are neglected in the
kinetic part of the kinetic equation, the viscous forces are
linear functions of the radial electric field and the parallel
flow. The magnitudes of the ion viscous forces are larger
than those of electron viscous forces by a factor of /M;/M..
The large aspect ratio assumption is not needed to conclude
that Vj;; Vie & V)i, q)i =~ 0 and g =~ 0 because the
collision frequency is larger than the particle transit frequency
for each mode. Thus, the approximate solutions to the parallel
momentum and heat flux balance equations yield the common
equilibrium parallel flow. From ) i€ F];P = 0, which implies
the relaxation of the parallel momentum equation [60, 61],

=~

b08]_ g, T (B ye® )

(B?) - "e; (B2) (Pi T wuiT )’ GLLY

where the geometric factor Gy is

Gy = ((n-VB) (1/8)283/89) (B x VV . V6)
((n-VB)?)

{(n-VB)(1/B)3B/dL)
vV . . 1.1

((n : VB)z) (B x VV -V¢) (9.1.1.2)

The geometry factor Gps is valid for tori with arbitrary

symmetry property and depends only on the | B| spectrum.
For a classic |B| spectrum for stellarators given in

equation (1.2.1) in Hamada coordinates, G can be evaluated

explicitly and is

Fl+m(@m—nq) si/ef +(G/F)n(m —ngq) 5,3/8[2

’

Gy = .
P 1+(m— nq)2 e,%/st2
9.1.1.3)

If Ep = 0,

F

—, 9.1.1.4)
X

which is the standard result for axisymmetric tokamaks. If
& = 0, which corresponds to a helically symmetric torus,

Gps =

_ Em+(G/F)n

Gy = — (9.1.1.5)
X

m —nq

The direction of the parallel flow reverses when ng > m. If
m = 0, which corresponds to a rippled tokamak,

_ F1—(G/F)qn’s}/e}

PTX 1+ (ng)el/el

9.1.1.6)

The direction of V|| and the symmetry property of | B| spectrum
can be understood in terms of the viscous damping [53].
For simplicity, the heat flow is neglected in the discussion.
When the system is toroidally symmetric, parallel viscous
forces damp the poloidal flow due to the bumpiness of the
magnetic field strength in the poloidal direction. However, the
diamagnetic flow, which is perpendicular to the magnetic field,
always has a poloidal component. In order for the poloidal
component of the flow velocity to vanish, i.e. V- V6 = 0, there
must be a parallel flow V| n so that the poloidal component
of Vi cancels that of the diamagnetic flow. During the
damping processes, the toroidal component of the flow remains
approximately constant due to the weakness of the toroidal
viscous force when compared with the parallel viscous force.
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TOROIDAL SYMMETRY

Figure 25. Schematic diagram for plasma flow in a toroidally
symmetric torus.

INTERMEDIATE

\

Figure 26. Schematic diagram for plasma flow in a
non-axisymmetric torus.

What really happens is that the radial electric field adjusts to
make V- VO = 0, at the same time keeping the toroidal angular
momentum constant. A simple physics picture for the process
discussed is shown in figure 25.

When the toroidal symmetry is broken, the bumpiness of
| B in the toroidal direction also damps the toroidal component
of the flow. In this case, the plasma flows approximately on
the constant |B| contour to minimize the viscous damping.
This can be seen by casting the viscous forces in the following
forms:

- B-VBV.VB
<B-V-ﬂ):NM(Bz);L1< - - > 9.1.1.7)
and
<B1.V.7?>=NM(Bz>u1<BtéVBV'1:B>, (9.1.1.8)

when the heat flow is neglected. This flow pattern in between
toroidal and poloidal symmetry is shown in figure 26.

When the toroidal bumpiness increases further so that the
torus is almost poloidally symmetric, the plasma can now flow
freely in the poloidal direction and the toroidal flow is damped
by the viscous forces. In this case, the toroidal component
of the diamagnetic flow must be cancelled by the toroidal
component of the parallel flow. The resultant parallel flow
is in the direction opposite to that of the toroidally symmetric
tori and the magnitude of the flow is smaller by a factor of
(Bp/B)*. This process is shown in figure 27.

The toroidal component of the viscous force damps the
parallel flow eventually. The issue is if there is a steady-state
parallel flow after damping. This is manifest in the solution of
the equation for the radial electric field. To completely specify
the plasma flow velocity, the radial electric field must also be
determined. This is accomplished by setting > e =0
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0 POLQOIDAL SYMMETRY

Figure 27. Schematic diagram for plasma flow in a poloidally
symmetric torus.

[60,61]. Because ion viscous coefficients are larger than
electron viscous coefficients by a factor of /M;/M., the
approximate equation for the radial electric field is

<B1~V~ 7%):0, 9.1.1.9)
and the solution is
/ ¥y ST
pi &% (Ml _ (9.1.1.10)
Di T mii T
Thus, at the steady state,
ViB) _ 0. 9.1.1.11)
(B2)

After the parallel flow (V|| B) and the radial electric field ¢’
are determined, the plasma flow on the magnetic surface is
specified completely, or explicitly,

L (9.1.1.12)
ei(B) i T o
and
ye = <hG pai I 9.1.1.13)
ei(Bz)l/«li i o

The components of the residual flow are driven by the
temperature gradient. The source of the momentum is the
non-cancellation of the particle momenta from neighbouring
orbits [194].

9.1.2. Particle and heat fluxes. In this regime, the friction
forces driving particle and heat fluxes dominate. Friction
forces can be evaluated using a set of more accurate numerical
coefficients for this purpose [253]. It is obvious that V¢ and
V¢ do not contribute to the Pfirsch-Schluter fluxes. Only the
diamagnetic flows contribute.

The ambipolar particle flux is, for electron—proton
plasmas [6,253],

2 / /
P T
e — ( ¢ ) PeMovei <0.675— - 0.561)
ex’ Pe T.
L\ ()?

9.1.2.1)

<((#-55):
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where P’ = p!+p.,and I, = B-VV x V6. The electron and
ion heat fluxes are

ps 2 / /
T P
g _ _ ( ¢ ) PeMovei (1.97—e - 0.56—)
T. ex’ T, De
I\ ()
Sy 22 9.1.2.2
« (<Bz> o 9.122)
and
pe e\ T (] 1R\ (1)
=113 Miv = (4 ) — :
I (ax/) P <Bz> (8?)
(9.1.2.3)

The electron particle and heat fluxes are Onsager symmetric.

The bootstrap current and Ware pinch flux in this regime
scale as v™2 and are not significant except perhaps in unity
aspect ratio stellarators.

9.2. Plateau regime

As discussed in section 6, all plateau regimes are caused by the
singularity or the resonance in the kinetic part of the kinetic
equation when the mirror force can be neglected [46,103].
The only difference here is that there are multiple resonances
in stellarators because there can be multiple classes of trapped
particles. When all modes are in the plateau regimes, compact
analytic expressions for transport fluxes can be obtained. It
should be emphasized that the mirror forces for all the modes
have to be negligible for the analytic theory to be valid. In that
case, the equation to be solved is

v2
vn- Vh — C(h) = 27
Ue

V.-VB 2

X ——L

B S5p

Using a Krook model for C (h) = —vh, equation (9.2.1) can be
easily solved to obtain the components of the plasma viscosity
in the plateau asymptotic limit [46, 67]

(9.2.1)

(B-v-7)=Nm(B?)

0 . ¢ 2 ¢
Vit puuVe + —pop— + o — |, 922
x (ulp M1t sha™ ¥ 5k ) 9:22)
and
(B-v-6)=Nm (B
2 v 2 d
X (usz +uaVe+ fmqu + fuatqf) , (9.2.3)
5 p 5 p
where parallel viscous coefficients are
T 0B, B-VB [
Ijp = £Cj Z< > : ’
2 — 20 B By |my' —ny’|
9.2.4)
, —ﬁcvz 3By B-VB v
P = 2\ Tor T B | Bolmx =yl
9.2.5)
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and C; for j 1-3 is defined in section 6. Similarly, the
toroidal components of the viscous forces are

(B v %)= Nm (B

o . ¢ 2 4
X (;/.“pV + w1V +§M2[p;+§ﬂ2u?> s 9.2.6)
and
(B.-v-6)=nNm(B?)
0 2 ¢
X <H—2[pV9 + po Ve + *l‘-3tpq* + 7M3th7> , 9.2.7)
5 p 5 P
where toroidal viscous coefficients are
Jr 0B, B, - VB U
wio="3C 2\ " 5 By =l
e olmx’ —ny’|
9.2.8)
and
A _ﬂcz 0B, B, - VB Vg
H= Y L\T9c T B | Bolmx —nyl’
9.2.9)

for j =1-3. The magnetic field strength is expressed as B =
Byl + Zm_n Bun(V, 0, ¢)]. The poloidal components of the
viscous and heat viscous forces can be easily obtained by taking
the difference between the parallel and toroidal components of
the forces, i.e. (B, - V- 7) = (B - V- 1) — (B, - V- 7).

Comparing the components of the viscous forces in the
Pfirsch—Schliiter regime and those in the plateau regime, it is
noted that as the collision frequency decreases, the feature of
each individual mode appears. This is because the particle
dynamics become important when collisions become less
frequent. In the plateau regime, the collision frequency is small
enough so that resonance for each individual mode appears in
the viscous coefficients.

9.2.1. Plasma flows and radial electric field. ~From the parallel
momentum and heat flux balance equations, the standard
results on the parallel flows and heat flows for large aspect
ratio tori are still valid, i.e. Vi & V| & V};, q; = 0, and
q)e ~ 0. The reason for this is that friction forces are larger
than viscous forces in the electron force balance equations
and in the ion heat flux balance equation. This implies
that the equilibrium parallel flow is, from ) ;e ];p =0, or

equivalently, Zj (B-V- 7‘?/,> =0,

(viB) __ ¢h <&/ e’ ml{)
(B?) Pe(B)\pi T unT)’
9.2.1.1)
where o/ ipi = Mad/ M = pai/pi = 1/2, and the
geometric factor Gy, is
G — M (B-VV X V0)+ui (B-VV x V)
P pipiB - VO + p1iB - V¢
9.2.1.2)

For classic stellarators,

F
Gy = ?[8,2 +m (m —nq) eﬁ/lm —ngq|

+(G/F)n (m — nq) s,zl/lm — ”Q|][512 +|m — ane,z,]fl.
9.2.1.3)
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The factor G, differs from G for classic stellarators because
of the resonances in the plateau regime. If ¢, = 0, i.e. an
axisymmetric tokamak,

F
Gp=— (9.2.1.4)
X
For a helically symmetric torus, &, = 0, and
1 mF+nG
Gy=—— "2 (9.2.1.5)
X m—ngq

Thus, the direction of the parallel flow again reverses if
ng > m. For a straight bumpy torus, &, = 0, and m = 0,

1G

X' q

Gp (9.2.1.6)

The geometric factor Gpin a rippled tokamak, i.e. m = 0, is

_ F &l —(G/F)ns;

, 9.2.1.7)
X

G
P &2 + nqel

The radial electric field determined from ), e,T'}* = 0, i.e.
Zj (B - V- 7?]-) = 0, is, approximately,
E{ + equ/
ri T

Ll
mii Ty

0, (9.2.1.8)

to the leading order in /M. /M; ordering.
The parallel flow is damped by the toroidal viscous force.
The steady-state parallel flow is

(viB)

]~

(9.2.1.9)

and the corresponding poloidal and toroidal flows are

TF T
o _ Ol Kol (9.2.1.10)
ei<Bz>H—li T;
and G -
ye = ST S 9.2.1.11)
e (Bz>Mli T;

Thus, the steady-state flows in the plateau regime are similar
to those in the Pfirsch—Schliiter regime except the ratio of
the viscous coefficients is different. The components of the
residual flow are again driven by the ion temperature gradient.

9.2.2. Transport fluxes in the plateau regime and examples.
With the knowledge of the components of the viscous forces,
and the steady-state plasma flows, the viscous force driven
transport fluxes can be then evaluated using the flux—force
relation [46].

The ambipolar banana—plateau particle flux ng is

c*{
62<BZ>X/
X (Mlpe (B-VV X V0)+ e (B-VV x V{))
P’ 1Ti’+ZTe/>

[ —
<I’e 2 ZT.

bp _
=

NeM.T,

(9.2.2.1)
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and non-axisymmetric particle flux I'2* is
2

m = /W/N M,
X (Hipe (B - VV x VO) + e (B - VV x V)
P 1T/ +ZT!
x| —+-4=—""2). 9.2.22)
pe 2 ZT.
The total ambipolar particle flux I'¢ is
[ =T 4m, 9.2.2.3)

The ion heat fluxes are
by
" 6¢* (In)

T 2
/7

T.
X (papi (B - VV x VO) + o (B - VV x V) ?‘

i

9.2.2.4)
and
q_na 66‘2
- = 2.7 /I\IiZWiTi
T e X 2

x (ai (B - VV x VO) + oy (B - VV x V¢)) %
(9.12.2.5)
The electron heat fluxes are
e (In)

@’ __ Al
eZ(BZ)X/

= N.M.T, (sze (B-VV x V8)
€

+loe (B - VV x VC))
P
+

X <7
Pe
and

ql'lﬂ
e _
T.  e&x'y

+lowe (B - VV x VC))
1T/ +13ZT,
X[—+="——).
pe 2 ZI:
The total heat flux for each species is

1T +13ZT,

22.
2 7T, ©.2.2.6)

).

2
- N.M.T, (uzlpe (B-VV x V6)

P/
(9.2.2.7)

bp na
4 _ 9 4
;I T
where j = i for ions and j = e for electrons. The bootstrap
current is

, (9.2.2.8)

. s M,
(jipB) = ~Nee ——-cpe (1ipe (B~ VV x V6)
+ e (B VV x Vi)
X[g <1+@me>+w+ZTe’
Pe l;z Mie 2 ZT.
11§, poe T) + 1327,

20 e 7. ] (9.2.2.9)
The Ware pinch flux can be inferred from the bootstrap current
because they are Onsager conjugates of each other.

To gain physical insights on the transport fluxes in non-
axisymmetric tori, it is helpful to have explicit expressions
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for these quantities for a classic stellarator using approximate
cylindrical coordinates [46]. The ambipolar particle fluxes are

2
bpy _ VT 2 Ve 2 2 Bp 2
(Fcp)r - _TNepchq (8 —me, —ng—s5 Bt 8]1)
P 1 T-’+ZTe'
x| —+d -2 (9.2.2.10)
pe 2 ZT:
and
a N o2 Ve 32 m | 2
(F{cﬂ)r = _TNC " Ry m+nqg—s 32 1-— @ &
P 1T/ +ZT!
x| —+=—1_—"C], 9.2.2.11)
pe 2 ZT,

where the subscript r denotes the quantity is evaluated in
(r, 8, ¢) coordinates, ng > m has been used, and prime denote
d/dr in transport fluxes that have subscripted by . The total
ambipolar particle flux is

(l-qmal) _ LN 2 Ve
e 4 e"eRq
—1 B2
x|:ef+('l—m —l) (m+ang &t
ng h

P 1T/ +ZT]
X|—+=-—".
pe 2 ZT.
The ambipolar particle fluxes in rippled tokamaks can be
obtained by setting m = 0. Thus, the total particle flux is the
same as that in axisymmetric tokamaks. The toroidal magnetic
field ripples have no effect on the total ambipolar particle flux
in the plateau regime. The total ion heat flux is

() -5

(9.2.2.12)

total

4
T;

4 "PrRg

2 m | Bz Tl/
x|et+||1——| —1)|m+ng-=2]e}
nq Bt T’
(9.2.2.13)
and the total electron heat flux is
qéotal ﬁ ) Ule
= —71\’e o
T. ), 8 " Rg
-1 BZ
X stz+ 'l—ﬂ -1 m+nq—g sﬁ
nq B;
P 1T/+13ZT]
X|—+=-"——=). (9.2.2.14)
Pe 2 ZT,

The toroidal magnetic field ripples again do not affect the heat
transport for both ions and electrons in the plateau regime. The
bootstrap current is

o, M, Ve 24/T ) Bs )
J =—-—— —me; —ng—¢
(in), Nee2 T*Rq B, ( bRy
P’ l 17T/ +ZT!
X[* <1+1172MC>+§127T5
Pe 22 Mie e

Ll pee T+ 13ZT;]_
2 l;z Mie ZT,
The bootstrap current in this regime is smaller than that in the

banana regime by a factor of the order of 1/v,. The 1/v like
scaling is often observed in DKES code results [108] when

(9.2.2.15)
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the collision frequency decreases so that one mode becomes
collisionless and the current increases towards its collisionless
value [254]. Just like the parallel flow, the bootstrap current
can reverse direction when me} > &2 in stellarators. Toroidal
magnetic field ripples have little effects on the bootstrap current
in this regime.

9.2.3. Additional remarks. The analytic expression for the
transport fluxes in this regime are in agreement with the
numerical results obtained using the DKES code [108, 255].
However, when not all modes are in the plateau regime, the
prediction based on all modes being in the plateau regime
presented here is obviously not applicable. An example of
such is given in [159], where mirror force from one mode
becomes non negligible. Thus, not all modes are in the plateau
regime in that case. Because the mirror force terms depend on
the poloidal and toroidal angles non-linearly, distinguishing
individual mode from one another is difficult. The analytic
treatment for such a situation is not known.

9.3. Parallel plasma viscosity and bootstrap current in the low
collisionality regime

In the low collisionality regime, i.e. when particles’ bounce
motion is not interrupted by collisions, particle dynamics
becomes important in solving the drift kinetic equation. In
non-axisymmetric tori, there is no compact analytic description
for particle trajectories. Thus, parallel plasma viscous forces
in this regime cannot be calculated as accurately as those in
the plateau—Pfirsch—Schluter regime. However, because of the
importance of the bootstrap current to plasma confinement
in stellarators, it is useful at least to obtain an approximate
expression for the parallel viscosity in the collisionless regime.

As discussed in section 9.2.3, it is difficult to treat
analytically the case where only a few modes are collisionless.
However, when all modes are collisionless, it is possible to
obtain an approximate solution.

9.3.1. Parallel plasma viscosity. One way to calculate the
parallel plasma viscosity approximately is to demand that the
expression is exact, in the sense of the gyro-radius ordering,
in any symmetric limit. To this end, the radial drift speed is
decomposed as [257]

vy=lg.y(Llu 1 vy B*H
ﬂ[i(vu RBz)_i("” 532” 9.3.1.1)
B |90 \x’ g\’ -
where
V'
_ (@B/36)%) — ¢*((9B/07)?) (9.3.1.3)
((0B/00 +q0B/3¢)?) o
2
_ (0B/00) 0B/00) +q{@B/90?) o

((0B/36 +qdB/3r)?)
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and

((9B/26)*) +q (9B /20) (B/D))
((0B/36 +q3B/3r)?)

(9.3.1.5)

The purpose of the representation in equation (9.3.1.1) is to
separate the axisymmetric part from the non-axisymmetric part
of the radial drift speed. The axisymmetric part, valid for any
torus that possesses certain symmetry in the | B| spectrum, is
the term that involves B - V. The terms that involve R and
S are the non-axisymmetric part and vanish in any symmetric
torus. The decomposition of the drift velocity is motivated by
the solution of the density conservation law [257].

The equation to be solved is the linear drift kinetic
equation, i.e. equation (5.2). In the collisionless regime, the
solution is complex and depends on the details of the solution of
the linear bounce averaged drift kinetic equation for stellarators

[3,53]. However, the solution of the bounce averaged drift
kinetic equation does not contribute to the parallel viscosity
as proven rigorously in [53]. To approximate, the linear
drift kinetic equation is solved as if the torus is symmetric.
In this approximation, the solution becomes exact in any
symmetric limit. Because there are infinite but countable
number of symmetric tori, this imposes a powerful constraint
on the solution of the linear drift kinetic equation. This
provides a plausible explanation for the reasonable agreement
between the bootstrap current calculated analytically based on
the approximate parallel plasma viscosity and that calculated
numerically using DKES [254]. The method of solution to be
discussed, which follows from that in [254,257], is different
but equivalent to the original method developed in [53].
This method utilizes Fourier series in solving the magnetic
differential equation instead of integrating along the magnetic
field line.

The linear drift kinetic equation in the collisionless regime
is solved by expanding it, using a small parameter veg/w,
where wy, is the typical bounce frequency for all relevant
trapped particles, to obtain the leading order equation

a
UHn-Vf10+Ud~VVﬂ =0, (9316)
av
and the next order equation
a
-V i +evyn - E“”% =C(fin., (9317

where the second subscript in f) indicates the order
in the auxiliary expansion. The difference between
equations (9.3.1.6) and (9.3.1.7), and equations (6.2.1.1) and
(6.2.1.2) is that n - V is a two-dimensional operator for non-
axisymmetric tori such as stellarators. The advantage in
expressing vq - VV in equation (9.3.1.1) becomes transparent.
Using equation (9.3.1.1), equation (9.3.1.6) can be integrated
to obtain
v

fl() = _E

U o1 B2y 0
Y9V 2 xy v
v ¢BBwm - dfm
g (V)

Q x'y' oV
where gy (V) is an integration constant,

~ mR +nS . .
h=—o Z — e [el(méfnt) _ el(mOMﬂl;‘M)] ,
m,n#0 -

(9.3.1.8)

(9.3.1.9)
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(6Mm, ¢{m) are the coordinates of By where B is the global
maximum on the magnetic surface, o denotes the sign of vy,

2 12
B LB )
d@/ d¢ — (1 - —) g imb—nd)
0 By By

(9.3.1.10)

and A = uBy/(Mv?/2). The integration constant gy (V) is
determined using the same method that is used in calculating
the parallel viscosity in [7]. As a result, the flux surface
averaged parallel plasma viscosity is

1 2

Qmn = 75
4]'[2 0

B.V-7 Ve
< (_)) =NM(B2><M'l M2) 2¢° |
<B-V~®> K2 K3/ \5°
(9.3.1.11)
where
o =
B
(a1 ab 3 [ )
4\BQ Qv LY 200 (jy]/v)
“ (ﬂ N ﬁ) , (9.3.1.12)
p T
¢ _a 5w
p pB 24
H  BH, 1 ¢B 3/‘d/\,\W(A) T
X — _ - '
BQ  Qxy' fiQxv' 200 (jyl/w)) T
(9.3.1.13)
mR +nS
W)=Yy ——
) ;m_nq
» |: 3 280{mn <|v||ei(m6n§)>
ar v

+i @ei(mernfM)

e (1)
7 BI%/I (T + dmn) ], (9.3.1.14)

and

1 2 27 B 3/2 -
Ay = 7/ d@/ de(1—-— e imo—nt)
47'[2 0 0 BM

(9.3.1.15)

The definitions for f, and f; are the same as those for the
axisymmetric tokamaks in equation (6.2.1.12) except that
B and By are different. The expressions for the viscous
coefficients ;s are cast into forms that are the same as those
for axisymmetric tokamaks in equation (6.2.1.11) except that
the magnetic field spectrum | B| used is different.

9.3.2. Parallel flow and bootstrap current. ~Having the
information of the parallel viscous forces, the parallel flow
and the bootstrap current in this regime can be obtained.

In the large aspect ratio limit, there is a common parallel
flow as shown in section 6 and [6, 7]. Using the parallel viscous
forces in this regime, the common parallel flow is [53,254]

(ViB) cTi< 6P’ )

(B) ~ (B T

woi T/

ni Ti

pi

pi

9.3.2.1)

b
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where 2/ p1i = —1.17 and the geometric factor Gy, is
(H) (B)H, 31¢q(B?% /‘ AW (L)
b= - = - .
2 2xy A foxv Joo (Joy]/v)
9.3.2.2)

If the doubly periodic tori possess any symmetry property in
the | B| spectrum, the geometric factor simplifies to

H B H
Gy = ) (B) (9.3.2.3)
2 2)(,110/
For a helically symmetric torus,
1 mF+nG
p= — T2 9.3.2.4)
X' m—nq

which is the same as G s and G. For axisymmetric tokamaks,
m = 1 and n = 0, and for the poloidally symmetric tori,
m = 0. For a helically symmetric torus, the parallel flow is in
the opposite direction to that of a tokamak if m < ngq.

The bootstrap current is

Gy B B B
Iy = —2.96f[cL[P/ (1 + g“%) + (1 + “kg)
(32) 122 Mie Hie 122
. I
x A NT 4 <“—2 +32 ’“e) NTC’]. (9.3.2.5)
H1i Mie 15 e

The direction of the bootstrap current is controlled by the
geometric factor Gp. The bootstrap current in stellarators is
often in the opposite direction to that in tokamaks and has a
smaller magnitude. Even though there is no ohmic current in
stellarators in principle, the existence of the bootstrap current
can modify the ¢ profile and thus MHD stability property
[258,259]. Itisnecessary toinclude it in the MHD equilibrium
and stability calculations [260-264]. The bootstrap current
in stellarators also depends on the radial electric field in the
transition from the plateau regime to the banana regime, and
in the case where ions and electrons are in different regimes
[254,265,266].

In practical application, a connection formula for the
bootstrap current that joins all the asymptotic limits is needed.
However, such a formula is not available. From the numerical
results for the bootstrap current from DKES for a classic
stellarator [254], it seems that mode-by-mode transition might
be a way to join various asymptotic limits. As the collision
frequency decreases, one mode becomes collisionless first, i.e.
enters the plateau regime. The bootstrap current increases
according to the 1/v scaling for the bootstrap current in the
plateau regime, and trying to reach the asymptotic value of
that particular mode in the collisionless regime until the other
mode becomes collisionless. The asymptotic value in the
collisionless regime is approximately the bootstrap current in
the symmetric limit for that single mode. After both modes
become collisionless, the bootstrap current strives to reach the
approximate asymptotic value calculated here. The collision
frequency scaling during the transition may follow the scaling
from the boundary layer analysis [267].

9.3.3. Neoclassical modification of electrical conductivity. As
in axisymmetric tokamaks, when there are trapped particles,
the electrical conductivity along the magnetic line is reduced.
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The reduced conductivity can be obtained from the solution
of the parallel momentum and heat flux balance equations.
In the low collisionality regime where all trapped particles
are collisionless, the modified conductivity o in stellarators
is ger = (Ne€)2ISS/USNSS — (I5)2], where I = I, +
NeMeptie, ITIZ) = l?g — NeMejire and lslzj = l;z + NeMeptze.
The oe has exactly the same form as that for tokamaks
in equation (6.2.1.36) except that the details of the viscous
coefficients are defined differently. The expression for o is
also valid in the plateau and Pfirsch—Schliiter regimes. When
all modes are either in the plateau regime or in the Pfirsch—
Schliiter regime, i j. in oef is replaced by (4 jpe x' + i jiety’ for
J = 1-3 with the corresponding viscous coefficients defined
in equations (9.1.6), (9.1.7), (9.2.4) and (9.2.5).

9.3.4. Transport fluxes in helically symmetric tori and
isomorphic transformation. ~ Transport fluxes in helically
symmetric tori are similar to those for tokamaks in the
banana regime because symmetric tori are isomorphic [268].
The isomorphic transformation is to replace / in tokamaks
with (mF +nG)/(m —ng), and to calculate f; using the
appropriate |B| spectrum. The Hamada coordinates are used
here, i.e. the prime denotes d/d V.

For example, in the banana regime the parallel flow in
helically symmetric tori is

(ViB)  (mF+nG)cTi ed
(B2) ~ (m—ng)eix' (B?) Ti
__ mF+nG)cli (p i T ’ (9.3.4.1)
(m—nq)eix' (B2) \ pi  pn T

and ion heat conductivity is

A (mF +nG)>? . (
‘e (m —ng)* x” (32)/131

2

c dT;

) av
9.34.2)
using the flux—force relation for helically symmetric tori in

section 4, and transport fluxes in section 6. The electron
ambipolar particle flux and heat flux are

2
M
M1i M3i

b
‘]ip
T;

2 F +nG)?
R VL L indcr
e (m —nq)® x (B?)
P TP
y <7 ety @fTi) , (9.3.4.3)
Ne Mle M1i V4
and
qibp c: (mF +nG)} "
T. ¢ eeiz (m —ng)? x” (Bz) %
P T
x <7+ M3ETE+@—Ti). (9.3.4.4)
Ne MH2e Mii z

A scaling the same as the one in the particle flux shown
in equation (9.3.4.3) is also obtained in [269]. The Ware
pinch fluxes can also be obtained by applying the isomorphic
transformation to results in section 6 if the inductive electric
field does not vanish in helically symmetric tori. The effects of
orbit squeezing can also be included when the orbit squeezing
factor is transformed to [270]

(mF +nG)*  ed,

S=1+——
(m —nq)* x?Q* M

(9.3.4.5)
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using the isomorphic transformation. The transport fluxes in
the vicinity of the magnetic axis including the effects of orbit
squeezing for helically symmetric tori have been calculated in
[270]. The results can be obtained by applying the isomorphic
transformation to the potato transport fluxes in tokamaks.

9.4. Bounce averaged drift kinetic equation and 1 /v regime

The radial electric field is not yet determined in the low
collisionality regime in equation (9.3.2.1). Modern efforts
to optimize stellarator configurations are to minimize or even
to eliminate the symmetry breaking components in the |B]|
spectrum to reduce the radial drift speed of trapped particles
[27]. However, symmetry breaking components always exist
in real configurations with meaningful magnitudes, i.e. typical
8B/ B is larger than 1073, regardless of the optimization goals.
Thus, the radial electric field is determined by the toroidal
component of the viscous force resulting from trapped particles
drifting off the magnetic surface. In stellarators, it is usually
the helically trapped particles that dominate the transport
processes.

The |B| spectrum in real stellarators is complex and in
general the drift kinetic equation is not amenable to analytic
treatment in the low collisionality regime for arbitrary |B)|
spectrum. However, there is one class of the |B| spectrum
for which analytic transport theory can be developed. That
class of the |B| spectrum consists of one helical harmonic
with multiple poloidal sidebands [271]:

B oo
— = 1+4+¢gcos6 +¢gqcos jO + Z e® cos (16 + @),
0 l=—00

94.1)

where @ = m6 — n¢ is the main helical harmonic, ¢’ denotes
the amplitude of the /th harmonic of the poloidal sideband, g4
and ¢ are the amplitudes of the cos j& and cos 6§ harmonics.
In this model, arbitrary numbers of the poloidal side bands can
be kept. Using the identity cos(£/6 + «) = coslf cosa F
sin /6 sin o, equation (9.4.1) can be cast into [271]

B
B—:1+s[c059+sdcosj9+(C2+D2)1/2
0
¢ b i 94.2)
X | ————5cosae — — = sina |, (9.4.
(c2+p?)"? (c2+p?)"?

where C = ¢©@ + [e®D + £D]cos @ + [¢*P + D] cos 20
and D = [¢®D —¢tD]sinf + [6®D — ¢D]sin 20 when
only two /th-harmonics are kept. It is obvious that the same
procedure can be used when there are arbitrary numbers
of poloidal sidebands in the magnetic field spectrum. An
angle ¢ can be defined such that cos¢ = C/(C?+ D?)'/2,
and sin ¢ D/(C?+ D*)'/2, and equation (9.4.2) can be
simplified to [271]

B
— =1l+¢er+egcos(ae+¢),
0

(9.4.3)

where e = g, cos 6 + g4 cos jO and eg = (C?+ D?*'/2. The
expression in equation (9.4.3) can be reduced to a model
B

— =1—¢gcosf —¢g;, (1 —opmcosO)cosa,
By

(9.4.4)
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used in [272] to improve plasma confinement in stellarators,
by setting D = ¢V and £*? = &2 = 0, where gy is a
parameter.

The main difference between the theory for stellarators
and that for neoclassical toroidal plasma viscosity in tokamaks
is that there are, at least, two classes of trapped particles in
stellarators. Trapped particles can be roughly classified as
toroidally trapped particles that are trapped in the & cos6
variation and the helically trapped particles that are trapped
in the helical variation ey cos(« + ¢). The helical harmonic
in stellarators usually has the property that ng > m. With
this property, the bounce frequency for the helically trapped
particles is higher than that of the toroidally trapped particles by
a factor of [m — ng| ~ ng > 1 for comparable magnitudes of
er and ey. Thus, as the collision frequency decreases, helically
trapped particles become collisionless first. For this reason,
when the effective collision frequency vegr ~ v/|en] is less
than the bounce frequency of the helically trapped particles
wbn ~ Ui/ lenllm — ngl/(Rq), helically trapped particles can
complete their collisionless bounce motions. For the model
presented in equation (9.4.3), the only analytic formulas for
transport fluxes developed so far are for 1/v [271,272], and
the superbanana plateau regimes [230].

9.4.1. Bounce averaged drift kinetic equation for helically
trapped particles. Similar to the theory for the neoclassical
toroidal plasma viscosity in the low collisionality regimes in
tokamaks discussed in section 8, the drift orbit dynamics is
governed by the bounce averaged drift kinetic equation for
helically trapped particles when v/|eg| < wpp.

It is convenient to choose spatial coordinates as (V, 6y, )
in Hamada coordinates where 6y = 6 — ¢ /q is the label for the
field line and ¢ is the coordinate along the field line. Obviously,
B -V6, =0.

In the low collisionality regimes, the drift kinetic equation
can be expanded using the small parameter veg/wp, < 1.
Because the bounce frequency of the helically trapped particles
is larger than the drift frequencies and collision frequency, the
leading order equation is

afo
Cle

where fy is the leading particle distribution function. The
solution to equation (9.4.1.1) is

yn- v =, 94.1.1)

Jo=fo(V,6p). (9.4.1.2)
The next order equation is
9o fo dfo
Vi—+vqg - VO— + vVv—=C
vmn - Vi ac va- Voo vq - 2V fo)
94.1.3)

where fp ) is the perturbed particle distribution function to fj.
To guarantee that fj; is periodic in ¢, equation (9.4.1.3) is
bounce averaged over the trajectories of the helically trapped
particles and results in the bounce averaged drift kinetic
equation

0 dafo
(V4 - V6o aJ;Z (va - VV)y a{, (C (fo))on

94.14)
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The bounce average operation (A)p;, is defined as (A),, =
Y, (S5 dgAB/lvy)/([%. dgB/|vyl), where the turning
points £¢ are defined as v (£¢) = 0. Of course, bounce
average operation also annihilates the momentum restoring
term in the collision operator as discussed in section 8.

As in the theory for neoclassical toroidal plasma viscosity
in tokamaks, there are resonant and non-resonant transport
processes categorized by whether (vq - VOy)p;, vanishes. For
the non-resonant transport processes, equation (9.4.1.4) can be
further expanded by assuming that the poloidal drift frequency
is comparable to the collision frequency and much larger than
the radial drift frequency to allow for the local transport theory.
The leading order equation is then

b
(va - VOO)oh —— fon

2, = (C (f00))on »

(9.4.1.5)

where the second subscript indicates the subsidiary ordering.
The solution to equation (9.4.1.5) is

Soo = foo (V) = fm- (9.4.1.6)
The next order equation is
(vg - V90>bh Lt (v - VV)];;, fM = {(C (fo1))on -
9.4.1.7)

Equation (9.4.1.7) is the linear bounce averaged equation to be
solved for the non-resonant transport processes.

For the resonant transport processes, the linear drift kinetic
equation to be solved is

d 0
(vg - VG‘o)bh +<'Ud VVon 8f‘011 +{(va - VV)p 312;/[
=(C (f01)> (9.4.1.8)

The radial drift term (vq - VV )y, df01/0V describing the radial
motion of the drift orbit must be kept to complete the drift
trajectories for the resonant helically trapped particles, because
dfo1/0V is comparable to dfy/dV for resonant transport
processes [111,230].

To calculate the bounce averaged drift velocity, it
is assumed that ng > m so that helical angle o
[m6y + (m/q — n)¢] m6y — n¢. The difference between
0 and 6 is also neglected because of the assumption that
ng > 2m. With these approximations, using the model
magnetic field in equation (9.4.3) yields [271]

~
~

c®’ C/,LB() 2E (kh) 38H 881‘
(vg - VO)y, = T 7 -l -1
4 ey K (kp) v 3V
(9.4.1.9)
and
B 2E (k d d
(g - VV)y, = L0 o) (] 0en _ der]
ey K (kp) 00 90
(9.4.1.10)
where the pitch angle parameter k7 is defined as
E —ed — uBy(1 -
= E-e@—uBoler—en) (9.4.1.11)

2“308}{
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The bounce averaged collision operator is

VD 1 d

en K (ky) 3k}
where the energy scattering operator is neglected as is
appropriate for large aspect ratio tori.

The solution of the bounce averaged drift kinetic equation
does not contribute to the flux surface averaged parallel viscous
forces as discussed in section 8. It does not have any direct
effects on the bootstrap current, nor does it modify the electrical
conductivity.

<C (f01)>bh =

afo1

— 9.4.1.12
e ( )

x {[E k) — (1 —k;) K (kn)]

9.4.2. 1/v regime. The 1/v regime is the most studied
collisionality regime in the transport theory for non-
axisymmetric tori and in particular in stellarators in part
because transport coefficients scale unfavourably as T’/ for
high-temperature plasmas [3,246,271,272,273-275]. If the
scaling persists it could make stellarators a much less viable
candidate as thermonuclear fusion reactors [276].

In this regime, collisions are infrequent so that one class
of the trapped particles can complete their bounce motions.
Complicated analytic expressions for the transport fluxes for a
realistic magnetic field spectrum have been derived [273,275].
To illustrate physics of the theory, the magnetic field model
in equation (9.4.3) is used to obtain relative simple transport
fluxes in this regime.

Inthe 1/v regime, the effective collision frequency is larger
than the poloidal drift frequency. The transport process is non-
resonant. The equation to be solved is then

0
(vq - VV)bh ﬂ =(C (fOl))bh .

9.42.1
3V ( )

Integrating equation (9.4.2.1), and imposing the boundary
condition at k2 = 0, i.e. [E (ky) — (1 — k2)K (k;,)18fo1/9k3 =
0, yield

o1

_ s by i
8k£

vp ey’ AV

kz
U dk,%{ [2E (k) — K (kp)]
0
x (3en/30) — K (ky) (de1/30) }]
—1
x [E k) — (1 — k) K (k,,)] . (9.4.2.2)

Knowing dfo; /8kﬁ is adequate to calculate transport fluxes,
and they are [271]

2
w N M\l
s,1/v — \/571'2 ew/ N s,1/v
’ @/ T/
X |:771 (% + eT ) + 7727] , (9.4.2.3)
and
q;'fll/v _ N Mc zvf‘l
T ﬁﬂz ey’ Wt Ay
p/ ed’ T’
X | 2 ; + T + ;737 , 9.4.2.4)
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where n; for j = 1-3 is the same as the one defined in
a6
38].[

equation (8.2.1.8),
2
o (5)
06

2

Is,l/v = / desil/z

0
2

(%) ]

G, = 16/9,G, = 16/15 and G; = 0.684. Both the
particle and normalized heat fluxes scale as T7/2. This
unfavourable temperature scaling can have significant impact
on the confinement for fusion-born alpha particles [276].
The difference between stellarator transport fluxes and the
neoclassical toroidal viscosity in the 1/v regime is that the
role of the toroidal magnetic field variation has changed. In
stellarators, helically trapped particles drift off the magnetic
surface as a result of the toroidal magnetic field variation. In
the theory of neoclassical toroidal viscosity, particles trapped
in the toroidal magnetic field variation drift off the magnetic
surface due to the helically perturbed magnetic field.

Another difference between the transport fluxes for the
stellarators and those for tokamaks with broken symmetry is
the mode number dependences. There are no explicit mode
number dependences for stellarator transport fluxes, while the
mode number dependences for neoclassical toroidal plasma
viscosity are important. The reason for the difference lies in
the approximation ng > m used in the theory for stellarators.

The radial electric field is not determined yet in the low
collisionality regime. In the 1/v regime, the radial electric
field can be determined by setting ), ¢; '}, ; = 0, which is
equivalent to 3, (B, - V- 7%) =0,0r) (B, V- 7%) =0,
because the solution of the bounce averaged drift kinetic

equation does not contribute to (B - V- 7 y [53]. Thus, the
radial electric field is [3,211]

.q)/ / . T/
av - by (9.4.2.5)
T; pi mi T
after neglecting the electron contribution because /M. /M; < 1.

Together with the parallel flow in equation (9.3.2.1), the plasma
flows are completely determined in this regime.

9.4.3. Other low collisionality regimes. ~When the collision
frequency is even lower, boundary layer ./v regime,
collisionless detrapping/retrapping regime, superbanana
plateau regime and superbanana regime will become important
for plasma confinement in stellarators [3]. For a classic
stellarator, transport fluxes in all these regimes can be
calculated following the asymptotic analysis developed for the
theory for neoclassical toroidal plasma viscosity in section 8
and the physics reviewed in [3].

The collisional boundary layer /v regime is too narrow
in the collision frequency domain for comparable magnitudes
of & and ¢,, to be meaningful for asymptotic analysis as
demonstrated in [277] using the DKES code. Indeed,
a connection formula without including /v scaling fits
numerical results better. However, in the limit where ¢, > &,
the physics of the collisional boundary layer can be important.
The asymptotic boundary layer analysis is to make the outer
solution vanish at the trapped-circulating boundary. This leads
to the /v scaling [3].



Nucl. Fusion 55 (2015) 125001

Review Article

The collisional boundary layer solution for the bounce
averaged drift kinetic equation in the regime where v/g, <
c|®'| /Y but (v/ep)/(c|®'|/¥") > (e:/€,)? has been given in

[3]. Details of the analytic method are shown in section 8.
The transport fluxes are

1 A/V*dh (MC)
e =— Nv
WA e |dd>/dw| \
! 16 12 P . ed’ . T
X n X —_— — |,
m m P T 772T
(9.43.1)
and
qnav 1 5 2
N Nv V Vxdh f
T T avzmr e |d<1>/dw|
wl( 29N (2, @Y, T
x |In —+ — — 1,
Nem 2 » T n3 T
(9.4.3.2)
where v.q, = 4(v/e)|c® /¥'|7!, and n; for j = 1-3is

defined in equation (8.2.2.21). It can be seen that when the
magnitudes of & and ¢, are comparable the region in the
collision frequency domain for the /v scaling is too narrow to
render a valid asymptotic analysis. Thus, it is not very useful
to insert a /v scaling in the connection formula that joins all
the asymptotic limits.

The transport fluxes in the superbanana plateau regime
for the spectrum in equation (9.4.3) have been obtained in
[230]. The same analysis can be extended to calculate transport
fluxes in the superbanana regime. It should be emphasized
that the superbanana plateau transport fluxes can be obtained
with or without (vq - VV)y,0df01/0Vin equation (9.4.1.8) as
demonstrated in [224, 230].

The DKES code [108] has been used to calculate the
plasma viscosity and to determine the radial electric field in
stellarators using the moment approach [278,279]. It can
describe almost all relevant transport physics in stellarators
except that the superbanana plateau resonance is excluded in
the formulation. Thus, itis perfectly suited in the region where
the value of the radial electric field is finite, which is true
for most plasmas. Besides DKES, several numerical codes
are devoted to calculate the transport matrix for a variety of
stellarator configurations [280-288]. The benchmark of the
transport coefficients from all these codes is given in [289].

A connection formula for a classic stellarator, with &, > &,
and ng > m, has been constructed to join 1/v, collisionless
detrapping, superbanana plateau and superbanana regimes
following the physics reviewed in [3]. It can be casted in
a form as, when vR/(v[neZ/z) <1,

T 2
(™), = —Nele,? (%) / dx2x%e " 22 o &)
eBr 0 En
P (2T
L P T 2) T
& e\ 2
x { 1.67= (wp + wyp)? + (—’)
En En
2 -3/2 2431
x| Y8 4 0.6 |wvs| 2 (£ +3( 2 ,
En \€n En

(9.4.3.3)
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where wg = cE,/(Br), and wyg = —cTe,x/(eBr) [231].
The pitch angle dependence in wyp is neglected. Thus, the
resonance can only exist in one of the plasma species for a
given sign of the radial electric field. This is in contrast to
the connection formula for the neoclassical toroidal plasma
viscosity in section 8 where the pitch angle dependence is not
neglected. Note that there are no parallel plasma flows in the
thermodynamic forces because (I'™), is calculated from the
solution of the bounce averaged drift kinetic equation.

The E, for the ambipolar state is determined by
Z e;(I'}"), = 0. This equation has bifurcated solutions
becau%e the equation is a non-linear function of E, [290,291].
When ion particle transport dominates, E, is negative. This
is called the ion root. The radial electric field is positive,
when the electron particle flux dominates. This is called
the electron root. In between these two roots, there can be
multiple solutions. Some of the roots are unstable. The
stability of the roots can be classified according to the extremes
of the generalized heat production rate [231]. The stable
roots are at the minima of the heat production rate and the
unstable roots correspond to the maximum production rate.
The transition of ion root to electron root or vice versa can be
a mechanism for the formation of the improved confinement
region in stellarators. There are other bifurcation mechanisms
that could be responsible for the L-H in the edge region of
stellarators [237].

9.4.4. H-mode. High confinement mode also exists in
stellarators. In the edge region of the stellarators besides
the orbit loss mechanism, the bifurcation can be triggered by
(I'™*), inequation (9.4.2.3) together with the non-linear plasma
viscosity in the plateau—Pfirsch—Schliiter regime in section 8.
The dimensionless steady-state poloidal momentum balance
equation for a classic stellarator in cylindrical coordinates is
[237]

32 & M @
- 1 (M, — U,,) — 12U, ]
9 (27)*2 Im — ng| v’ [ e o) = f
N 2 2
-4 Zm n Emnm
[1(”(1"1 Upp) = L Up.r]
5 Vex 1+2q
£ M,—-U,,), 9.4.4.1)
‘vw/(Rq) q* (¥, = Uny)
where vi’ = qu/(vtei/zlm—nql), M, = cE./(vBp),
Upp = —cp'/(NevBy), Upr = —cT’/(NevuBp), vex =

N,{ov)x 1s to denote charge exchange frequency, N,
is the density for neutral particles, (ov)ex is the charge
exchange cross section, [l/v = f% dx2x°(x2 — 5/2)/e™’
by approximating the energy dependence in the collision
frequency as x>, and

j 1 O 2 J
I =~ / dx2x” (x* — 5/2)
0

1
2
xe"/
-1

for j 1, and 2. The coupling between M, and V| /v, is
neglected in equation (9.4.4.1) by assuming that |V}, /v < 1

dy (1 =3y%)° Runvx'/B, (9.4.4.2)

for simplicity. The definition for 18)) is the same as that in
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Figure 28. The graphic solution for M,, in L-mode plasmas with

v, = 15,and U, , = U, 7 = 0.25. The dashed line is for the term on
the left-hand side of equation (9.4.4.1) and the solid line is the
non-linear plasma viscosity from the right-hand side of

equation (9.4.4.1).

equation (8.3.1.4) except that the upper integration limit is
(V)14 instead of oo to account for the fact that particles with
normalized speed faster than (v")!/ are not in the plateau—
Pfirsch—Schluter regime. It is assumed that these higher speed
particles are in the 1/v regime and is modelled on the left-hand
side of equation (9.4.4.1).

The steady-state solutions for equation (9.4.4.1) are found
using a graphic method for a given set of parameters: & =
0.053,e, =0.025,g = 1.92,m =2,n = 5, vx Rq /v, = 0.01
and U, , = Uy 7 = 0.25[237]. In figure 28, v, = 15, there
is only one solution, which is the L-mode solution. There
are two local maxima in the non-linear plasma viscosity when
M, is positive. The first local maximum, which is slightly
larger than 1, is from the Pfirsch—Schliiter regime associated
with the (1, 0) toroidal mode. The second local maximum
is from the (2,5) helical mode that is in the plateau regime.
As v, decreases to 0.75 and U, , = U, r = 0.50, there are
three solutions as shown in figure 29. The one in the middle
is unstable. The new solution with higher value of M, is
the H-mode solution. When v,, decreases further to 0.70 and
Up,p = Up,r = 0.55, there is only one solution which is the
H-mode solution (figure 30). The turbulence is suppressed
according to the turbulence suppression theory in section 7,
and confinement is improved.

The L-H transition theory in equation (9.4.4.1) is also
applicable for a rippled tokamak. In that case, only (1,0)
toroidal mode contributes to the non-linear plasma viscosity.
The (0,n) ripple mode contributes to the 1/v transport flux.
The 1/v transport flux in a rippled tokamak differs from those
in stellarators and tokamaks with broken symmetry in that the
new class of ripple trapped particles exists only in part of the
(r, ) plane [211]. Thus, there is an additional geometric factor
in the 1/v transport flux [211].

The generic non-linear behaviour for the bifurcated
solutions for the momentum equation is similar for tokamaks

76

Figure 29. Multiple solutions for M, with v, = 7.5, and
Upp = Up,r = 0.50. The dashed and solid lines are from the left-
and right-hand sides of equation (9.4.4.1) respectively.

0177771

8

Tgif (x 10°%)

Figure 30. The H-mode solution for M, with v, = 7.0, and
Upp = Upr = 0.55.

and stellarators as expected. The important physics is the non-
linearity in the