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An instability observed in whole-device, resistive magnetohydrodynamic simulations of the driven
phase of coaxial helicity injection in the National Spherical Torus eXperiment is identified as a
current-driven resistive mode in an unusual geometry that transiently generates a current sheet. The
mode consists of plasma flow velocity and magnetic field eddies in a tube aligned with the mag-
netic field at the surface of the injected magnetic flux. At low plasma temperatures (!10–20 eV),
the mode is benign, but at high temperatures (!100 eV) its amplitude undergoes relaxation oscilla-
tions, broadening the layer of injected current and flow at the surface of the injected toroidal flux
and background plasma. The poloidal-field structure is affected and the magnetic surface closure is
generally prevented while the mode undergoes relaxation oscillations during injection. This study
describes the mode and uses linearized numerical computations and an analytic slab model to iden-
tify the unstable mode. VC 2016 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4964292]

I. INTRODUCTION

Magnetic helicity injection1,2 has been used extensively
to drive current in tokamaks and spheromaks. Injection into
a strong toroidal field can form a tokamak configuration
through relaxation processes or through transient effects. In
the former, magnetic reconnection and relaxation driven
by large amplitude, global modes, especially toroidal mode
number n¼ 1 and poloidal mode number m¼ 1, convert
injected toroidal flux into poloidal flux at near-constant hel-
icity (“flux amplification”). For experimental results, see
Ref. 3 and references therein; the process is essentially the
same as that operated in spheromaks (e.g., Refs. 4–6 and
references therein). Alternate interpretations of the fluctua-
tions are offered in Refs. 7 and 8, but we note that magneto-
hydrodynamic (MHD) fluctuations are present whenever
poloidal flux is actively amplified.

A plasma formation process (coaxial helicity injection,
CHI) has been explored in the National Spherical Torus
eXperiment, NSTX, to generate plasma in which open field
lines reconnect to form closed magnetic surfaces. The
amount of injected helicity is relatively low, and the process
is both dynamic and nearly axisymmetric. The goal is to
form the plasma suitable for initiating the full tokamak dis-
charge.9,10 Two-dimensional simulations of this formation
using the NIMROD code11 found that the reconnection
agreed well with the Sweet-Parker model.12,13

Whole-device, three-dimensional resistive MHD simula-
tions of the NSTX helicity injection experiments14 not only
reached a similar conclusion about reconnection but also
found a low-level, non-axisymmetric mode (n¼ 1, high m)
during the driven phase. It saturated benignly with little
effect on the injection or the formation of closed surfaces.
This high poloidal-mode number, non-axisymmetric mode
was also observed (unpublished) in simulations during early

phases of injection into spheromaks. However, as discussed
below, in simulations of injection in the NSTX geometry,
the mode can become strong enough that its amplitude has a
bursting characteristic, repetitively growing and collapsing.
Our simulations show that this process can have an apprecia-
ble effect on the axisymmetric equilibrium during injection,
e.g., broadening the current layer that is associated with
the expanding flux bubble, precluding flux closure during the
driven phase, and altering energy and flow evolution. The
study does not include the stage when power is reduced as in
NSTX experiments and does not preclude flux-surface clo-
sure in transient coaxial helicity injection, TCHI.9,10 These
dynamics are achieved at high plasma temperature, which
is intentionally induced by lowering the impurity density
to investigate high helicity-injection rates in a clean, wall-
conditioned tokamak.

Apart from its potential relevance to an upgraded config-
uration, the detailed physics of the mode is also of interest in
itself. It consists of a current-driven reconnecting mode in
the unusual geometry of a narrow current sheet along the
expanding surface that bounds injected toroidal flux. This
bubble of current exists while helicity is injected through the
coaxial electrodes. The mode assessment includes linearized
stability calculations for an axisymmetric bubble configura-
tion, and the results show a growing linear mode with a
structure that is very similar to the instability in the nonlinear
simulation. The growth rate of the linear mode is found to
depend on viscosity and resistivity, and weakly on particle
diffusivity but these have little qualitative effect on the mode
structure. The axisymmetric velocity field also affects the
mode but a strong growth persists in the absence of the flow.
An analytical, slab model with a current layer finds a recon-
necting mode with peak amplitude in the center of the sheet
and wavenumbers along the sheet smaller than the inverse of
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the current layer width. When considering the large surface
area of the current-sheet bubble that surrounds the injected
toroidal flux, the analytical findings are consistent with the
large m observed in simulations. The magnetic field eddies
are similar to those in the MHD simulations and linearized,
numerical stability calculations. The structure is reminiscent
of the current-sheet instability that underlies plasmoid insta-
bility.15–19 However, unlike basic-physics studies of mag-
netic reconnection and simulations of axisymmetric flux
closure in NSTX,18,19 the current sheet surrounding the early
evolution of the flux bubble is not associated with large-
scale reconnection.

The whole-device NIMROD simulations used herein are
in the single-fluid, resistive regime. The plasma model is very
similar to that used in simulations of the SSPX spheromak.
Apart from the CHI injector and absorber gaps, the machine
boundary is modeled as an electrical conductor with the
normal component of the magnetic field held constant. The
injector-gap boundary condition applies time-dependent volt-
age (tangential electric field), modeling the CHI circuit in
NSTX, and the boundary condition for RB/ along the absorber
gap prevents net current across the gap. The normal compo-
nent of velocity on the boundary is zero except across the two
gaps, where it is set to the E#B velocity. A detailed sum-
mary of the parameters and assumptions can be found in Refs.
14 and 20 including the modifications of the resistive-MHD,
spheromak model for tokamak helicity-injection.

Section II of this paper provides an overview of the pre-
viously reported numerical instability results for injection
into the NSTX geometry and briefly compares axisymmetric
and non-axisymmetric simulations pertinent to the present
work. It describes the nonlinear mode characteristics and its
effects on the axisymmetric current distribution. Section III
presents the results of the linearized NIMROD computations
and the slab instability model. The results and their implica-
tions are summarized in Section IV.

II. OVERVIEW OF NONLINEAR SIMULATION RESULTS

A. Injection mechanism and impurity modeling

The injection geometry and the resulting poloidal-flux
geometry (“flux bubble”) are shown in Fig. 1. Voltage is
applied across the axisymmetric slot in the bottom of the
spherical tokamak, injecting plasma, and helicity at the local
E#B velocity. Current flows in a layer along the surface of
the flux bubble, generating a jump in magnetic fields across
the layer. The bubble’s expansion is driven by the associated
j#B force or, equivalently, the magnetic pressure difference
due to the change in field across the current layer.

The instability analyzed in this report forms a tube, seen
in Fig. 1(c), along the magnetic field.21 The mode forming
the tube consists of poloidal velocity and magnetic field
eddies with their axes aligned along the total (toroidal plus
poloidal) magnetic field, as described later. Because this
mode is only active during injection, the simulations reported
here focus on plasma evolution during injection and do not
model the important post-injection transient.

The vacuum poloidal flux in the simulation is that gener-
ated by magnetic coils used in the experiment. For the present
case, the total vacuum poloidal magnetic flux in the machine
cross section is approximately 0.55 Wb. However, the simu-
lated plasma dynamics only incorporates about 22 mWb in
the flux bubble after 1.5 ms, at which time the bubble has
expanded to 70% of the machine height. The structure of the
poloidal flux is similar to that shown in Fig. 1(b). The voltage
across the helicity-injection slot is about 450 V and the dis-
charge current is about 1.5 kA; both change in response to the
plasma impedance during the simulation.

The primary difference between the present results and
the whole-device simulations that were compared with flux-
closure in the experiment14 is a reduction in the modeled
impurity density and thus the plasma radiative cooling. The
simulations use an impurity-radiation model based on oxygen,

FIG. 1. (a) Helicity injection geometry, (b) resulting poloidal-flux structure, and (c) unstable mode on surface of the flux bubble—shown is a surface of con-
stant flow speed.
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which previously kept the plasma temperatures comparable to
TCHI experiments in NSTX (!10–25 eV). The impurity
model uses the calculations by Post et al.22 In the present cal-
culations, the impurity density is taken to be comparable to
the electron density in the lower-left corner of the tokamak
vessel where the injected current strikes and the electron
temperature is low, dropping off away from the corner as a
Gaussian with characteristic lengths of 0.45 m (radial) and
1.0 m (vertical). Radiation from oxygen has a strong peak at
about 25 eV; the large impurity density needed in Ref. 14 to
match the experiment likely includes the effects of transient
ionization of sputtered impurities and any higher Z impurities.
In the present work, the relatively high temperature (!100 eV)
in the current channel effectively burns-out the remaining oxy-
gen, reducing radiative cooling significantly.

The thermal conduction along magnetic-field lines uses
the Braginskii model, and the values are very high away
from the walls. Across the magnetic field, a constant value of
5 m2/s is assumed. Early in the study, preliminary simula-
tions were done varying this value up to 20 m2/s; the results
were insensitive to the value.

The simulations presented here may be important for a
very clean machine, with little impurity generated from the
wall strike-points of the current associated with the helicity
injection.14 The applied injection voltage has not been
reduced from previous simulations; a reduction would drop
the injection rate and the current and temperature in the cur-
rent channel, suggesting a possible means to minimize any
negative consequences of the mode.23

B. Nonlinear simulations

First, consider the results from axisymmetric simula-
tions during helicity injection. The simulations start at
6.0 ms for consistency with the start of injection in the exper-
iment. Injection ends at 9.0 ms.

The helicity-injection gap width on the bottom of the
plate is 4 cm, which is the same as in the experiments9,10

and the previous whole-device simulations in Ref. 14, and the
bias poloidal magnetic field strength and geometry are
the same as used in the experimental discharge 142163. The
operating point (discharge voltage and current) is determined
by a model of the experimental power supply with the plasma
setting the time-varying load impedance. For the parameters
used here (density, thermal conductivity, radiation losses, and
their spatial distribution, etc.), the injected current flows pri-
marily in a layer at the surface of the expanding, injected
“flux bubble.” The temperature is low ($5 eV) except in the
current layer. As a result, in axisymmetric simulations resis-
tive formation of an X-point occurs in the slowly evolving,
low-temperature region. In the case shown in Fig. 2, such an
X-point is seen at R% 0.5 m and Z%&1.1 m. Note that the
gradient of poloidal flux contours in the core plasma is much
less than those in the current-carrying surface and outside the
bubble. (The contours are close enough together to be blurred
except in the core.)

As the injection continues, the X-point moves out in
radius and upward in Z. Fig. 3 shows the location at the end
of injection (3 ms into the simulation). The field geometry

associated with the separatrix deflects the plasma flow out-
ward from the injection slot, and closed flux surfaces form.

Next, a series of nonlinear simulations using identical
injection parameters but with different sets of toroidal Fourier
components, i.e., different levels of toroidal resolution, are used
in the present study of the instability: (a) (n¼ 0I) axisymmetric,

FIG. 3. X-point at 9 ms (3 ms from the start of injection) for the simulation
in Fig. 2. The X-point has moved radially and vertically and is at R% 1.1 m
and Z% 0.0 m. This isolates the closed flux region to the left and above the
X-point from the flow through the injector slot.

FIG. 2. X-point formation during injection in the axisymmetric approxima-
tion. The simulation has reached 1.3 ms from the start of injection, with the
injected flux filling approximately 50% of the machine height. These simula-
tions use a 45# 90 mesh of finite elements over the poloidal plane with 5th
order polynomial basis functions.
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n¼ 0 mode only; (b) (n¼ 1I) non-axisymmetric, n¼ 0 and 1
modes; and (c) (n¼ 2I) non-axisymmetric, n¼ 0, 1, and 2
modes. Another simulation (not included here) had modes
n¼ 0–5 and behaved similarly to (b) and (c) until terminated at
0.5 ms from the start of injection.

The time histories from the start of injection of these
high-resolution, nonlinear simulations are compared in Fig.
4. The instability has affected the operating discharge and
plasma parameters, resulting in lower discharge current and
internal plasma energy. Figure 5 compares the time histories
of the magnetic and kinetic energies for the n¼ 0I and n¼ 1I
cases; n¼ 2I is similar to n¼ 1I.

The “bursting” behavior of the energies is reflected in the
structure seen in the voltage. In addition, the spikes in internal
energy align with the spikes in the flow and magnetic energies
(Fig. 5). When the mode is not bursting (7.9–8.6 ms), the
internal energy (Fig. 4) drops: The bursting mechanism thus
heats the plasma, by up to 25% in the present simulation (c.f.

Fig. 4: internal energy); in the absence of bursting
(t% 7.5–8.7 ms), heating due to the mode is weak. Despite
this heating, the long-term evolution of the plasma results in a
lower internal energy than in the axisymmetric (n¼ 0I) case;
the higher temperatures seen in it are due to a higher current
density in the current channel as described in Sec. II C.

The poloidal-flux contours for the n¼ 2I case are shown
in Fig. 6. The bursting behavior of the instability has pre-
vented the formation of the X-points seen in the purely axi-
symmetric case in Figs. 2 and 3, resulting in a flux surface
similar to those seen late in time after injection ceases in the
more weakly driven simulations that were previously com-
pared to the experiment.12–14

C. Structure of the nonlinear, unstable mode

The structure of the (nonlinear) n¼ 1 mode is shown in
Fig. 7 for the n¼ 1I case. The mode velocity and magnetic

FIG. 4. Time histories of the axisymmetric and non-axisymmetric simulations. Columns, left-right: n¼ 0I, n¼ 1I, and n¼ 2I. Rows (top-bottom: injection volt-
age (V), injection current (kA), toroidal current (100 kA), and internal energy (J).
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field form eddies in the poloidal plane. The eddies are ori-
ented along the toroidal field as noted for the weakly driven
simulations from Ref. 21 shown in Fig. 1. Also, the ratio of
the toroidal current density (not shown) to poloidal current
density in each mode is approximately the same as the ratio
of the n¼ 0 magnetic fields. The perturbed current is thus
flowing primarily along the total (toroidal plus poloidal) axi-
symmetric magnetic field. The eddies are broader in the non-
linear simulation than in the linearized calculations discussed
in Section IV, although they are otherwise very similar.

One effect of the instability that is particularly notice-
able is the width and structure of the axisymmetric current
density, as seen in Fig. 8. The instability broadens the current
channel relative to the unperturbed distribution of current
density and plasma-flow. This bends the evolving poloidal
magnetic field ahead of the primary current channel, contrib-
uting to the magnetic force distribution driving the flux bub-
ble expansion.

The n¼ 1 and n¼ 2 modes in n¼ 2I are compared in
Fig. 9. The n¼ 2 wave vector along the current sheet is twice
that of the n¼ 1 mode so that the relative phases of the two

FIG. 6. Axisymmetric poloidal flux for the n¼ 2I case, showing the lack of
an X-point while helicity is injected. The injected poloidal flux is approxi-
mately the same as in the previous low-temperature simulations.14

FIG. 7. Eddy structure for the n¼ 1 Fourier component of (a) the magnetic
field and (b) the velocity in n¼ 1I at 7.75 ms.

FIG. 5. (a) Magnetic and (b) kinetic energies for the n¼ 1I case for the n¼ 0 and 1 modes.

FIG. 8. Poloidal current vectors for the small major radius leg in (a) n¼ 0I.
The light-blue background shows contours of the z-component of plasma
flow velocity. (b) n¼ 1I simulations. The long arrows are included to clarify
the direction of current density. The net current is downward and approxi-
mately equal in the two cases. The plasma flow field (not shown in (b)) is
also broadened.
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modes are the same on the inner and outer legs of the current
sheet, despite significant changes in the wave vectors along
the sheet, indicating that the two modes are effectively
locked together.

III. LINEARIZED CALCULATIONS TO IDENTIFY THE
UNSTABLE MODE

A. Linear mode growth from NIMROD studies

Linear computations of the unstable plasma-sheet mode
elucidate the source of free energy and its reconnecting
nature. We extract the axisymmetric part of the solution
from one of the nonlinear simulations at times of interest and
use those fields as the equilibrium for time-dependent linear
computations, which are also run with NIMROD. This
approach allows us to investigate the influence of physical
parameters such as the resistivity, viscosity, and diffusivity;
in addition, the n¼ 0 flow can be turned off to assess its con-
tribution to the instability.

The equilibrium in the calculations discussed below is
from the axisymmetric n¼ 0I, nonlinear simulation at 7.5 ms
unless otherwise noted. The linear calculations used the
eighth order polynomial basis functions to ensure the spatial
resolution of the perturbation; convergence studies show that
the growth rates are accurate to within 5%. Figure 10 shows
the growth from noise of the kinetic energy (Ek) in the n¼ 1
mode with a growth rate about 0.2 ls&1, twice that of the
mode amplitude. The linear n¼ 2 kinetic-energy growth rate
(not shown) approximately equals that of the n¼ 1 mode.
Note that Fig. 9 shows that the two modes are locked
together in the nonlinear simulation.

To test the contribution of the velocity (and velocity
shear) to the mode, the same calculation was run with the
n¼ 0 equilibrium flow field set to zero. As summarized in
Table I, the growth rate for the n¼ 1 mode decreased from
1.08# 105 s&1 to 0.79# 105 s&1 whereas the growth rate of
the n¼ 2 mode was unchanged. Thus, although the plasma
flow contributes to the growth of the n¼ 1 mode, the insta-
bility persists without the n¼ 0 flow.

We separately tested the sensitivity of the mode to
plasma resistivity and viscosity. The conclusion is that the
values of these parameters used in the simulation have a
quantitative effect on the instability; examination of the
mode structure, however, showed no qualitative effects. The
particle diffusion had almost no effect, indicating that the
interchange instability is not playing a significant role in the
present observations.24

The linear, n¼ 1 mode structure shown in Fig. 11 is
very similar to the asymmetric perturbations in the nonlinear
simulation, shown in Fig. 7, with velocity vortices accompa-
nied by magnetic field “vortices” generated by current along
the magnetic field. The structures are similar, although the
linear mode is narrower in poloidal width than the nonlinear
behavior, where there is a significant broadening of the cur-
rent channel relative to the axisymmetric nonlinear result. A
comparison with the poloidal-flux structure at 7.0 ms shows
that the mode is not generated in the sheet carrying the pri-
mary particle flow along the inner surface of the expanding
flux bubble; instead, as observed in the nonlinear 3D evolu-
tion, the drive is along the surface of the bubble where the
current is concentrated.

FIG. 9. Comparison of the radial magnetic field structures for (a) the n¼ 1 and (b) the n¼ 2 modes in n¼ 2I at 7.5 ms. Shown are the contours of BR for the
inner and outer legs of the flux bubble.

FIG. 10. Linear growth of the n¼ 1 mode from noise, starting from the
n¼ 0 equilibrium (n¼ 0I) at 7.5 ms.
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To elucidate this point, consider the overlay of linear
eigenfunctions and equilibrium current density presented in
Fig. 12. The two frames show magnetic-field vectors from
linear results computed without and with the n¼ 0 flow from
the nonlinear simulation. The color contours of J/=R demon-
strate that the current is composed of two oppositely directed
layers with the inner layer being stronger than the outer
layer. The current flows primarily parallel to B, and the dif-
ference in the poloidal part of each layer is the net injected

current as in Fig. 8. Without n¼ 0 flow (Fig. 12(a)), the per-
turbed magnetic field is normal to the flux-bubble surface
between the two current layers. With n¼ 0 flow (Fig. 12(b)),
the eigenfunction is concentrated higher in the bubble struc-
ture and is shifted onto the inner current layer. The existence
of the normal-field perturbation with or without flow sug-
gests that magnetic reconnection is a property of the linear
mode, as discussed in the remainder of this section and in
Sec. III B. The source of the reversed current, itself, is also
of interest. Figure 1(b) shows the toroidal-flux bubble carry-
ing poloidal flux from above the injector slot into a flux null
along the inboard side of the chamber. The spatial variation
of the flux function from the null region to the leading edge
of the expanding bubble gives rise to the reversed-current
layer in our nonlinear simulations.

To explore further the role of resistivity, a set of linear-
ized NIMROD calculations was undertaken with the contri-
bution of the n¼ 0 flow turned off, the resistivity uniform in
space (no temperature dependence), and a low value of kine-
matic viscosity. The growth rate vs. resistive diffusion is
shown in Fig. 13. The result is a scaling with Lundquist num-
ber to the &0.4 power, close to that expected for a resistive
kink. In addition, a comparison of linear growth rates com-
puted with and without pressure for otherwise similar equi-
librium fields shows difference by no more than 10%.
Considering all of the parameter dependencies presented in
this section leads us to conclude that the mode is

TABLE I. Sensitivity of instability amplitude growth rate to numerical dissipation values.

Parameter Base value Test value n¼ 1 growth rate (s&1) n¼ 2 growth rate (s&1)

Base calculationa 1.08# 105 1.16# 105

Include equilibrium flow? Yes No 0.79# 105 1.19# 105

Kinematic viscosity 150 m2/s 15 m2/s 3.26# 105 4.25# 105

Resistivity (mag. diffusivity) 411/Te
3/2 m2/s 104/Te

3/2 m2/s 5.06# 105 5.75# 105

Particle diffusivity (holds n% constant) 105 m2/s 10 m2/s 1.00# 105 1.16# 105

aAll n¼ 0 quantities are kept constant except as listed.

FIG. 11. Poloidal mode structure for linear, n¼ 1 calculation: (a) velocity
vectors and (b) magnetic field vectors. The real parts are shown.

FIG. 12. Contour plots of equilibrium J//R (A/m3) overlaid with the vectors
of the poloidal components of magnetic field from n¼ 1 linear computations
computed (a) without and (b) with n¼ 0 flow.

FIG. 13. Linear growth rate without the nonlinear flow contribution and
with resistivity independent of temperature.

102502-7 E. B. Hooper and C. R. Sovinec Phys. Plasmas 23, 102502 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.115.190.47 On: Thu, 06 Oct
2016 16:51:26



predominately a resistive kink-like, current-driven mode
with contributions from the plasma flow.

There are times during the nonlinear simulations n¼ 0I
and n¼ 2I with low n¼ 1 amplitude and no bursting (Fig. 4).
Tests were made to see whether the mode is linearly stable
during this time. A linear simulation starting from the n¼ 0
component of n¼ 1I during that time interval is stable, indi-
cating that the n¼ 0 and n¼ 1 parts of the equilibrium have
evolved to a stable state including a nearly steady-state,
n¼ 1 mode which does not undergo relaxation events. (Note
that the nonlinear, n¼ 0 equilibrium used for this n¼ 1 simu-
lation contains a nonlinear structure resulting from the
instability.)

B. Instability drive and a slab model

To support the conclusions regarding the instability
mechanism, consider the simple, static infinite-slab equilib-
ria shown in Fig. 14. For comparison with the current sheet
in toroidal computations, the z-direction of the slab configu-
ration is aligned with B0 in the middle of the slab. We
assume that perturbations have exp ðikyÞ dependence over
the y-z plane, i.e., no variation in z. This imposes a periodic-
ity in y, and the perturbations are resonant at x ¼ 0. The

actual TCHI configuration is line-tied, but the wavelengths
are much smaller than the length of field-lines within the
domain, and line-tying effects diminish in the short-
wavelength limit.25 Using the energy principle, one can
show that the periodic slab configuration is marginally stable
to current-driven ideal MHD modes, so we focus on stability
with respect to reconnecting modes. Standard D0 analysis for
resistive stability is straightforward in this basic current-
sheet configuration, and the single-layer configuration (Fig.
14(a)) is considered in the seminal paper by Furth, Killeen,
and Rosenbluth (FKR).26 With an assumed large and approx-
imately uniform z-component of B0, F ) k * B0 varies line-
arly in the current sheet, &a $ x $ a, and is uniform in each
region outside the sheet. Apart from the tearing layer, the
x-component of the perturbed-B satisfies

Fb00x & F00bx & k2Fbx ¼ 0; (1)

where the prime indicates differentiation with respect to x.
The second term vanishes within the current sheet and out-
side the sheets, and both bx and Fb0x & F0bx are continuous at
x ¼ 6a.

Simplifying for distant walls, the solution over the outer
ideal region in x > 0 is

bxðxÞ ¼
ðkaÞ&1 sin h½kðx& aÞ, þ exp ½&kðx& aÞ,; 0 < x $ a

exp ½&kðx& aÞ,; x > a;

(

(2)

and the solution is symmetric about x ¼ 0. The normalized
resistive-layer matching parameter is then

D0a ¼ lim
e!0

a
d

dx
ln bxð Þ

!!!!
x¼e

x¼&e
¼ 2~k

cos h ~kð Þ & ~k exp ~kð Þ
~k exp ~kð Þ & sin h ~kð Þ

; (3)

where ~k ¼ ka, and the result is equivalent to Eq. (30) of FKR.
Figure 15 shows this relation over ~k-values of interest.
The solution is unstable to reconnection ðD0 > 0Þ for
0$ ~k < 0.639, and for ~k . 1, D0a ffi 2=~k. The piecewise lin-
ear B0y profile of Fig. 14(a) is just an example, and other
current-sheet distributions provide similar results. For example,

with B0yðxÞ ! tan hðx=aÞ, D0a ¼ 2=~k & 2~k, which is margin-
ally stable at ~k ¼ 1.24 The unstable eigenfunction for each
current-sheet profile appears similar to the plots shown in
Figs. 7(b) and 11(b) from our nonlinear and linear NSTX
computations.

Considering Fig. 15, the transition from small-D0 to
large-D0 occurs within a fairly narrow range of wave num-
bers, which may contribute to the weak sensitivity to resis-
tivity that is described in Section III A for the linear NSTX
computations. To support this point, we have also run
NIMROD computations with the monotonic linear-B0y pro-
file and find inertial-regime growth rates scaling like S&0:57

FIG. 14. (a) Slab model. The slab
between x¼6a carries a constant cur-
rent, j0z along the z-axis, generating
B0y¼l0j0zx as shown. The slab is ori-
ented such that B0y¼ 0 at x¼ 0. We
neglect the small contribution to B0z

from the current along y. (b) Non-
monotonic model. The horizontal
dashed line shows B0y¼ 0.
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for ~k ¼ p=10, i.e., nearly S&3=5 for D0a ffi 3:5, according to
Eq. (3), and like S&0:38 for ~k ¼ p=50, i.e., much closer to
S&1=3 at D0a ffi 29. Using Fig. 12, we estimate the relevant a
(half-width, half-max of a single current layer) to be approxi-
mately 1 cm. The analysis using the piecewise linear B0y pro-
file predicts marginal stability for a wavelength of
approximately 10 cm. With the hyperbolic-tangent B0y pro-
file, the marginal wavelength prediction is approximately
6 cm. The n¼ 1 wavelengths in Figs. 7, 11, and 12 are at
least 10 cm, so there is consistency between the periodic-slab
model predictions and the results of our linear and nonlinear
computations. Of course, the simplified analysis does not
consider effects from the flow profile in the TCHI simula-
tions, which are found to be destabilizing, as discussed in
Section III A.

For the non-monotonic B0y profile (Fig. 14(b)) that is
ostensibly more representative of the current profile in the
nonlinear simulations, we observe that the reconnecting
component of the perturbed-B is independent of the sign of
F0. Thus, for tearing centered at the interface between the
two idealized current layers, we may construct the same
symmetric outer-region solution, leading to the same value
of D0a for a given ~k. Current density varying within the
reconnection layer would affect the inner resistive-MHD
solution, but we infer that the threshold for resistive instabil-
ity and the transition to large-D0 behavior occur as they do
with a single current layer. From Fig. 12(a), the eigenmode
of the linear computation without n¼ 0 flow is centered
between the two current layers, so the non-monotonic B0y

profile is more representative. Interestingly, the eigenmode
with flow (Fig. 12(b)) is largely centered on the stronger
upstream current layer, so the monotonic B0y profile is more
relevant. Of course, both piecewise linear B0y profiles are
idealizations.

IV. CONCLUSIONS

A high poloidal mode number, n¼ 1 instability has been
observed and analyzed in resistive MHD simulations of hel-
icity injection into the NSTX tokamak. The mode forms a
narrow tube of velocity and magnetic-field vortices whose
axes are aligned with the magnetic field. In simulations for
which the plasma temperature is low (due to impurity radia-
tion in the simulation model), the mode is coherent and has

little effect on the injection. However, when the impurity
level is reduced to a low level, the temperature in the surface
layer of the injected flux bubble rises to !100 eV or higher,
and the mode amplitude undergoes relaxation oscillations.
Under these conditions, the injected plasma is significantly
affected, including a broadening of the current layer associ-
ated with the injected toroidal flux, generating an increase in
current ahead of the bubble and heating the plasma, although
the long-term evolution of the equilibrium includes injected
power and results in a reduction of the internal energy rela-
tive to the axisymmetric simulation. During the relaxation
events, large-scale closed magnetic flux regions seen in the
injection phase of purely axisymmetric simulations do not
occur.

The mode physics is examined in detail using the
NIMROD code. Its linearized excitation from a fixed, axi-
symmetric equilibrium finds a growth rate (!0.1 ls–1), which
is fairly insensitive to the dissipative effects in the code
(magnetic diffusivity, viscosity, and particle diffusivity). As
in the nonlinear simulations, the mode is centered on the cur-
rent layer at the edge of the injected flux. The velocity and
magnetic-field vortices in the linear calculation are similar to
those in the nonlinear simulations, although narrower in
poloidal extent. The mode structure includes the component
of magnetic field normal to the sheet, which implies mag-
netic reconnection.

To aid in the identification of the mode, the flow in the
axisymmetric velocity in the nonlinear equilibrium for the
linear simulation is set to zero; the mode is still unstable
although at a somewhat reduced growth rate. The mode is
shifted relative to the n¼ 0 current density, as seen in Fig.
12. Also, the analysis of resistive instability for a slab config-
uration that crudely approximates the current sheet in NSTX
helps identify the unstable range of poloidal wavelengths.
From this and the numerical calculations, it is concluded that
the mode is predominately a current-driven resistive instabil-
ity whose growth rate scaling with resistivity is close to that
of a resistive kink mode. Contributions from the axisymmet-
ric, equilibrium velocity, and/or velocity shear are not
required for instability. The underlying resistive instability is
the same basic current-sheet instability that is receiving
renewed interest in the context of magnetic reconnec-
tion.15–19,24 That the resulting nonlinear dynamics have
greater impact as the modeled impurity concentration is
reduced and temperature increases likely reflects a smaller
current-sheet width at lower resistivity, which has a role in
plasmoid formation.16,17 However, during the phase of mod-
eled active injection, the footpoints of the current channel
are distant, and the instability is not part of the reconnection
process that forms closed flux on the global scale. Thus, the
role of the asymmetric instability reported here is distinct
from that of plasmoid formation as part of the global flux-
surface closure after injection, which is predicted in axisym-
metric simulations of NSTX.18,19

To our knowledge, at the present time there are no
experimental studies that can be used to determine if this
mode is present in laboratory, helicity-injected plasmas. To
the extent that the linear mode is current-driven, it is purely
growing with no real part of the frequency and thus would

FIG. 15. Delta-prime vs. wave number from Eq. (2) for the slab model.
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not show up as a coherent oscillation, although Doppler-shift
effects could generate oscillations in the laboratory. Other
physics including velocity shear (Kelvin-Helmholtz physics)
and non-ideal processes not included in the slab model might
also yield a real part of the frequency.

As noted, nonlinear simulations with low impurity radia-
tion find that the mode undergoes relaxation oscillations;
these would contribute to low-frequency plasma noise during
the injection. Separating this from other sources of noise in
experiments may be difficult. Detailed measurements, e.g.,
of the local magnetic field in the plasma would probably be
needed to demonstrate the presence of the mode.

Consequences, if any, of the strongly driven mode for
flux surface closure following helicity injection remain to be
assessed in future research.
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