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Radio frequency wave propagation in finite temperature, magnetized plasmas exhibits a wide range
of physics phenomena. The plasma response is nonlocal in space and time, and numerous modes
are possible with the potential for mode conversions and transformations. In addition, diffraction
effects are important due to finite wavelength and finite-size wave launchers. Multidimensional
simulations are required to describe these phenomena, but even with this complexity, the funda-
mental plasma response is assumed to be the uniform plasma response with the assumption that the
local plasma current for a Fourier mode can be described by the “Stix” conductivity. However, for
plasmas with non-uniform magnetic fields, the wave vector itself is nonlocal. When resolved into
components perpendicular (k?) and parallel (kjj) to the magnetic field, locality of the parallel com-
ponent can easily be violated when the wavelength is large. The impact of this inconsistency is that
estimates of the wave damping can be incorrect (typically low) due to unresolved resonances. For
the case of ion cyclotron damping, this issue has already been addressed by including the effect of
parallel magnetic field gradients. In this case, a modified plasma response (Z function) allows reso-
nance broadening even when kjj¼ 0, and this improves the convergence and accuracy of wave sim-
ulations. In this paper, we extend this formalism to include electron damping and find improved
convergence and accuracy for parameters where electron damping is dominant, such as high har-
monic fast wave heating in the NSTX-U tokamak, and helicon wave launch for off-axis current
drive in the DIII-D tokamak. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4964766]

I. INTRODUCTION

Radio frequency (RF) heating has been employed for a
wide range of applications in magnetized fusion plasmas.
Frequencies ranging from the ion cyclotron frequency Xci to
below the lower hybrid frequency have been used. At the lower
end of this range (typically 1 Xci–3 Xci), heating has been
observed in a wide range of experiments at the fundamental
minority ion resonance, the second harmonic majority ion reso-
nance, and the two-ion-hybrid mode conversion layer. At
frequencies below Xci, the ions are magnetized, and interac-
tions with the shear-Alfv!en or compressional-Alfv!en wave
are possible. For frequencies well above the ion cyclotron
frequency (typically above "5Xci), electron absorption domi-
nates, and equilibrium currents can be driven when the waves
are launched directionally. For example, current drive experi-
ments using power in the range of "5–10 Xci have been
performed on the National Spherical Tokamak Experiment
(NSTX)1 and are also planned for NSTX-Upgrade (NSTX-U).2

Experiments at still higher frequencies (harmonic numbers
well over ten) are being evaluated for current drive applications
on the DIII-D facility.3 At these frequencies, the wave is
described as a “helicon” or “whistler.” For some cases, geomet-
ric optics and ray-tracing algorithms can be used to examine
basic propagation and absorption properties. However, tradi-
tional ray tracing does not readily allow exploration of antenna

geometry and fails to capture the effects of evanescent layers or
mode conversion. Two-dimensional, full-wave simulations are
required to include the finite temperature plasma response and
to model the needed physics for tokamaks. A number of these
codes have been described, and simulations compared for vari-
ous ITER scenarios.4

Full-wave codes typically assume a plasma conductivity
that is derived from the homogenous plasma response. For
uniform plasmas where the RF electric field is expressed
using a Cartesian Fourier basis set EðrÞ ¼

P
k Ekeik%r, the RF

current is given by JðrÞ ¼
P

k rðk; rÞEkeik%r, where r(k, r)
is the “Stix” conductivity tensor,5 and the 3D wave vector
k has components parallel and perpendicular to the equilib-
rium magnetic field. If the magnetic field is not aligned
with the coordinate axis, the wave vector components must
be projected relative to the magnetic field, kjj¼k%b

_

, and
k?¼k&kjj, where b

_

is a unit vector in the direction of the
magnetic field. Even when the plasma is not uniform and/or
the coordinate system is not aligned with the equilibrium
magnetic field, some form of the “local approximation” is
used.6 Although inexact, this approximation provides reason-
able results that agree with experiments.

Serious numerical issues arise when the local parallel
wave vector kjj is sufficiently small that (x&nXc,i)/kjjvth' 1.
Here, x¼ 2pf is the wave frequency, n is the harmonic num-
ber, and vth is the electron thermal velocity. In this case,
the plasma response is reduced to that of a cold plasma, and
the ion cyclotron resonance layers become very narrow and
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difficult to resolve. For electrons where n¼ 0, finite-
temperature damping (e.g., Landau damping) is suppressed.
Both of these situations can result in poor convergence and
non-physical results. The origin of the variation in kjj comes
from up-shifts and down-shifts that follow from kjj ¼ k % b

_

¼ k#b# þ nu

R bu, where the coordinates are poloidal angle #
and toroidal angle u in the tokamak case. For a given nu and
k#, the parallel wave number kjj can be either up- or down-
shifted, depending on the sign of b#. The down-shift can
easily lead to kjj) 0 locally. As resolution is increased, the
poloidal mode numbers become progressively larger with a
greater likelihood of kjj) 0, leading to correspondingly poorer
convergence—sometimes called “numerical pollution.”

When ion damping dominates, this issue has been
addressed by considering the broadening that results from
equilibrium magnetic field gradients.6 This broadening has
been used successfully in full-wave simulations such as
TORIC7 and AORSA.8 When electron damping dominates,
the electron Landau response becomes problematic. This
effect is amplified when slow waves (possibly evanescent)
are present in the solution because they are sensitive to
errors in the parallel electric field caused by the poorly
resolved electron response. When fast waves are dominant,
these same errors may not impact the wave solution to the
same degree because the parallel wave fields are smaller
than the perpendicular fields by the electron to ion mass
ratio.

In Section II, the effect of this “numerical pollution” is
illustrated for parameters characteristic of shear Alfv!en waves.
Sections III and IV describe two approaches for improving
the local approximation and enabling better resolution of elec-
tron absorption when the local kjj is small. Section V applies
this improved electron response to full wave simulations in
Alcator CMOD9 and NSTX.1 Section VI presents preliminary
simulations for helicon launch in DIII-D,3 and Section VII
summarizes the results. The AORSA code is used as the tool
to understand these issues, but the results are applicable to any
simulation that uses the quasi-local approximation.

II. EVIDENCE FOR NUMERICAL POLLUTION
WHEN kjj APPROACHES ZERO

Since its inception in the early 2000s, the all-orders
global wave solver AORSA8 has exhibited noise in Ejj—the
component of the radio frequency electric field parallel to
the applied magnetic field. In the fast wave regime, this noise
is minimal and does not interfere with the solution because
Ejj is smaller than the perpendicular electric field by an elec-
tron to ion mass ratio. However, when slow waves are pre-
sent in the solution, the noise in Ejj takes a particularly
insidious form, appearing as an intricate short wavelength
structure near the magnetic axis. When the resolution is
increased, the amplitude of this structure increases until it
eventually dominates the entire solution—a sign of numeri-
cal pollution.

Figure 1 shows an example of this pollution in a numeri-
cal solution for the wave electric field in the Alcator C-Mod
tokamak.9 A reduced frequency (f¼ 30 MHz) is used to sim-
plify the problem by eliminating all ion resonances from
the solution domain and leaving electron damping as the
dominant loss mechanism. Only the shear Alfv!en resonance
remains on the high field (left) side of the plasma near
R) 0.55 m. A numerical grid of 200 * 200 modes is used
with warm electrons (1000 eV), cold ions (2 eV), and a toroi-
dal mode number, nu¼ 12. In this example, a long wave-
length, fast wave is excited by the antenna on the low field
(right) side of the plasma near R) 0.9 m. As it propagates
across the plasma, the fast wave encounters the shear Alfv!en
resonance and is “mode-converted” to a shorter wavelength
slow wave—the kinetic Alfv!en wave (KAW)5 near
R) 0.55 m in Fig. 1(a). The intricate short wavelength struc-
ture near the magnetic axis is due to numerical pollution. In
Fig. 1(b), an approximate high harmonic dispersion solu-
tion10 shows regions of propagation (k?2 > 0) for the slow
KAW (red) and for the fast wave (blue). Near the magnetic
axis, there is a region of overlap where both fast and slow
waves propagate simultaneously, and it is in this region that
the numerical pollution appears.

FIG. 1. (a) Real part of the perpendicu-
lar wave field, Re(Ea), for f¼ 30 MHz
in Alcator C-Mod: #1051206002. (b)
The corresponding plasma dispersion
solution10 showing regions of fast
wave propagation (blue) and slow
wave propagation (red).
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The appearance of short wavelength structures as in
Fig. 1 requires two simultaneous conditions. First, there
must be a slow wave branch (x/kjj< vth,e) that excites high
mode numbers in the AORSA spectrum (vth,e is the elec-
tron thermal velocity). In addition, kjj must be downshifted
to very small values for these high mode numbers in the
spectrum. Such a downshift is easily provided by the poloi-
dal magnetic field in tokamak geometry. When kjj for a
particular mode is downshifted to near zero, that mode
becomes essentially un-damped and can grow to very large
amplitude. Figure 2(a) shows contours of Re(Ea) and lines
along which kjj¼ 0 for two high mode numbers in the
AORSA spectrum: (a) kR¼ 700 m&1, kZ¼ 500 m&1 and
(b) kR¼ 700 m&1, kZ¼&500 m&1. Although only two
modes are shown in Fig. 2, AORSA includes many such
high mode numbers to represent the slow wave. All of
these modes have different lines along which kjj¼ 0, and
all of these lines intersect the magnetic axis at different
angles.

For cases involving slow waves, the very small values
of kjj along these lines can cause numerical pollution near
the magnetic axis. Such small values of kjj are not physically
reasonable because they imply parallel wavelengths larger
than the device-scale. There are many sources of broadening
(in addition to thermal broadening) that could account for
an effective minimum value of jkjjj. For example, in the
case of ion cyclotron resonance, parallel magnetic field
gradients6 provide such a mechanism. Often, however, solu-
tions that display numerical pollution in Ejj contain no ion
resonances—only the Alfv!en resonance as in Figs. 1 and 2,
or the electron Landau resonance. If we consider the effect
of curved magnetic field lines in 3D geometry, a minimum
average value of jkjjj would be expected. In deriving the
warm plasma conductivity, a local wave vector with straight
magnetic field lines is assumed.5 In this approximation, if
jkjjj is small at one point on the magnetic field line, it remains
small at every point along the field line. This might be

reasonable near the outer edge of the tokamak where the
field lines are relatively straight and pass many times around
the torus before returning to the same poloidal position (e.g.,
q¼ 5, where q is the safety factor or inverse rotational trans-
form). However, near the magnetic axis where q¼ 1, a field
line might pass only once around the torus before returning
to the same poloidal location. In such cases, the field lines
are effectively more “curved” than the outer field lines, and
the straight field line assumption can easily be violated. If
the value of jkjjj along a field line is monitored near the q¼ 1
surface, its magnitude is up-shifted near the top of the torus
and downshifted near the bottom (or vice-versa depending
on the sign of the poloidal field). In either case, it does not
remain at one value (e.g., zero) for a long time, and it should
have a non-zero average ("nu/R) after one pass around the
torus. For basis sets using flux coordinates,7 the straight field
line approximation is more accurate because kjj has relatively
less variation along the flux coordinates than for the
Cartesian coordinates used in AORSA.

These observations have motivated some “first
principles” modifications to AORSA that include broadening
of kjj due to motion of electrons along the curved magnetic
field lines in 3D toroidal geometry. Two methods for doing
this are explored. First, the AORSA basis functions are
Fourier expanded along the field line by tracing field line
orbits numerically and evaluating the electron conductivity
for each kjj in the spectrum. The plasma current is then eval-
uated as a sum over this spectrum. Alternately, the phase of
the basis function can be Taylor expanded along the mag-
netic field line about the point where the solution is calcu-
lated. Although this is only an approximation, it allows the
parallel velocity integral in the plasma dispersion function11

to be evaluated analytically. When the remaining time inte-
gral is calculated numerically, a new semi-analytic Z func-
tion emerges in the form of a two-dimensional table. This
method is much faster than the more rigorous method of trac-
ing field line orbits and is also more robust numerically.

FIG. 2. (a) Contours of Re(Ea) with
lines along which kjj¼ 0 for two high
mode numbers in the AORSA spec-
trum: (a) kR¼ 700 m&1, kZ¼ 500 m&1

and (b) kR¼ 700 m&1, kZ¼&500 m&1.
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III. FOURIER EXPANSION OF THE AORSA BASIS SET
ALONG A MAGNETIC FIELD LINE

For each kR and kZ in the AORSA spectrum, the Fourier
basis function, E(l), can be evaluated as a function of the
magnetic field line length, l

EðlÞ ¼ ei½kRRðlÞþkZZðlÞþnuuðlÞ, ¼ eiWðlÞ; (1)

where the quantity in the square bracket will be called the
“phase function” W(l)

WðlÞ ¼ kRRðlÞ þ kZZðlÞ þ nuuðlÞ: (2)

The basis function in Eq. (1) can be evaluated over field line
length l from &q p R0 to q p R0, for a total field line length
of Lmax¼ 2pR0q where R0 is the major radius of the tokamak.
The safety factor q is taken from the q profile for the equilib-
rium and is included to insure a complete revolution in the
poloidal direction, although for some regions, e.g., outside of
the last closed flux surface, a longer length is required. The
field line coordinates, R(l), Z(l), and u(l), in Eq. (2) can be
found by tracing field line orbits numerically. The basis
function E(l) is then Fourier expanded along the field line to
find its spectrum in kjj

EðlÞ ¼
X

n

Eneikjj;nl: (3)

The number of modes in this summation is typically chosen
between n¼ 256 and n¼ 512 depending on the particular
problem and must be sufficient to resolve the maximum
local (up-shifted) parallel wave vector which is several
times q nu/R. The electron conductivity r can be evaluated
for each kjj,n in the spectrum, and the parallel electron cur-
rent is calculated as

JeðlÞ ¼
X

n

re
3;3ðkjj;nÞEneikjj;nl: (4)

To save computational work, only the 3,3 (parallel) compo-
nent of the electron conductivity tensor is included because
it is the component that contributes most directly to electron
Landau damping. Likewise, we include only the 0th har-
monic in re

3;3 for electrons. Finally, an effective electron con-
ductivity is calculated by dividing Eq. (4) by Eq. (3) and
evaluating at the position along the field line where the solu-
tion is calculated, l¼ 0,

re;effective
3;3 0ð Þ ¼ J 0ð Þ

E 0ð Þ
: (5)

This “effective” conductivity includes the variation of kjj due
to curvature along the field line and can be used to replace the
usual 0th harmonic term in the sum over harmonics for the
parallel electron conductivity re

3;3. For parameters where
transit-time magnetic pumping is important, the elements of
the conductivity tensor that couple perpendicular fields to par-
allel currents should be calculated using the same approach.

The method described above, while rigorous (with the
assumption of constant parallel velocity), is extremely time
consuming because of the large number of numerical field

line orbits required. In addition, there are two adjustable
parameters: the field line length Lmax and the number of
modes in the Fourier expansion along the field line, and these
must be adjusted for each particular problem. Therefore, it is
desirable to find an alternate method that is both computa-
tionally faster and more robust numerically.

IV. TAYLOR EXPANSION OF THE AORSA BASIS SET
ALONG A MAGNETIC FIELD LINE

To save time computationally, the phase function W(l)
in Eq. (1) can be Taylor expanded about the position on the
field line where the solution is calculated, i.e., l¼ 0

W lð Þ ¼ W 0ð Þ þ dW
dl

lþ 1

2

d2W
dl2

l2; (6)

where

dW
dl
¼ kR

dR

dl
þ kZ

dZ

dl
þ nu

du
dl
: (7)

The derivatives of the field line coordinates in Eq. (7) are
given by the “equations of motion” of the field line: dR/dl
¼ bR, dZ/dl¼ bZ, and du/dl¼ bu/R, where bR, bZ, and bu are
the normalized magnetic field components. Using this and
the definition of kjj

kjj ¼ kRbR þ kZbZ þ
nu

R
bu: (8)

Eq. (6) becomes

W lð Þ ¼ W 0ð Þ þ kjjlþ
1

2

dkjj
dl

l2 ¼ W 0ð Þ þ kjjvjjsþ
1

2

dkjj
dl

vjj
2s2;

(9)

where l has been replaced by the product of the parallel
velocity vjj and time s. We now see that the linear term in the
Taylor expansion is equivalent to the local approximation,
while the quadratic term is proportional to the physical
parameter dkjj/dl which describes the rate of change of kjj
along the field line. The quadratic term can also be described
as the modification to the phase that results from field line
curvature.6 Equation (9) gives a phase function W(s) that can
be substituted directly into the integral expression for the
plasma dispersion functions5,11

Z 0ð Þ ¼
kjjiffiffiffi

p
p
ð1

&1
dvjje

&v2
jj=a

2
ð1

0

dseiW sð Þ&ixs

Z 1ð Þ ¼
kjji

a
ffiffiffi
p
p
ð1

&1
vjjdvjje

&v2
jj=a

2
ð1

0

dseiW sð Þ&ixs

Z 2ð Þ ¼
kjji

a2
ffiffiffi
p
p
ð1

&1
v2
jjdvjje

&v2
jj=a

2
ð1

0

dseiW sð Þ&ixs : (10)

Because the phase function in Eq. (10) is of order vjj
2, the inte-

gral over parallel velocity can be evaluated analytically12 and
the remaining integral over s can be done numerically (see
Appendix A). The result can be expressed as a semi-analytic
2D function of the usual argument, 1¼x/kjj vth, and the addi-
tional physical parameter dK/dL¼ (a/x)2 dkjj/dl (" the rate of
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change of kjj along a field line). In Figure 3(a), the imaginary
part of the generalized plasma dispersion function Im(Z(2))
is plotted as a function of the conventional argument 1¼x/kjj a
(horizontal axis), and the rate of change of kjj along a field line,
dK/dl (vertical axis). The imaginary part of Z(2) is chosen for
this figure because it is proportional to electron Landau damp-
ing which is the primary damping mechanism for the cases
considered in this paper—see the last term in Eq. (B11) of
Appendix B. In Fig. 3(b), the colored lines show cuts through
the data of Fig. 3(a) at three different values of dK/dL. When
dK/dL¼ 0 (green), the new plasma dispersion function reduces
to the conventional Z function, which rapidly decays to zero

for large 1 (small kjj). However, when dK/dL 6¼ 0 (red and blue
lines), the new Z function remains significantly larger than the
conventional Z function for large 1. Thus, when dK/dL is finite,
the damping also remains finite even as kjj approaches zero.
The effect of negative dK/dL is stronger in this regard than pos-
itive dK/dL as can be seen from the expression for the new Z
function in Eq. (A6) of Appendix A. When dK/dL is negative,
the expression inside the radical remains positive, so b is
smaller, and the finite value of dK/dL has a greater effect on
Z(2).

The traditional method for calculating power absorption,
@W/@t, in AORSA assumes that only the dissipative part of

FIG. 3. (a) The imaginary part of the
generalized plasma dispersion function
Im(Z(2)) as a function of the conven-
tional argument 1¼x/kjj a (horizontal
axis), and the rate of change of kjj
along a field line, dK/dl (vertical axis);
(b) values of Im(Z(2)) along cuts
through the data in (a) for dK/dL¼ 0
(green), dK/dL¼ 2 (red), and dK/dL
¼&2 (blue).

FIG. 4. Real part of the perpendicular wave field Re(Ea), for three implementations of the electron Z function for the example of Fig. 1: (a) the original Ze
(2),

(b) the Fourier-orbit Ze
(2) with 256 modes and Lmax¼ 2 p R0,q, and (c) the new tabulated Ze

(2).
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the resonant integral contributes to power absorption and is
therefore NOT consistent with the modified plasma disper-
sion function which contains both dissipative and non-
dissipative parts. To recover consistency, @W/@t is reformu-
lated in Appendix B, beginning with Eq. (9) in Ref. 12.

V. FAST AND SLOW WAVE SIMULATIONS IN C-MOD
AND NSTX

In this section, we repeat the calculation of Fig. 1 but
with three different implementations of the electron Z func-
tion. In Fig. 4(a), the original Z function is used as in Fig. 1,
and the wave field shows pollution near the magnetic axis. In
Fig. 4(b), the rigorous Fourier expansion of Sec. III is used
with 256 modes in the Fourier expansion along a field line of
length Lmax¼ 2 p R0,q. In this case, the numerical pollution
is totally eliminated, but the computation time is longer,
even with the increased number of processors (2304 vs.

1296). In Fig. 4(c), the new tabulated Z function of Sec. IV
is used. This method also eliminates the pollution, but the
computation time is comparable to that with the simple
Z function in Fig. 4(a). The slight differences between
Figs. 4(b) and 4(c) are probably due to the choice of the two
adjustable parameters in Fig. 4(b)—field line length, Lmax,
and number of modes along the field line.

Figure 5 shows the spectrum of modes that sum to give
Re(Ea), for the solutions in Fig. 4. As expected, the spectrum

is poorly converged in Fig. 5(a) where pollution is present,
but is well-converged in Figs. 5(b) and 5(c) where the pollu-

tion is absent. The “X” like pattern in Fig. 5(a) is indicative

of the high mode numbers for which kjj is down-shifted to
small values. This happens when the values of kR and kZ are

approximately equal and of opposite sign in Eq. (8), so that

the first two terms partially cancel, leaving a relatively small
value for kjj.

FIG. 5. Spectrum of modes that sum to give the wave field, Re(Ea), for the solutions in Fig. 4.

FIG. 6. Real part of the perpendicular wave for high harmonic fast wave heating in NSTX shot 123435 (Refs. 1 and 13): (a) original Ze
(2), (b) Fourier-orbit

Ze
(2) with Lmax¼ 2 p R0,q and 256 modes, and (c) new tabulated Ze

(2).
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Figures 6 and 7 show a similar example, but for high
harmonic fast wave heating (HHFW) in NSTX.1 This partic-
ular example (shot 123435) has been discussed in detail
in Ref. 1. The implementation of the new Z function in
Figs. 6(b) and 6(c) again eliminates the X-like pattern of pol-
lution in Fig. 6(a). The amplitude of the pollution is largest
in the upper right quadrant of Fig. 6(a), and corresponds to
the high amplitude (red) peak in the spectrum of Fig. 7(a).

The new plasma dispersion function described above is
intended to eliminate numerical pollution thereby allowing
converged solutions with significant slow wave components.
In Fig. 8, we show an example where both fast and slow
waves are present simultaneously. The geometry of NSTX
shot 112705 is used, but with the frequency reduced to
10 MHz to ensure that the wavelength of the slow wave is
long enough to be resolved numerically using a 400* 400
grid. Using the complete Fourier expansion along field line
orbits as described in Sec. II with Lmax¼ 2 p R0q, 256 modes
and kjj¼&127:128, we plot Re(Ea) in Fig. 8(a), where the
fast wavelength is about k) 10 cm and corresponds to a wave
number, k¼ 2 p/k) 62 m&1. The slow wave is visible as a
slight ripple on the fast wave in the blowup of Fig. 8(b) and
has a wavelength of about k) 2 cm with a corresponding

wave number, k) 300 m&1. These are in approximate agree-
ment with the simplified high harmonic dispersion solution10

shown in Fig. 9, where red denotes the slow wave branch, and
blue denotes the fast wave branch. Positive and negative val-
ues represent the right- and left-going waves, respectively.

VI. HELICON WAVE SIMULATIONS IN DIII-D

Helicon waves (also called “whistlers,” or “very high
harmonic fast waves,” or “lower hybrid fast waves”) can be
effective for driving off-axis currents in tokamaks.3 Fast
waves in the frequency range 500 to 1500 MHz tend to
propagate in a spiral around the magnetic axis. These fre-
quencies are well above the ion cyclotron frequency ("30th
harmonic), but below the lower hybrid frequency. For high
electron temperatures and densities, these waves are
absorbed in a single pass by electron Landau damping and
can drive off-axis currents. Simulation of this process with
a full-wave model such as AORSA is difficult because of
the very large number of modes required to resolve the
short wavelengths, and because of the high ion harmonic
resonances involved. Fig. 10 shows the magnitude of the
total wave electric field for a simulation using the complete

FIG. 7. Spectrum of modes that make up the solutions in Fig. 6.

FIG. 8. (a) Re(Ea) for NSTX shot
112705 with f¼ 10 MHz using the
complete Fourier expansion along
numerical field line orbits as described
in Sec. II with Lmax¼ 2 p R0,q and 256
modes; (b) blow-up of the result in (a).
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Fourier expansion along the field line orbits, as described
in Sec. II. The magnetic equilibrium and plasma profiles
correspond to an advanced tokamak scenario in DIII-D:14

f¼ 500 MHz, B0¼ 1.49 T, nu¼&71, njj¼&3.0, with elec-
tron power absorbed¼ 1.77 MW. Ion resonances of up to
50th harmonic are included in the solution with a numerical
grid of 500 * 320 modes. Because helicon waves propagate
primarily toroidally, many Fourier modes are required
to resolve the variation of the helicon wave along the
magnetic field line. This is evident in Fig. 10 where 512
Fourier modes are needed to get the correct converged solu-
tion which shows the typical spiral-like propagation
pattern.

In Fig. 10, the plasma edge, or “scrape-off layer” (SOL)
has been omitted from the solution domain, and replaced
with a metal wall boundary condition at the last closed flux
surface (q¼ 1). Although the SOL is neglected in this simu-
lation, it could play an important role if a substantial amount
of power is coupled to slow waves in the SOL. An approxi-
mate high harmonic dispersion relation10 shows that slow
waves do in fact propagate easily in the edge plasma region
with very small wavelengths near the lower hybrid resonance
at q¼ 1. Converged helicon solutions including the SOL will
be left for a future paper.

VII. SUMMARY

In this paper, we have taken the first steps toward accu-
rate modeling of slow waves with the all-orders global wave
solver, AORSA. Previous simulations exhibit numerical pol-
lution in Ejj when slow waves are present. The source of this
pollution appears to be high mode numbers in the spectrum
for which kjj is downshifted to near zero. To eliminate this
pollution and allow accurate solutions containing significant
slow wave components, a generalized semi-analytic plasma
dispersion function (Z) has been developed for electrons to
take into account broadening of kjj due to motion along the
curved magnetic field lines. This new Z function eliminates
numerical pollution and allows converged solutions when
both fast and slow waves are present simultaneously. A more
rigorous treatment involves a complete Fourier expansion of
the AORSA basis set along the field lines by tracing a large
number of field line orbits numerically. For most cases, this
more rigorous treatment gives approximately the same result
as the semi-analytic Z function, but with a higher computa-
tional cost.
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FIG. 9. Approximate high harmonic dispersion solution10 for the wave solu-
tion in Fig. 8.

FIG. 10. Magnitude of the total wave electric field for a helicon wave solu-
tion using the complete Fourier expansion technique described in Sec. II
with 512 Fourier modes along the field line.
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APPENDIX A—CALCULATION OF THE GENERALIZED
Z FUNCTION

In this Appendix, we carry out the velocity space inte-
grals in Eq. (10) to express the generalized Z function as a
semi-analytic 2D function of the usual argument, 1¼x/kjj
vth, and an additional physical parameter proportional to the
rate of change of kjj along a field line. Substituting Eq. (9)
for the phase function W(l) into Eq. (10) gives for Z(2)

Z 2ð Þ
l ¼

kjjiaffiffiffi
p
p

ð1

&1
u2du e&u2

ð0

&1
ds ei½kjjausþ1

2

dkjj
dl a2u2s2,&ixs; (A1)

where we have defined the non-dimensional velocity u¼ vjj/a.
Reversing the order of integration and defining

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& i

2

dkjj
dl

a2s2

r : (A2)

Eq. (A1) becomes

Z 2ð Þ
l ¼

kjjiaffiffiffi
p
p

ð0

&1
ds e&ixs

ð1

&1
u2du e

&ðu2

b2&ikjjau sÞ
: (A3)

Completing the square in the exponent gives

u

b
& i

2
kjjasb

# $2

¼ u2

b2
& iukjjas& 1

4
kjj

2a2s2b2; (A4)

so that (A3) becomes

Z 2ð Þ
l ¼

jkjjjiaffiffiffi
p
p

ð0

&1
dse&ixs

ð1

&1
u2due&

u
b&

i
2kjjasbð Þ2&1

4kjj
2a2s2b2

:

(A5)

The integral over velocity u can be done analytically by
changing variables from u to w ¼ u

b&
i
2 kjjasb in which case

Eq. (A5) reduces to

Z 2ð Þ ¼ i

2

ð1

0

b3

1
dz 1& 1

2

z2b2

12

 !

eiz&1
4

zb
1

% &2

; (A6)

where z¼&xs, 1 ¼ x=kjja, and

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& i

2

dK

dL
z2

r ; (A7)

with dK/dL¼ (a/x)2 dkjj/dl. Repeating the same steps for Z(0)

and Z(1) gives

Z 0ð Þ ¼ i

ð1

0

b
1

dzeiz&1
4

zb
1

% &2

; (A8)

Z 1ð Þ ¼ 1

2

ð1

0

b3

12
zdzeiz&1

4
zb
1

% &2

: (A9)

To recover the usual forms for Z(0), Z(1), and Z(2) given by
Stix5 and Smithe,6 we set dK/dL¼ 0 in (A7), so that b¼ 1,
and changing the variable of integration from z to x¼ z/1
gives

Z 0ð Þ ¼ i

ð1sgnkjj

0

dxei1 x&1
4x

2

;

Z 1ð Þ ¼ 1

2

ð1sgnkjj

0

xdxei1 x&1
4x2

;

Z 2ð Þ ¼ i

2

ð1sgnkjj

0

dx 1& 1

2
x2

# $
ei1 x&1

4x
2

: (A10)

Note that the sign of kjj now appears explicitly in the limit of
integration. However, the general result in Eqs. (A6), (A8),
and (A9) includes the sign of kjj automatically through the
sign of 1 without requiring that it be specified independently
in limit of integration. Therefore, we do not require two sep-
arate tables for positive and negative kjj when calculating the
generalized Z function—one table is sufficient.

APPENDIX B—REFORMULATION OF ›W/›t FOR THE
MODIFIED Z FUNCTION

The traditional method for calculating @W/@t in AORSA
assumes that only the dissipative part of the resonant integral
contributes to power absorption. This is NOT consistent with
the modified plasma dispersion function derived in this
paper, which includes both dissipative and non-dissipative
parts. To achieve consistency, @W/@t has been reformulated
starting with Eq. (9) of Ref. 15

PRF ¼
1

2
Re

e0x
i

X

k1;k2

ei k1&k2ð Þ%rE*
k2
%Wl % Ek1

( )
; (B1)

where Wl is the local energy absorption kernel defined in Eq.
(12) of Ref. 15

Wl ¼ &
x2

p

x

X1

l¼&1
eil b1&b2ð ÞC&1 b2ð Þ

% i

ð1

&1
ds
ð1

0

d3vei x&lX&kjjvjjð Þs 1

2
aT

l bl

' (
%C b1ð Þ: (B2)

C(b) is the rotation matrix that transforms the electric field
from local magnetic coordinates to the (Eþ, E&, Ejj) frame
with kb¼ 0

CðbÞ ¼
eib &ieib 0
e&ib &ie&ib 0
0 0

ffiffiffi
2
p

0

@

1

A: (B3)

The angle between k?and kais defined as bsuch that cos b¼ ka/
k?and sin b ¼ kb/k?. In the dyadic tensor in Eq. (B2), al

¼ðv?Jlþ1ðnÞ; v?Jl&1ðnÞ;
ffiffiffi
2
p

vjjJlðnÞÞ, where the argument of
the Bessel functions is n¼k?v?/X. Restricting application to
Maxwellian distributions, bl¼&2f0

a2 al, where a is the thermal
velocity of the Maxwellian. To simplify the notation, we define
e to be the rotated electric field vector, ek¼C(b) %Ek e i(k%r þ l b),
and Eq. (B1) becomes

PRF ¼ &
px2

pe0

2
Re

(
X

k1;k2

e*
k2
%
X1

l¼&1

" ð1

&1
ds

*
ð1

0

v?dv?dvjje
iwlsaT

l bl

#

% ek1

)

; (B4)
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where wl ¼ x& lX& kjjvjj is the “phase function.” For electrons, l¼ 0 so that wl ¼ x& kjjvjj. Note that wl ¼ x&W=s, where
W is defined in Eq. (2).

The algebraic goal is to move the perpendicular velocity integral in Eq. (B4) outside of the multiple sums, in which case
the 4D sum over k’s can be written as the product of two 2D sums.16 The parallel velocity integral remains on the inside and
can be evaluated as an analytic or tabulated Z function. The perpendicular velocity integral remains on the outside and is eval-
uated numerically. The phase of the integrand wl ¼ x& lX& kjjvjj is left in a general form to be consistent with the modified

Z function. The perpendicular and parallel velocity integrals can be separated by defining al ¼ v?a?l þ vjja
jj
l and bl ¼ &

2f?0 f jj0
a2

ðv?b?l þ vjjb
jj
l Þ, where f?0 ¼

n0

p3=2a3 e&v2
?=a

2
and f jj0 ¼ e&v2

jj=a
2

with

a?l ¼ b?l ¼ ð Jlþ1ðnÞ; Jl&1ðnÞ; 0 Þ

ajjl ¼ bjjl ¼ ð 0; 0;
ffiffiffi
2
p

JlðnÞ Þ: (B5)

Then, Eq. (B4) becomes

PRF ¼ &
px2

pe0

2
Re
X1

l¼&1

ð1

0

v?dv?
X

k1;k2

e*
k2
%
ð1

&1
ds
ð1

0

dvjje
iwlsaT

l bl

' (
% ek1

( )
; (B6)

where

aT
l bl ¼ &

2f?0 f jj0
a2

v?a?l þ vjja
jj
l

) *T

v?b?l þ vjjb
jj
l

) *

¼ & 2f?0 f jj0
a2

v2
?a?;Tl b?l þ v?vjja

?;T
l bjjl þ v?vjja

jj;T
l b?l þ v2

jja
jj;T
l bjjl

) *
; (B7)

so that

PRF ¼ px2
pe0Re

X1

l¼&1

ð1

0

v?dv?
f?0
a2

X

k1;k2

e*
k2
%

(

v2
?

ð1

&1
ds
ð1

0

dvjje
iwlse&v2

jj=a
2

a?;Tl b?l

þv?

ð1

&1
ds
ð1

0

dvjje
iwlsvjje

&v2
jj=a

2

v2
jja
?;T
l bjjl þ v?

ð1

&1
ds
ð1

0

dvjje
iwlsvjje

&v2
jj=a

2

v2
jja
jj;T
l b?l

þ
ð1

&1
ds
ð1

0

dvjje
iwlse&v2

jj=a
2

v2
jja
jj;T
l bjjl

)

% ek1
: (B8)

Defining the plasma dispersion functions as5

Z 2ð Þ
l ¼

jkjjji
a2

ffiffiffi
p
p
ð1

&1
v2
jjdvjje

&v2
jj=a

2
ð1

0

dseiwls;

Z 1ð Þ
l ¼

jkjjji
a2

ffiffiffi
p
p
ð1

&1
vjjdvjje

&v2
jj=a

2
ð1

0

dseiwls;

Z 0ð Þ
l ¼

jkjjji
a2

ffiffiffi
p
p
ð1

&1
dvjje

&v2
jj=a

2
ð1

0

dseiwls; (B9)

Eq. (B8) can finally be written as the product of two sums

PRF ¼ px2
pe0Re

X1

l¼&1

ð1

0

dv?
f?0
a2

(
X

k2

½e*
k2
% v3
?a?;Tl ,

X

k1

'
b?l %

ffiffiffi
p
p

ikjj
Zð0Þl ek1

(

þ
X

k2

½e*
k2
% v2
?a?;Tl ,

X

k1

'
bjjl %

a
ffiffiffi
p
p

ikjj
Z 1ð Þ

l ek1

(
þ
X

k2

½e*
k2
% v2
?ajj;Tl ,

X

k1

'
b?l %

a
ffiffiffi
p
p

ikjj
Z 1ð Þ

l ek1

(

þ
X

k2

½e*
k2
% v?ajj;Tl ,

X

k1

'
bjjl %

a2
ffiffiffi
p
p

ikjj
Z 2ð Þ

l ek1

()
: (B10)

AORSA uses a non-dimensional system of units based on the CQL3D Fokker Planck code17 in which the distribution func-
tion f is normalized to n/vc

3, where n is the density, and the velocities u?and ujj are normalized to vc¼ c /!l, where c is the speed
of light, l¼mc2/2eEnorm, and Enorm is the maximum energy in eV at which the numerical distribution function is evaluated.
Using these definitions, Eq. (B10) can be rewritten as

102504-10 Berry et al. Phys. Plasmas 23, 102504 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  198.125.233.17 On: Fri, 14 Oct
2016 18:36:47



PRF ¼ p3=2
x2

pe0

x
Im
X1

l¼&1

ð1

0

ffiffiffiffiffi
l0
p

u0
du?f?CQL

(

u?u0ð Þ3
X

k2

½e*
k2
% a?;Tl ,

X

k1

b?l %
1

njj
Z 0ð Þ

l ek1

' (
TTMPð Þ
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X

k2

½e*
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X
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bjjl %
1
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Z 1ð Þ

l ek1

' (
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½e*
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% ajj;Tl ,

X

k1

b?l %
1

njj
Z 1ð Þ

l ek1

' (
X termð Þ

þ u?u0ð Þ
X
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½e*
k2
% ajj;Tl ,

X

k1

bjjl %
1

njj
Z 2ð Þ

l ek1

' ()

LDð Þ; (B11)

where u0 is u0 ¼ vmax=a ¼ c=a
ffiffiffi
l
p

, njj ¼ kjjc=x, and vmax is

the maximum velocity corresponding to Enorm, and f?CQL

¼ u0
3

p3=2 e&u2
?u2

0 . Equation (B11) is the expression used in

AORSA, with u0¼ 3 for the assumed Maxwellian. The terms
in Eq. (B11) are labeled with their corresponding physical
heating mechanism, i.e., Landau damping (LD), transit time
magnetic pumping (TTMP), and cross terms (X term).

Term 4 in Eq. (B11) can be checked by comparing to the
usual expression for electron Landau damping.5 Keeping only
the l¼ 0 term in the sum over harmonics, and only the dissi-

pative (imaginary) part of the Z function, Zð2Þl ¼
ffiffiffi
p
p

i12e&12
,

where 1 ¼ x=kjja, and using ajjl ¼ bjjl ¼ ð 0; 0;
ffiffiffi
2
p

JlðnÞ Þ
with small n, term 4 reduces to

PRF ¼
ffiffiffi
p
p x2

pe0

x
13e&12 jEkj2; (B12)

which agrees with the usual expression for electron Landau
damping.5
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