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In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian

distribution function (MDF) and in some cases small deviations are described using the perturbation

theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are

required to be taken into account especially for fusion reactor plasmas. Generally, because the

perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic

effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding

the analytic complexity of velocity phase space integrals. We develop here a new method based on

analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order

to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experi-

mental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepan-

cies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to

kinetic effects given by a small number of terms and removing the numerical error of the evaluation

of velocity phase space integrals. This work does not attempt to derive new physical effects even if

it could be possible to discover one from the better understandings of some unsolved problems, but

here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As

applications, examples of analytic kinetic corrections are shown for the secondary electron emission,

the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic repre-

sentations of the distribution function: the Kappa distribution function, the bi-modal or a new inter-

preted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new

understandings of the experimental discrepancy of the measured electron temperature between two

diagnostics in JET. As main results, it is shown that (i) the empirical formula for the secondary elec-

tron emission is not consistent with a MDF due to the presence of super-thermal particles, (ii) the

super-thermal particles can replace a diffusion parameter in the Langmuir probe current formula,

and (iii) the entropy can explicitly decrease in presence of sources only for the introduced INMDF

without violating the second law of thermodynamics. Moreover, the first order entropy of an infinite

number of super-thermal tails stays the same as the entropy of a MDF. The latter demystifies the

Maxwell’s demon by statistically describing non-isolated systems. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4960123]

I. INTRODUCTION

The observation of non-equilibrium distribution func-

tions is possible in a large number of areas other than labora-

tory plasma physics such as in astrophysics plasmas,

hydrodynamic fluids, and molecular dynamics, atomic phys-

ics, condensed matter, chemical reactions, and in statistics

(see Refs. 1–5). We focus here on laboratory plasma physics

with charged particles in a magnetic field relevant to

tokamaks and spherical tokamaks for the purpose of energy

production by fusion energy. Some phenomena occurring

in these devices break the symmetry of the Maxwellian

distribution function (MDF) such as radio-frequency wave

heating, neutral beam injection (NBI), ion orbit loss, or sim-

ply boundary and external conditions (plasma-surface inter-

action, external magnetic field configuration, etc.) (see Refs.

6–13). Another phenomenon that is highly relevant to future

fusion reactors is the self-heating by alpha particles produced

by fusion reactions.14,15 All these phenomena need to be

considered in plasma physics in order to better reproduce the

dynamics of current tokamaks and predict the confinement

of future fusion reactors because to date there is no rigorous

and efficient theory describing non-Maxwellian distribution

function (NMDF) at finite collisionality. The ability to

describe NMDFs is one of the most important unsolved prob-

lems in plasma physics. The number of studies about NMDF

has been increasing in the last decades, based on some meas-

urements of distribution function as well as on kinetic

numerical simulations. Indeed, the Kappa distribution func-

tion (KDF) is usually observed in astrophysics1,3,16 where

different power laws in velocity phase space appear, but it is

not usually observed in laboratory plasma physics.

Moreover, bi-modal distribution functions (i.e., the sum of

two MDFs) are often used in order to better describe the

presence of super-thermal particles,17,18 but we argue here

that the sum of Maxwellians is valid only in two collisional

regimes (i.e., when there is no collision or at infinite colli-

sionality). The interpreted non-Maxwellian distributiona)Electronic mail: izacard@llnl.gov
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function (INMDF) introduced here could be the first self-

consistent solution for the description of laboratory non-

Maxwellians at finite collisionality. The initial purpose of

the INMDF introduced here is to more effectively model the

already known effects. However, better understandings com-

ing from the physical interpretation of the INMDF could

help in the future to intuitively develop theories describing

new physical phenomena. These three ways of describing

non-Maxwellians can be generalized as needed by the read-

ers in order to keep manageable velocity phase space

integrals. Indeed, the analytic kinetic corrections obtained

here are possible with these three non-Maxwellians and our

developed method can be used with the creation of new dis-

tribution functions describing the phenomenon under investi-

gation. In order to clarify to the readers the novelty of this

work, we emphasize that in comparison to the literature

where a large number of orthogonal basis functions are used

for the numerical representation of NMDFs,19–21 we show

the advantage to use non-orthogonal basis functions for the

efficient analytic description of NMDFs. This allows at the

same time the full analytic computation of the velocity phase

space integrals with a small number of simple terms, as

detailed in the Appendixes. Indeed, all required velocity

phase space integrals which contain the introduced INMDFs

are reduced to some special functions (e.g., the hypergeomet-

ric 1F1ða; b; zÞ or the incomplete Gamma Cðx; zÞ functions).

However, because these functions are evaluated at specific

values, we obtain for the first time all results as a function of

a small number of terms including simple polynomials and

the exponential and Error functions. This method stays valid

for a class of NMDFs obtained from our non-orthogonal

basis sets. Our analytic description represents a real asset in

plasma physics, leading to the resolution of the efficient uni-

fication between kinetic and fluid theories.22,23 In summary,

this work is unique by its capability to analytically link a

specific shape of NMDFs to a small number of fluid quanti-

ties observable in experiments. In order to represent the

generality and universality of our work, we focus here on a

selection of three relatively different analytic theories which

are usually associated with MDFs in the literature:

(i) As an example, there is a recurrent discrepancy

between the transport simulated by fluid codes against

its measurement in radiated detached divertor plas-

mas. The divertor plasma is a crucial component for

the fusion energy because it is the main material com-

ponent in direct contact with the plasma and can

highly impact the cost efficiency due to the increase

of required maintenance. The difference of transport

and plasma profiles between experimental measure-

ments and edge simulations seems to be explained by

the presence of NMDFs.24–26 The main issue of these

edge simulations is the description of the radiation

which is very sensitive to kinetic effects. One of the

radiations that directly impact the edge (via the float-

ing potential, the drag force on dust and impurity, or

the neutral collision) is the secondary electron emis-

sion (SEE).27–35 Recent works focused on the SEE by

using a MDF and obtaining an empirical formula.32

We obtain here the analytic formulas for MDFs and

NMDFs.

(ii) Another example is the discrepancy of the Langmuir

probe interpretation36–47 with respect to the Thomson

scattering (TS) measurements48,49 of the electron tem-

perature which has been associated with the presence of

super-thermal particles17,18 (i.e., bulk and super-thermal

populations, both at different thermodynamic equilib-

rium). The Langmuir probe is one of the most used

diagnostic for low temperature plasmas. Advanced con-

cepts allow the measurement of the electric potential,

the electron density and temperature or the radial elec-

tric field. All of these measurements are possible by

interpreting the signal and by using the assumption that

the incident electrons are described by a MDF. Then,

the presence of NMDF obviously results in discrepan-

cies of the interpretation of physical quantities from the

signal. We show here the analytic results for MDFs and

NMDFs in order to prepare future modified interpreta-

tions of experimental data.

(iii) Finally, the last example which is analytically based

on MDFs is our understanding of the entropy at the

thermodynamic equilibrium (i.e., the MDF). The

entropy, viewed as the degree of disorder, is well

known for a MDF. However, the experimental obser-

vations of NMDF steady-states have to be addressed

in order to have a more general point of view of the

entropy, similarly than in Refs. 16 and 50. The ana-

lytic result shown here for an INMDF motivates the

generalization of thermodynamics for non-isolated

systems (extending Refs. 51 and 52) by using our

INMDFs. Moreover, a significant new result shown

here is the explicit decrease of the local entropy for

some INMDFs.

Our work is drawn as follows. Section II describes the

usual analytic representations (i.e., the KDF and the sum of

MDF) that are well documented in the literature, and con-

tains the foundations of new distribution functions (i.e., the

INMDFs) relevant to some experimentally observed

NMDFs. Then, this section focuses on the physical motiva-

tions of the introduced INMDF and its possible generaliza-

tion. In Sec. III, the kinetic corrections of the secondary

electron emission, the Langmuir probe characteristic curve,

and the entropy are analytically predicted and shown with as

relevant plasma physics parameters as possible. Finally, the

conclusion is detailed in Sec. IV.

II. CHOICE OF AN ANALYTIC REPRESENTATION
OF NON-MAXWELLIAN DISTRIBUTION FUNCTIONS

This section deals with the velocity phase space repre-

sentation of non-Maxwellian distribution functions (NMDFs)

using specific analytic forms instead of the usual numerical

discretization. In fact, the numerical approximation is not

efficient for the description of some NMDFs because of the

requirement to use a high number of terms. For example, it is

not efficient to use a numerical approximation of a

Maxwellian distribution function (MDF) in comparison to its

analytic form which uses only 3 variables (density, fluid
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velocity, and temperature). Indeed, this work argues the

advantage of using a mesh-free representation of the distribu-

tion function in the velocity phase space by using fluid

parameters (called here the hidden variables) instead of the

discretization in the velocity phase space. We adopt the nota-

tion of v for the one dimension velocity phase space coordi-

nate, x for the three dimension position, and t for the time.

The generalization to three dimensional velocity phase space

is ongoing for isotropic distribution functions but some com-

plexities appear for anisotropic ones.23 Further work will

include anisotropic NMDFs. For simplicity of notations the

division of the temperature by the mass is omitted in the dis-

tribution function.

In this section, we show notations for existing distribu-

tions (the KDF and the sum of two MDFs) and we introduce

a new class of NMDFs (i.e., the INMDFs) which can be

viewed as a non-orthogonal generalization of the sum of

Maxwellians and Hermite polynomials.

A. The Kappa distributions

The KDFs are commonly used in astrophysics1,3 to

describe different tail power laws than the Maxwellian. The

definition of the KDF fjðx; v; tÞ is

fj ¼ Dj 1þ v2

Wj

� �� jþ1ð Þ

; (1)

where

Dj ¼
nffiffiffiffiffiffiffiffiffi
pWj
p C jþ 1ð Þ

C j� 1

2

� �
0
B@

1
CA

1=3

; (2)

Wj ¼ ð2j� 3ÞT; (3)

and CðzÞ is the Euler Gamma function. The fluid quantities,

which are evolving in time and are functions of the position,

are nðx; tÞ; Wjðx; tÞ (or Tðx; tÞ) and jðx; tÞ. For a shifted dis-

tribution function the fluid velocity vðx; tÞ appears by the

change of variable v! v� v in Eqs. (1), (4), and (5). The

KDF recovers the MDF for j!1. Many properties of the

KDF have been published in the literature and are not repro-

duced here. Integrals of KDFs over the velocity phase space

introduce functions detailed in Appendix A

Kq j; Tð Þ ¼
ð1
�1

vq 1þ v2

Wj

� �� jþ1ð Þ

dv; (4)

Kq j; T; að Þ ¼
ð1

a

vq 1þ v2

Wj

� �� jþ1ð Þ

dv: (5)

By using these integrals, it is trivial to obtain all fluid

moments of any shifted KDF centered at the fluid velocity v
as function of a finite sum of the function Kqðj; TÞ. The KDF

is successfully used to describe different power laws in

velocity phase space. However, because an over population

of fast particles localized around a specific velocity is often

observed, the sum of two Maxwellians can be a better

approximation for these cases.

B. The sum of Maxwellians

The approximation of localized super-thermal tails is

commonly used.17,18,53 It is usually called the bi-modal dis-

tribution function where two different temperatures dominate

as a function of the velocity coordinate v. The sum of two

shifted MDFs f2Mðx; v; tÞ reads

f2M ¼ D exp � 1

2T
v2 þ v

T
v

� �
þ Df exp � 1

2Tf
v2 þ vf

Tf
v

� �
;

(6)

with

D ¼ nffiffiffiffiffiffiffiffi
2pT
p exp � v2

2T

� �
; (7)

Df ¼
nfffiffiffiffiffiffiffiffiffiffi
2pTf

p exp �
v2

f

2Tf

 !
; (8)

where the density, fluid velocity, and temperature are,

respectively, for the bulk and the super-thermal (i.e., fast

particles) populations nðx; tÞ; vðx; tÞ; Tðx; tÞ and nf ðx; tÞ;
vf ðx; tÞ; Tf ðx; tÞ. The velocity integrals are directly given by

the function Jkða; bÞ detailed in Appendix B and defined by

Jkða; bÞ ¼
ð1
�1

vk exp ð�av2 þ bvÞdv: (9)

Another useful function is Jkða; b; cÞ detailed in Appendixes

C and D and defined by

Jkða; b; cÞ ¼
ð1

c

vk exp ð�av2 þ bvÞdv: (10)

The generalization with a sum of more than two MDFs is

possible with the Radial Gaussian Basis Function (RGBF)

which has successfully been used for artificial neural net-

works. Many properties of the bi-modal distribution function

and the RGBF have been published in the literature and are

not reproduced here.

This representation is accurate for example, when there

is an external production of fast particles and when there is

no interaction between the bulk plasma (of collisionality

�th�th) and these fast particles (of collisionality �th�f). This

means that the RGBF is valid only at two collisional

regimes: the limit of no collision between thermalized

and fast particles (i.e., �th�f ¼ 0) or the limit of infinite col-

lisionality (i.e., �th�th=�th�f !1). In other words, the

RGBF is not consistent with the interactions between the

bulk plasma and the fast particles at finite collisionality

because each of them becomes non-Maxwellian. The novel

representation introduced below is a possible solution of

this inconsistency.

C. The interpreted non-Maxwellian

The definition of the INMDF fIðx; v; tÞ was introduced

for the first time in one dimension in Refs. 22, 54, and 55

fI ¼ f0 þ df ; (11)
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with

f0 ¼ D exp � 1

2T
v2 þ v

T
v

� �
; (12)

df ¼ DI v� cð Þexp � 1

2W
v2 þ c

W
v

� �
; (13)

and with D given by Eq. (7) and

DI ¼
Cffiffiffiffiffiffiffiffiffiffiffiffi

2pW3
p exp � c2

2W

� �
; (14)

where the fluid hidden variables fn; v; T;C; c;Wg are the

functions of ðx; tÞ. The first part f0 is a MDF, and due to the

second part df, the INMDF fI cannot be described with a

finite number of terms using any of the existing analytic rep-

resentations. The second part is related to a physical interpre-

tation and could be valid for all collisionality regimes

because df represents an enhancement of the energy of a pop-

ulation of particles. This new formula represents a real asset

for the analytic modeling of NMDFs. More details of the

difference between the INMDF and all existing analytic

NMDFs are given in Sec. II D. The moments Mk ¼
Ð

f vkdv

of the non-Maxwellian f¼ fI are

M0 ¼ n; (15)

M1 ¼ nvþ C; (16)

M2 ¼ nðT þ v2Þ þ 2Cc; (17)

M3 ¼ nvð3T þ v2Þ þ 3CðW þ c2Þ; (18)

M4 ¼ nð3T2 þ 6Tv2 þ v4Þ þ 4Ccð3W þ c2Þ; (19)

M5 ¼ nvð15T2 þ 10Tv2 þ v4Þ þ 5Cð3W2 þ 6Wc2 þ c4Þ;
(20)

M6 ¼ nð15T3 þ 45T2v2 þ 15Tv4 þ v6Þ
þ 6Ccð15W2 þ 10Wc2 þ c4Þ; (21)

and generally given as a function of Jkða; bÞ. The usual

moments Pk ¼ 1=M0

Ð
f ðv�M1=M0Þkdv for k � 2 of the

non-Maxwellian fI are also the function of the hidden varia-

bles. We do not write these moments since it is not used

here, but if needed, readers can easily obtain them from the

given Mk moments. Nevertheless, we remark as expected for

a MDF that when C¼ 0 the odd moments P2kþ1 are equal to

0 and the even moments are P2k ¼ ð2k � 1Þ!! Tk. The coeffi-

cient C has the dimension of a momentum (a density times a

velocity) then C=n has the dimension of a velocity, c of a

velocity, and W of a temperature (square of a velocity,

including the division of the temperature by the mass which

is omitted by simplicity of notations).

We remark that, by using the method of hidden varia-

bles, there is no reason to resolve the inversion of Eqs.

(15)–(21) in order to extract the hidden variables as the func-

tion of the fluid moments. To date, the inversion of these for-

mulas to extract the hidden variables {n, v, T} as a function

of the moments fM0;M1;M2g ¼ fn; nv; nT þ nv2g is possi-

ble only for a MDF and it seems too constraining to use this

criterion for the description of non-Maxwellian steady-state

distribution functions observed experimentally.

Fig. 1(a) represents an INMDF (solid blue curve) with

a correction (dashed red curve) centered at the mean veloc-

ity with respect to the MDF (dashed black curve). This

example corresponds to an asymmetric distribution func-

tion observed at least in presence of ion orbit losses12 and

will be investigated in the future work. Fig. 1(b) represents

the same correction df but centered at a higher velocity

coordinate (i.e., higher value of c). The tail at high energy

(centered at c> v) is unstable when the distribution func-

tion increases and is not monotonous. In other words, the

distribution function is unstable when its first derivative is

positive around v ¼ c. Indeed, the stability criteria of the

INMDF fI ¼ f0 þ df is obtained when the derivative of the

Maxwellian part f0 is bigger than the derivative of the addi-

tional part df (i.e., @fI=@v < 0). We found the stability

criteria

1� v� cð Þ2

W

� �
C

2pW3ð Þ1=2
exp � v� cð Þ2

2W

� �

<
v� v

T

n

2pTð Þ1=2
exp � v� vð Þ2

2T

� �
; (22)

then for W< T the highest value at v ¼ c gives for c> v the

stability criteria

C
n c� vð Þ

T

W

� �3=2

exp
c� vð Þ2

2T

� �
< 1: (23)

For W> T, similar stability criterion can be obtained for a

range of velocity but are not detailed here. Moreover, the

constraint to consider a strictly positive distribution function

is given by the relation fIðvÞ > 0 for all v, particularly when,

for v < c, the additional non-Maxwellian part df is minimum

(for C > 0). The minimum value of the additional non-

Maxwellian part df is obtained at

@df

@v
¼ 0() v� cð Þ2

W
¼ 1;

() v ¼ c�
ffiffiffiffiffi
W
p

: (24)

(a) (b)

FIG. 1. Schema of the Maxwellian (dashed black curve) and the INMDF

(solid blue curve) distribution functions and the difference (dashed red

curve). These curves are obtained with the density n ¼ 1019 m�3, the tem-

perature T ¼ 104 eV, the velocity space v 2 ½0; 105�, the number of points in

the velocity space Nv ¼ 1001, the fluid velocity v ¼ ðvmax � vminÞ=2, the

kinetic flux C ¼ 0:1n
ffiffiffi
T
p

, the central flow (a) c¼ 0 (b) c ¼ 1:25v and the

width of the heat spread W ¼ T=2. The physical interpretation of these three

additional variables is given below.

082504-4 Olivier Izacard Phys. Plasmas 23, 082504 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  198.125.231.54 On: Tue, 02 Aug

2016 18:59:20



Then the constraint of a strictly positive distribution function

is given by fIðv ¼ c�
ffiffiffiffiffi
W
p
Þ > 0, so

C
ffiffiffi
T
p

nW
exp

c� v�
ffiffiffiffiffi
W
p� �2

2T
� 1

2

 !
< 1: (25)

We remark that for C < 0, similar relations can be obtained

using the minimum value of df obtained for v > c (i.e., at

v ¼ cþ
ffiffiffiffiffi
W
p

).

Before investigating corrections of some existing theo-

ries due to non-thermal population of particles, we have to

understand how the previously given formulas could accu-

rately describe deviations from MDFs. For that, the physical

interpretation of the INMDF is given here. The fluid quantity

Cðx; tÞ is called here the kinetic flux, cðx; tÞ is the central

flow and Wðx; tÞ is the width of the heat spread. Similar to

the graphical interpretation of n, v, and T for the MDF, the

graphical interpretation of the non-Maxwellian part C, c, and

W is shown in Fig. 2.

Fig. 2 represents the displacement of a population of

particles (�5%) from the dark-green area to the light-green

area. The hidden variable C is called the kinetic flux since it

happens in the velocity phase space and has a dimension of a

particle flux (i.e., a density times a velocity). The central

flow c is the velocity where the INMDF equals the MDF.

Finally, the width of the heat spread W characterizes the

width in velocity phase space of the super-thermal popula-

tion modified by an external source of energy (e.g., the cur-

rent drive). In the following figures, the coefficients (q, r, s)

are used to parameterize the super-thermal tail such that C
¼ 2qn

ffiffiffi
T
p

=100 where q represents approximately the per-

centage of super-thermal particles over the total number of

particles, r represents the position of the central flow by

the relation c ¼ vþ r
ffiffiffi
T
p

, and s represents the ratio of the

width of the heat spread over the temperature W ¼ s2T (i.e.,

s ¼
ffiffiffiffiffiffiffiffiffiffi
W=T

p
is the ratio of the widths).

D. Generalization with other INMDFs

It is possible to use other formulas for the description of

non-Maxwellians such as shown in Fig. 3 where different

NMDFs are obtained from

f ¼
XNk

k¼0

ak v� bkð Þnk

2pdmk

k

� �1=2
exp �

v� ckð Þ2

2ek

 !
; (26)

with mk ¼ 2E½ðnk þ 1Þ=2� þ 1; nk 2N where E½x� is the

floor function and ak, bk, ck, dk, ek are fluid coefficients for

all integer k. The set of coefficients fak; bk; ck; dk; ekg are the

hidden variables. We notice that ak has a dimension of a den-

sity if nk is even and of a particle flux if nk is odd, bk and ck

have the dimension of velocities and dk and ek of tempera-

tures. This general form can describe asymmetric distribu-

tion functions f which deviate from MDFs f0 and the

effective density can be different to n (e.g., when we con-

sider odd values of nk). Moreover, because the hidden varia-

bles bk and ck as well as dk and ek can be different, in

contrast to Fig. 1, we can consider asymmetric corrections df
as shown by red curves in Fig. 4. Further investigations using

these generalized INMDFs given by Eq. (26) are possible. In

summary, this formulation (i.e., the generalized INMDFs)

can be related to a generalization of the Hermite polynomial

representation56–58 (due to the presence of ðv� bkÞnk term)

but each term is associated with a different MDF. The repre-

sentation given by Eq. (26) forms a non-orthogonal basis in

contrast to the usual work found in the literature where

orthogonal basis is used in order to project the distribution

function on the basis set, but here this non-orthogonal basis

is relevant to a significant reduction of the number of

required hidden variables. Moreover, the completeness prop-

erty is intrinsically inherited from the usual Hermite polyno-

mial since Eq. (26) can be reduced to an Hermite polynomial

with specific relation between all hidden variables (similar

argument with a possible reduction to the RGBF, see below).

The main advantage of this representation against the

Hermite polynomial is that the required number of terms can

be drastically reduced for the description of non-

Maxwellians with high flows. Some researchers argue that

one needs to keep at least hundreds or thousands of terms

with the usual Hermite polynomial representation (so at least

hundreds or thousands independent fluid moments, see Ref.

23) for an accurate description of non-Maxwellian plasmas.

With our generalization given by Eq. (26), it is conceivable

to keep much less hidden variables (related to much less

independent fluid moments). Having less hidden variables is

FIG. 2. Schema of the physical interpretation of the INMDF. The

Maxwellian f0 (black curve), the INMDF fI (blue curve) and the difference

df ¼ fI � f0 (red curve) are shown. These curves are obtained with the den-

sity n ¼ 1019 m�3, the temperature T ¼ 104 eV, the velocity space

v 2 ½0; 105�, the number of points in the velocity space Nv ¼ 1001, the fluid

velocity v ¼ ðvmax � vminÞ=2, the kinetic flux C ¼ 0:1n
ffiffiffi
T
p

, the central flow

c ¼ vþ 1:25
ffiffiffi
T
p

, and the width of the heat spread W ¼ T=2.

(a) (b)

FIG. 3. Example of two INMDFs obtained from Eq. (26) with different val-

ues of the fluid hidden variables.
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an argument of the advantage of the INMDF. Another argu-

ment is the physical interpretation (see the end of Sec. II C)

of the hidden variables. We remark that our general repre-

sentation can also reproduce the sum of shifted MDFs (i.e.,

the RGBF) by imposing other constraints such as nk¼ 0 and

mk¼ 1.

The moments Mq of the generalized distribution func-

tion given by Eq. (26) become

Mq ¼
XNk

k¼0

Dk

Xnk

p¼0

nk

p

� �
�bkð Þ nk�pð ÞJpþq

1

2ek
;
ck

ek

� �" #
; (27)

where Dk ¼ akð2pdmk

k Þ
�1=2

exp ð�c2
k=ð2ekÞÞ;

m
n

� �
is the

combination and the function Jkða; bÞ is introduced above.

The introduced INMDF given by Eq. (11) or Eq. (26) is a

new minimal formulation for a local non-Maxwellian devia-

tion. This distribution function cannot be exactly obtained

with a finite number of terms by any of the existing basis

functions. In comparison to the sum of MDFs (i.e., the

RGBF59), valid only at two collisionality limits, the INMDF

is the first distribution function which can be self-consistent

with NMDFs steady states at finite collisionality. More prop-

erties of the INMDF will be published later.

E. Physical reality of the INMDFs

The readers may be concerned about the physical reality

of the newly introduced INMDFs with respect to the well

observed KDF in astrophysics or the natural expansion with

a sum of MDFs. In order to argue about the physical picture

introduced by the displacement of population of particles in

the velocity phase space of the INMDFs, we describe below

a qualitative fitting of an indirect experimental measurement

of the distribution function. In fact, to date there is no univer-

sal direct measurement of the velocity phase space variations

of the distribution function but it is common to indirectly

compute the distribution function from different diagnostics.

Moreover, even if we choose to perform the qualitative

fitting (without the necessity to use the experimental data) of

only one published article on the electron temperature mea-

surement discrepancy, it is at least possible (not shown here,

see Ref. 22) to fit NMDFs observed by Fokker-Planck

numerical codes in the presence of lower hybrid current

drive or by particle in cell codes in the presence of ion orbit

losses. Fig. 5 proves the capability of INMDFs to describe

experimentally observed physical processes. With some den-

sity and temperature constraints in the presence of neutral

beam injection (NBI) and ion cyclotron radio frequency

(ICRF) in JET48,49 and TFTR,60–62 it has been observed a

20% discrepancy of the electron temperature between the

interpretation from the electron cyclotron emission (ECE)

and Thomson scattering (TS) due to kinetic effects.49 De La

Luna et al. and Beausang et al. numerically found a model

NMDF (dashed red curve) constructed from the spectrum of

the ECE. In fact, the measurement of the ECE spectrum was

not consistent with a MDF. De La Luna et al. originally

found the way to better recover this ECE spectrum by

numerically modifying the distribution function and obtain-

ing the called model NMDF. It turned out that this model

NMDF resolves the discrepancy of the interpreted electron

temperature by TS. The physical processes at the origin of

this model NMDF are not understood. Our three over plots

(blue, green, and cyan dashed curves) in Fig. 5 can help to

understand the origin of the detected NMDF. The blue curve

f0 corresponds to a MDF with a specific set of parameters.

The green curve fI;1 ¼ f0 þ df1 is obtained by adding df1

with the parameters ðq; r; sÞ ¼ ð1:7; 0:52; 0:48Þ. Then, the

cyan dashed curve fI;2 ¼ fI;1 þ df2 is obtained by adding df2

with ðq; r; sÞ ¼ ð�0:2; 1:3; 0:2Þ. This means that we detect

both an enhancement (i.e., a heating df1) and a reduction

(i.e., a cooling df2) of the energy of two different populations

of particles. We notice that because we use interpreted

parameters, we do not need to access the data (i.e., the den-

sity, fluid velocity, and temperature of the background

MDF). Our additional parameters (C; c;W) are the only way

to modify the shape of the distribution function and the use

of the terms (q, r, s) make our figure independent of the data.

We prove here that the 20% TS-ECE discrepancy is due to

approximately 1.7% of heated particles and 0.2% of cooled

particles, and both are attracted by a resonant-like process

around 1:0 uth. We highlight the fact that this result may not

be the detection of a new physical effect but, at least, it helps

to describe and understand the unsolved problem of the

TS-ECE discrepancy. Future work could try to link our

understandings with known heating and current drive reso-

nant theories or may lead to the discovery of a new physical

effect. Fokker-Planck codes may help to fully understand the

(a) (b)

FIG. 4. A possible asymmetric correction of INMDFs given by Eq. (26).

FIG. 5. Over plot of our qualitative fitting of a MDF f0 (blue dashed curve)

and two INMDFs fI;1 (green dashed curve) and fI;2 (cyan dashed curve). Our

fitting is done with respect to the numerical model NMDF (red dashed curve)

of Ref. 49 which explains the inconsistency between the electron cyclotron

emission and the Thomson scattering measurements. The background figure

is Reprinted with permission from Rev. Sci. Instrum. 82, 033514 (2011).

Copyright 2011 AIP Publishing LLC. See Fig. 2(a) in Ref. 49.
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details of the energy transfer. In summary, we do not attempt

to describe here what is resonant with what in this complex

unsolved problem where an electron NMDF, associated here

with a kind of current drive resonance, is experimentally

observed in the presence of ion heating and current drive

(NBI and ICRH). However, even if we do not know yet the

exact origin of these detected physical processes (heating

and cooling), the analytic formula of the INMDF fI;2 can be

directly used to understand the effects of non-Maxwellian

bulks on other diagnostics and on the transport and turbu-

lence. Indeed, even without theoretically or numerically

describing the physical processes at the origin of the heating

and cooling down we observed here, we can still have a

good description of the deviations of the NMDF with respect

to a MDF and analytically predict and validate the kinetic

effects from this observed NMDF on different diagnostics.

Our capability to calibrate different experimental diagnostics

is indispensable since we prove here that less than 2% of

super-thermal particles can lead to a 20% discrepancy of the

electron temperature interpretation between TS and ECE

when a MDF is assumed. It is especially indispensable for

the prediction of the effects of super-thermal tails on differ-

ent diagnostics in ITER where a 90% of self-heating by

fusion reactions is planned in addition to some external heat-

ing. Future work will focus on our detected INMDF fI;2 and

will help to initiate standard experimental procedures to

measure NMDFs and to resolve inconsistencies between

diagnostics more or less sensitivities to kinetic effects.

In Sec. III, the advantage of using one of these NMDFs

is shown for the analytic computation of kinetic corrections

on the secondary electron emission, the Langmuir probe

characteristic curve, and the entropy.

III. KINETIC CORRECTIONS DUE
TO NON-MAXWELLIANS

This section applies the NMDFs shown in Sec. II on

some existing theories relevant to current and future plasma

devices. Analytic corrections of these theories are given as

the function of the fluid hidden variables. These corrections

can be implemented in existing numerical simulations in

order to better describe some kinetic effects when they need

to be taken into account.

A. Corrections for the secondary electron emission

In tokamaks scrape-off-layer (SOL), incident primary

particles (i.e., charged or neutral particles) release secondary

electron from a solid surface. The secondary electron emis-

sion (SEE) reduces the sheath potential and can modify

many phenomena in the plasma-material interface.27 The

computation of the SEE is obtained by formulating the SEE

yield for incoming particles of energy E related to the mate-

rial under investigation (Sternglass formula27–29) multiplied

by the proportion of particles at this energy (i.e., the distribu-

tion function f(E)) and has been under investigation in the lit-

erature.30–34 By integrating over the possible energy of

incoming particles, the secondary electron emission dsee with

respect to the incoming particles distribution function f(E)

becomes

dsee ¼

ð1
0

ffiffiffiffiffiffi
2E

m

r
f Eð Þds Eð ÞdEð1

0

ffiffiffiffiffiffi
2E

m

r
f Eð ÞdE

; (28)

with dsðEÞ ¼ Ds E exp ð�2
ffiffiffi
E
p

=
ffiffiffiffiffiffiffiffiffi
Emax

p
Þ, the constant coeffi-

cient Ds ¼ ð2:72Þ2dmax=Emax, and E ¼ mv2=2 is the kinetic

energy. Some values of Emax and dmax have been obtained

experimentally and are dependent of the material under con-

sideration (e.g., see Refs. 29 and 32). The value of Emax cor-

responds to the energy associated to the value of dmax, the

maximum SEE measured and used to obtain a normalized

dsee. The empirical formula for a MDF obtained in Ref. 32 is

log10½dseeðTÞ� � C3x3 þ C2x2 þ C1xþ C0; (29)

with x ¼ log10ðTÞ, the coefficient Ck are given ad-hoc for

each species, and the dependence with respect to the fluid

velocity v disappears by using the assumption of a

Maxwellian plasma with no mean flow. However, we can

reformulate Eq. (28) to

dsee ¼

ð1
0

v2f vð Þds vð Þdvð1
0

v2f vð Þdv

; (30)

with dsðvÞ ¼ Ds mv2=2 exp ð�2v=uÞ and u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Emax=m

p
.

Here, we found the following exact analytic formula from

Eq. (30) for a MDF given by Eq. (12):

dsee;0 v; Tð Þ ¼ d
J4

1

2T
;
v

T
� 2

u
; 0

� �

J2

1

2T
;
v

T
; 0

� � ; (31)

with d ¼ ð2:72Þ2=ð8
ffiffiffi
p
p
Þdmax=u2 and where the general form

and some functions Jkða; b; 0Þ are detailed in Appendix C

where

Jkða; b; 0Þ ¼
ð1

0

vk exp ð�av2 þ bvÞdv: (32)

Following the same analytic method, it has been possible to

obtain the corrections dsee;j from a KDF. However, we do

not focus on this result here because it involves the hyper-

geometric PFQ function instead of Kqðj; TÞ due to the pres-

ence of expð�2v=uÞ in the term dsðvÞ and it may not be

possible to obtain a simple analytic form in comparison to

the following results. This may mean that the KDF is less

natural than the sum of two MDFs or the INMDF (see results

below) due to the complexity of the solution of the SEE

dsee;j. We found for the sum of two Maxwellians the follow-

ing corrections:

dsee;2M ¼ d DJ4

1

2T
;
v
T
� 2

u
; 0

� �
þ Df J4

1

2Tf
;
vf

Tf
� 2

u
; 0

� �" #

� DJ2

1

2T
;
v

T
; 0

� �
þ Df J2

1

2Tf
;
vf

Tf
; 0

� �" #�1

; (33)
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and for the INMDF given by Eq. (11) the following

corrections:

dsee;I ¼ d DJ4

1

2T
;
v

T
� 2

u
; 0

� �
þ DIJ5

1

2W
;

c

W
� 2

u
; 0

� �"

�cDIJ4

1

2W
;

c

W
� 2

u
; 0

� ��

� DJ2

1

2T
;
v
T
; 0

� �
þ DIJ3

1

2W
;

c

W
; 0

� �"

�cDIJ2

1

2W
;

c

W
; 0

� ���1

; (34)

where the secondary electron emissions dsee;0ðv; TÞ; dsee;2M

ðn; v; T; nf ; vf ; Tf Þ and dsee;Iðn; v; T;C; c;WÞ are functions of

all fluid hidden variables and the quantities d, D, Df, and DI

are previously defined.

Fig. 6(a) shows different NMDFs computed from the

bi-modal NMDF given by Eq. (6) and from the INMDF

given by Eq. (11) for a temperature T ¼ 1 keV. The correc-

tions of the secondary electron emission as the function of

the temperature are shown in Fig. 6(b).

An important result is that the black curve obtained for a

MDF with our exact formula does not match exactly the red

curve of the empirical formula given in Ref. 32. The reason

is due to an undetected presence of super-thermal particles in

Ref. 32 because our analytic formula dsee;I with the INMDF

fIðq ¼ 3; r ¼ 1:25; s ¼ 0:5Þ (cyan dashed curve) matches

better the empirical formula (red curve) in opposition

to our analytic formula dsee;0 with the MDF f0ðn0 ¼ 1018;
v ¼ 0; T ¼ 103Þ (black curve). Moreover, the empirical

formula is better matched for T < 102 eV with fIðq ¼ 2;
r ¼ 1:2; s ¼ 0:45Þ (blue dashed curve) and for T > 3

�102 eV with fIðq ¼ 4; r ¼ 1:3; s ¼ 0:55Þ (green dashed

curve). We remark that only for the cyan curve in Fig. 6(b)

we used dmax ¼ 0:95 instead of 1, but it is possible to find

other parameters which match the red empirical curve (e.g.,

keeping dmax ¼ 1 and multiplying n and C by 0.95 because

dsee is linear with respect to these two quantities). Finally, it

seems that the super-thermal particles of the empirical for-

mula are clearly better described by the INMDF rather than

by a sum of two MDFs (yellow solid curve is one of the best

fit). Nevertheless, the goal is to predict the modifications of

the secondary electron emission in the presence of different

super-thermal particles. The effects of a tail on the

secondary electron emission are significant specially for a

low temperature (i.e., T � 10 eV) of the background plasma

since a factor around 5 can be observed (i.e., ðq; r; sÞ
¼ ð2; 2:5; 1Þ not shown here). Then, it is indispensable to

take into account super-thermal particles even if this popula-

tion represents less than 4% because, at least, the dynamics

of dusts, neutrals, and impurities are highly impacted by the

secondary electron emission. It looks like our analytic pre-

diction (with s> 1) is able to observe two peaks in the SEE

like it has been experimentally observed (see Ref. 35).

Future work will investigate this two peaks observation,

particularly the addition of other terms in Eq. (11), in order

to avoid negative distribution function for all v < c.

B. Corrections for the Langmuir probes
interpretations

A commonly used diagnostic of edge (cold) plasma is

the Langmuir probe. By applying an electric potential scan

on the Langmuir probe, we can measure the current of the

probe as a function of the applied potential. This gives us the

well known characteristic curve. The theory of the Langmuir

probe has successfully been developed in the past cen-

tury63,64 and properties of the plasma can be extracted from

the characteristic curves such as the electron temperature, or

the floating and plasma potentials by interpreting the mea-

surement for a background Maxwellian plasma. However, a

recurrent discrepancy of the interpretation of the plasma

properties with other diagnostics (e.g., with Thomson scat-

tering measurements48,49,53 in attached plasma) has been

observed. This discrepancy has been related to NMDFs as

detailed in Refs. 17, 18, and 44 where bi-modal distribution

functions (distribution function of 2 populations of particles

at different temperatures) have been used. Other results

are published in the literature describing effects of

(a) (b)

FIG. 6. Distribution functions (a) and effects of the tails on the SEE (b) from Eq. (31) for a Maxwellian and from Eqs. (33) and (34) for different INMDFs.

082504-8 Olivier Izacard Phys. Plasmas 23, 082504 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  198.125.231.54 On: Tue, 02 Aug

2016 18:59:20



non-Maxwellian on the Langmuir probe measurements.36–47

The bi-modal approximation is the first efficient way to

describe NMDFs, but it assumes the superposition of two

populations of particles at the Maxwellian equilibrium and

the self-consistency is very restricted since in this bi-modal

description the plasma is enough collisional to assure a MDF

for each species but do not allow collisions between these

two populations. In order to resolve this inconsistency, we

propose to use the INMDF of the plasma (only one popula-

tion of particles with 1 effective temperature) which contains

super-thermal particles. In our case, all particles (viewed as

one species) collide together and external sources or sinks of

energy create non-Maxwellian steady states.

The general formula of the electron current36,40,44,46 can

be written as a function of any distribution function f(E) of

the kinetic energy E of particles

Ie Uð Þ ¼ � 8peS

3m2

ð1
eU

E� eUð Þf Eð Þ

c Eð Þ 1þ E� eU

E
w Eð Þ

� � dE; (35)

where wðEÞ is a diffusion parameter, cðEÞ a geometric

parameter of the probe, U ¼ Up � Upl is the difference

between the applied potential at the probe and the plasma

potential, S is the surface of the probe, and m is the mass of

electron. The classical regime is obtained by assuming a

diffusionless limit (wðEÞ 	 1), and with c ¼ 4=3 for spher-

ical probes. This formula computes the flux of electrons

which have higher relative energy than the potential eU
because electrons of lower energy cannot contribute to the

current due to the Coulomb barrier generated by other elec-

trons at the probe interface. With the change of coordinate

E ¼ mv2=2 and u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eU=m

p
, the electron current

becomes

Ie Uð Þ ¼ � 2peS

m

ð1
u

mv2

2
� eU

� �
vf vð Þdv: (36)

If we assume a background MDF f0 given by Eq. (12), the

electron current becomes

Ie;0 Uð Þ ¼ �D
2peS

m

m

2
J3

1

2T
;
v

T
; u

� �
� eUJ1

1

2T
;
v

T
; u

� �� �
;

(37)

with the definition of the function

Jkða; b; cÞ ¼
ð1

c

vk exp ð�av2 þ bvÞdv; (38)

detailed in Appendix D. Then, from the KDF given by Eq.

(1) the electron current becomes

Ie;j Uð Þ ¼ �Dj
2peS

m

m

2
K3 j; T; uð Þ � eUK1 j; T; uð Þ

� �
;

(39)

from the sum of two MDFs given by Eq. (6) the electron cur-

rent becomes

Ie;2M Uð Þ ¼ � 2peS

m

m

2
DJ3

1

2T
;
v

T
; u

� �
� eUDJ1

1

2T
;
v

T
; u

� ��

þm

2
Df J3

1

2Tf
;
vf

Tf
; u

� �
� eUDf J1

1

2Tf
;
vf

Tf
; u

� ��
;

(40)

and from the INMDF fI given by Eq. (11) the electron current

becomes

Ie;I Uð Þ ¼ � 2peS

m

m

2
DJ3

1

2T
;
v

T
; u

� �
� eUDJ1

1

2T
;
v

T
; u

� ��

þm

2
DIJ4

1

2W
;

c

W
; u

� �
� m

2
cDIJ3

1

2W
;

c

W
; u

� �

�eUDIJ2

1

2W
;

c

W
; u

� �
þ eUcDIJ1

1

2W
;

c

W
; u

� ��
:

(41)

As shown in Fig. 7, different NMDFs (see Fig. 7(a)) with the

same Maxwellian background (black curve) can significantly

modify (see Fig. 7(b)) the electric current measured by a

Langmuir probe. This figure is obtained for parameters

(a) (b)

FIG. 7. Logarithms of distribution functions (a) and effects of the tails on the Langmuir probe current (b) from Eq. (37) for a Maxwellian and Eq. (41) for dif-

ferent INMDFs.
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relevant to the SOL plasmas close to the divertor plates (i.e.,

T ¼ 15 eV; n ¼ 1020 m�3). However, we remark that the

amplitudes are not consistent with the experimental measure-

ments by the Langmuir probes since the formula given by

Eq. (35) (see Refs. 36, 40, 44, and 46) is not dimensionally

correct. Usually, results are given in arbitrary units in the lit-

erature53 in order to avoid this dimensional inconsistency.

This dimensional issue can be investigated later since it is

not the focus here.

Moreover, Eq. (36) (directly linked to the Druyvesteyn

formula36,40,45,46) is the diffusionless limit of Eq. (35). In

comparison to other studies,53 the INMDF used in the diffu-

sionless limit Eq. (36) can reproduce similar curves than the

use of a MDF in the diffusional equation (35). This observa-

tion is not surprising because the particles diffusion

describes an enhancement of the displacement of particles as

well as the population of super-thermal particles. This is a

very important observation because instead of using ad-hoc

diffusion parameter in order to reproduce experimental

observations, the existence of NMDFs could replace those.

Finally, all common interpretations of the plasma

parameters are modified by the NMDF. For example, the

floating potential Uf is defined by IeðUf Þ ¼ IiðUf Þ where

IiðUÞ is the current of the Langmuir probe generated by ions

and commonly assumed to be constant due to ion mass and

temperature involved. From the result given by Eq. (41) and

its version for the ion current, it is possible to better evaluate

the floating potential from the distribution function. Of

course, all other quantities such as the plasma potential Upl,

the electron temperature Te, and the radial electric field Er

are interpreted differently due to NMDFs. Additional investi-

gations will be reported later.

C. Entropy decrease

In the thermodynamics theory, the entropy is interpreted

as the degree of disorder of a system. A generalization of the

entropy is required for the description of nonthermodynamics

equilibrium. By sharing similar perspectives than Refs. 16

and 50, corrections of the entropy can be analytically com-

puted from a NMDF. In an isolated plasma, the entropy can

only increase due to collisions in order to reach its maximum

value when the distribution function is Maxwellian. The defi-

nition of the statistical entropy developed by Boltzmann is

s ¼ �kB

ð1
�1

f

n
log

f

n

� �
dv; (42)

where f is the distribution function of the particles of density

n ¼
Ð

fdv and kB is the Boltzmann constant. The maximal

value of the entropy is obtained with a MDF f0 (see

Appendix F)

s0 ¼ �kB

ð1
�1

f0

n
log

f0

n

� �
dv; (43)

¼ kB

2
1þ log 2pTð Þ
	 


; (44)

such that @ts0 ¼ �kB@t

Ð
f0=n log ðf0=nÞdv ¼ kB=ð2TÞ@tT

¼ 0 for isolated equilibrium plasmas. For other distribution

functions than the MDF, the entropy can only be smaller to

this value and increase (@ts � 0). However, in order to make

a link with observed NMDFs for non-isolated plasmas, it

makes sense to interpret the entropy by a level of sharing

energy or information. The maximal entropy obtained with a

MDF of an isolated plasma is reached when the interaction

between all particles of the plasmas have shared the total

energy of the system after a thermalization characteristic

time tth. This level of sharing can decrease when an external

source or sink of energy of a non-isolated plasma appears

locally in the velocity phase space at a finite collisionality.

The presence of a steady-state super-thermal population of

particles due to external sources introduces corrections of the

entropy because at finite collisionality some particles can be

sensitive to the external source of energy in time range

t < tth, shorter than the one associated to the sharing of

energy. The analytic computation of the corrections becomes

possible using the INMDF written in the form fI ¼ f0 þ df
¼ f0ð1þ df=f0Þ with the MDF f0 and the corrections df pre-

viously defined (respectively, by Eqs. (12) and (13)). The

modified entropy due to the presence of a super-thermal pop-

ulation reads

sI ¼ �kB

ð1
�1

fI
nI

log
fI
nI

� �
dv; (45)

where nI ¼
Ð

fIdv ¼ n. Using the Taylor expansion of the

logarithm of ð1þ xÞ around 0 (i.e., logð1þ xÞ ¼ �
P1

k¼1

ð�1Þkxk=k) if we assume relatively small deviations from the

Maxwellian (i.e., jdf j 	 f0), then, following the details of

Appendix F, the entropy becomes sI ¼ s0 þ ds with

ds ¼ �kB
1

n

ð1
�1

df log
f0

n

� �
dv

þ kB
D
n

X1
k¼1

�1ð Þk

k k þ 1ð Þ
DI

D

� �kþ1Xkþ1

m¼0

�cð Þkþ1�m

�
k þ 1

m

 !
Jm

k þ 1

2W
� k

2T
;

k þ 1ð Þc
W

� kv

T

� �
: (46)

At the first order in the expansion of jdf j 	 f0 (i.e., the sum

is of higher order, see Appendix F) and with the use of the

following relations:

J1ðA;BÞ � cJ0ðA;BÞ ¼ 0; (47)

J2ðA;BÞ � cJ1ðA;BÞ ¼ WJ0ðA;BÞ; (48)

J3ðA;BÞ � cJ2ðA;BÞ ¼ cðW � c2ÞJ0ðA;BÞ; (49)

DIJ0 A;Bð Þ ¼ C
W
; (50)

when A ¼ 1=ð2WÞ; B ¼ c=W and with the functions Jkða; bÞ
given in Appendix B, the correction of the entropy is

ds � �kB

ð1
�1

df

n
log

f0

n

� �
dv; (51)

�� kB
C
nT

v� c

2
þ c3

2W

� �
: (52)
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In comparison to Refs. 51 and 52 where the entropy can

decrease in the presence of frictions, here we assume an

INMDF steady-state without friction. We found that the first

order correction of the entropy can either be positive or

negative as function of the hidden variables describing the

INMDF. We remark that our INMDF is not related to an iso-

lated system, so the inclusion of the collision and the source

of energy (e.g., radio-frequency waves, neutral beam, run-

away electron) would recover known thermodynamic results

of isolated systems (e.g., similar to Ref. 52). This means that

when an external source or sink of energy is turned on, the

corrected entropy of the plasma (ds) computed from an

INMDF can increase or decrease with respect to the entropy

s0 obtained from a MDF. Both cases are possible without

violating the second law of the thermodynamics since here

the plasma is non-isolated and the total entropy increase due

to the external source is not taken into account. In fact,

instead of describing a complete theory of the source and the

plasma, we rather focus on the statistical description of the

plasma in the presence of sources. Then, for a non-isolated

system, the maximum value of the entropy is a higher value

than s0 as a function of the plasma parameters. Moreover,

since both variations of sI are possible, the intermediate case

ds ¼ 0 is the solution where the super-thermal particles do

not globally modify the entropy of the Maxwellian at the first

order. There are 2 solutions of ds ¼ 0. The first, for finite

values of the density and temperature when C¼ 0, recovers

the MDF. The second solution is obtained for c 6¼ 0 and

c 6¼ v when

W ¼ c2

1� 2
v

c

: (53)

The physical interpretation of this specific value of the width

of the heat spread still needs to be understood and is still

under investigation. However, with this specific INMDF pro-

file, the statistical entropy of the plasma, i.e., without includ-

ing the entropy increase due to the external sources, is

locally constant. This means that the increase of the energy

(which increases the entropy) is compensated exactly with

the departure of the INMDF with respect to the MDF (which

decreases the entropy). The time derivative of the entropy is

found by using the Boltzmann equation and omitting the col-

lision operator. It reads @tsð0Þ ¼ �rsð1Þ where sðkÞ ¼ �kBÐ
ðf=nÞ logðf=nÞvkdv. For the INMDF, @tsI;ð0Þ ¼ �rsI;ð1Þ

with sI;ð0Þ ¼ sI, and sI;ð1Þ ¼ s0;ð1Þ þ dsð1Þ. Using the same

expansion of the logarithm, we found that the time evolution

of the entropy is modified at the first order by the spatial

derivatives of

s0; 1ð Þ ¼ kB
v

2
log 2pTð Þ � v2

T

� �
; (54)

ds 1ð Þ � kB
C
2n

log 2pTð Þþv2

T
�2vc

T
1�c2

W

� �
þ3 Wþc2ð Þ

T
�2

� �
:

(55)

These relations can be used in order to compute the localized

statistical entropy evolution of the plasma as a fluid quantity.

As a numerical error criterion, for a MDF and without sour-

ces, we have to verify that @ts0;ð0Þ ¼ �rs0;ð1Þ ¼ 0 where

s0;ð0Þ ¼ s0.

The increase or decrease of the entropy in time is given

here as function of the spatial gradients of the hidden varia-

bles. A very important interpretation of this result is as

follows.

In many experiments (even for other areas than plas-

mas), non-Maxwellian steady-state distribution functions are

observed. This means that in order for us to approximate this

steady-state with the proposed INMDF or by creating new

analytic NMDFs with as few hidden variables as possible,

we have to verify that the local entropy of a non-isolated

plasma (including sources) is constant in time because the

entropy increase due to the sources is compensated by the

entropy reduction of the NMDF steady-state with respect to

the maximum entropy of a heated MDF. Then, there cannot

be evolving local entropy at NMDF steady-state. From our

result of @tsI;ð0Þ ¼ �rsI;ð1Þ written as function of the 6 hid-

den variables, there is an infinite number of solutions which

locally conserve the entropy @tsI;ð0Þ ¼ 0 at least at the first

order in the expansion of small non-Maxwellian deviations.

For example, we obtain one class of these solutions by trivi-

ally extracting the density n as function of the other fluid hid-

den variables ðv; T;C; c;WÞ since the equation sI;ð1Þ ¼ s0;ð1Þ
þ dsð1Þ ¼ 0 contains only one occurrence of n. We can write

this equation as Aþ B=n ¼ 0 with A ¼ s0;ð1Þ and B ¼ ndsð1Þ
which are both functions of ðv; T;C; c;WÞ. This class of

solutions of locally constant entropy is obtained when

n ¼ �B=A, if A 6¼ 0 (i.e., if v 6¼ 0 and v2 6¼ T logð2pTÞ). We

have an infinite number of solutions because we have 6

parameters to resolve the equation @tsI;ð0Þ ¼ �rsI;ð1Þ ¼ 0.

Another class of solution can be found by canceling the

derivative of sI;ð1Þ. However, even if a decrease of the local

entropy can be found in this case, it is an artifact decrease

because we intentionally omit the entropy of the external

sources which generate the tail (i.e., via the collision opera-

tor). This means that by including the collision operator for

the self-collisions and the collisions with the sources, the

entropy have to be able to increase only following the second

law of thermodynamics of isolated systems.

As a summary, this result highly suggests the existence

of an infinite number of analytic solutions of the Boltzmann

equation for non-isolated systems. All these solutions can be

obtained as a function of the collision frequencies between

the plasma and the sources.

The result of the allowed decreasing entropy demystifies

the Maxwell’s demon since the statistical description of the

plasma is still possible even for a non-isolated system. There

is no violation of the second law of the thermodynamics which

postulates only increasing entropy until the Maxwellian equi-

librium of an isolated system. This work could enhance a large

range of present technologies since the isolation of a system is

very rare. This new approach offers many perspectives since

instead of developing more accurate “interaction” theories to

include very complex external phenomena in a much larger

isolated system, we are statistically describing non-isolated

systems without dealing with the exact description of the

external “interaction” theories. Ongoing investigations directly
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motivated by this result could be on (i) the expansion of the

thermodynamics theory for non-isolated systems, (ii) the

inclusion of higher orders in ðdf=f0Þk, (iii) the inclusion of the

collision operator in the time evolution of the entropy as a

function of the hidden variables, or (iv) the numerical observa-

tion of NMDF steady states in the presence of sources by

evolving in time the dynamic equation of the local entropy.

A very large number of other theories usually assume a

MDF and can be modified following the three examples

shown above. The first goal could be to describe self-

consistently the dynamics of dusts, neutrals, and impurities

from the corrections of measured quantities in presence of

non-Maxwellian plasma background. The second goal could

be to develop new diagnostics and interpretations of data to

systematically measure in experiments non-Maxwellian dis-

tribution functions.

IV. CONCLUSION

We describe in Sec. II the KDF and the sum of MDFs

which are successfully used by researchers for numerical

post-analyses. The KDF observed in astrophysics is one

example of NMDF, even if to date there is no physical inter-

pretation of the parameter j. Another choice of NMDF com-

monly used is the bi-modal distribution function (the sum of

two MDFs) but this choice can be consistent only at a very

specific collisionality regime (the self-collisionality of the

bulk and the fast population are both much larger than the

collisionality of the interaction between them). Moreover, a

new function called the INMDF is introduced here in order

to offer more choices (consistent with a finite collisionality)

for the representation of NMDFs. Readers can create as new

analytic distribution functions as needed to represent the

phenomenon under investigation in such a way that the

velocity phase space integrals are analytically manageable as

the function of few hidden variables. In comparison to the

bi-modal distribution function, the INMDF is a possible

solution for other collisionality regimes since it describes a

displacement of a population of particles from one energy to

another. As a summary of this work, INMDFs are new pro-

posed functions that seem much more efficient in describing

non-thermalized plasmas than any existing formula, thanks

to the low number of required parameters (i.e., hidden varia-

bles). Moreover, INMDFs help to understand unsolved prob-

lems such as the ones at the origin of non-Maxwellian bulks

observed in JET and TFTR, thanks to the physical interpreta-

tion of the hidden variables. With the distribution functions

described in Sec. II, it is shown in Sec. III that analytic pre-

dictions of kinetic corrections are possible and examples on

the SEE, the Langmuir probe characteristic curve, and the

entropy are shown. Because these examples are not directly

related to a specific plasma, this proves the universal prop-

erty of the INMDFs and the physical interest to consider

non-orthogonal basis sets. More applications will be found

later. Moreover, other details of NMDFs will be published

elsewhere such as the fluid reduction (see Ref. 23), which

opens the access to the next generation of fluid codes by

including non-collisional and collisional kinetic effects (see

Ref. 22), or the description of the transport. Indeed, some

results suggest that fluid models can be similar to kinetic

codes such as the observation of asymmetric heat flux inside

an island by using a fluid model with some finite Larmor

radius terms,65 using profiles of transport coefficients24–26 to

reduce the radiation shortfall or using nonlocal fluid clo-

sures.66,67 A clarification of these examples will be detailed

later.

For the physical interpretation of the kinetic effects

shown in Secs. II E and III, we found four groundbreaking

results

(i) The physical reality of the INMDFs introduced here

is proved by the over plot fitting of the numerical

NMDF model obtained in Ref. 49 for the explana-

tion of the TS-ECE discrepancy of the electron tem-

perature interpretation in JET. We found that some

particles at low energy are heated and others at

higher energy are cooled down. This interpretation

would help to understand the physical origin of

the NMDF observed in JET and resolve discrepan-

cies between diagnostics due to the presence of

NMDFs.

(ii) The presence of super-thermal particles in the

Langmuir probe characteristic curve induces diffusion

effects which have been commonly observed by using

a diffusion term in the formula when a MDF was

assumed. This result highly suggests more investiga-

tions to replace the usual ad-hoc dissipative coeffi-

cients and the diffusion terms by NMDFs.

(iii) The use of the analytic computation of the SEE in the

presence of NMDFs allows us the unexpected obser-

vation that the empirical formula of the SEE pub-

lished in Ref. 32 is not consistent with a MDF but is

consistent with a presence of �3% of super-thermal

particles. Moreover, because the sum of 2 MDFs does

not reproduce much better the empirical formula (in

contrary to the INMDF), it suggests that the collision-

ality in Ref. 32 was not negligible or infinite, but

finite as explained above.

(iv) Finally, the physical motivation of the INMDF given

by Eq. (11) is shown by the explicit decrease of the

entropy for a non-isolated system without violating

the second law of thermodynamics. This is the first

simple analytic function which can be consistent with

NMDFs at finite collisionality in the presence of

external source of energy. With this work, the entropy

is not viewed as a degree of disorder but is interpreted

as a level of sharing information (or energy) between

particles of the plasma obtained.

From these results thanks to our new INMDFs, many

perspectives are possible such as the description of ion orbit

losses68,69 and the fast ions,70,71 or the development of exper-

imental measurements of NMDFs using for example,

Thomson scattering48,49 or Langmuir probes. In summary,

because different measurements can be more or less sensitive

to the presence of super-thermal particles, better interpreta-

tions of experimental data are possible and more accurate

measurement techniques of the distribution function can be

developed.
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APPENDIX: ANALYTIC DEVELOPMENT

In these Appendixes, we detail analytic computations

obtained from Mathematica and Ref. 72. The reduction from

special functions such as the hypergeometric 1F1ða; b; zÞ or

the incomplete Cðx; zÞ functions to a small number of terms

is possible because of the evaluation of these functions at

specific values. All velocity phase space integrals of any

INMDF can be analytically computed following these

Appendixes.

APPENDIX A: INTEGRALS OF KAPPA DISTRIBUTIONS

From the definition of Kqðj; TÞ given by Eq. (4) we found

Kq j; Tð Þ ¼ 1þ �1ð Þq

2
W qþ1ð Þ=2

j

C
1þ q

2

� �
C

1� q

2
þ j

� �
C 1þ jð Þ :

(A1)

From the definition of Kqðj; T; aÞ given by Eq. (5), we found

Kq j; T; að Þ ¼ W jþ1ð Þ
j

1� qþ 2jð Þa 1�qþ2jð Þ

�2F1 jþ 1; j1; j2;�Wj

a2

� �
; (A2)

with a 6¼ 0; j1 ¼ j� ðq� 1Þ=2 and j2 ¼ j� ðq� 3Þ=2,

where 2F1 is the hypergeometric function and

Kq j; T; 0ð Þ ¼ W qþ1ð Þ=2
j

C
1þ q

2

� �
C

1� q

2
þ j

� �
2C 1þ jð Þ : (A3)

APPENDIX B: INTEGRALS OF MAXWELLIAN
DISTRIBUTIONS

From the definition of Jkða; bÞ given by Eq. (9) we

found

Jk a;bð Þ ¼ a�
k
2
þ1ð Þ

2
ð1� �1ð ÞkÞb C

k

2
þ 1

� ��

� 1F1

k

2
þ 1;

3

2
;
b2

4a

� �
þ ð �1ð Þk þ 1Þ

ffiffiffi
a
p

C
kþ 1

2

� �

� 1F1

kþ 1

2
;
1

2
;
b2

4a

� �#
; (B1)

with k 2N and the Kummer confluent hypergeometric func-

tion of the first kind 1F1

1F1 p; q; rð Þ ¼
X1
n¼0

pð Þn
qð Þn

rn

n!
; (B2)

where ðpÞ0 ¼ 1 and ðpÞn ¼
ðpþn�1Þ!
ðp�1Þ! . However, this definition

of the Kummer confluent hypergeometric function with the

sum of an infinite number of term turns out to have a finite

number of terms for the values (p, q) of interest (i.e., p 2
f3=2; 2; 5=2; 3; 7=2g and q 2 f1=2; 3=2g) as

1F1 1;
1

2
; z

� �
¼ 1þ Z; (B3)

1F1 1;
3

2
; z

� �
¼ 1

2z
Z; (B4)

1F1 2;
1

2
; z

� �
¼ 1þ zþ 3

2
þ z

� �
Z; (B5)

1F1 2;
3

2
; z

� �
¼ 1

2
þ 1

2
1þ 1

2z

� �
Z; (B6)

1F1 3;
1

2
; z

� �
¼ 1þ 9

4
zþ 1

2
z2

þ 1

2

15

4
þ 5zþ z2

� �
Z; (B7)

1F1 3;
3

2
; z

� �
¼ 5

8
þ 1

4
zþ 1

4

3

4z
þ 3þ z

� �
Z; (B8)

1F1

1

2
;
1

2
; z

� �
¼ exp zð Þ; (B9)

1F1

3

2
;
1

2
; z

� �
¼ 1þ 2zð Þexp zð Þ; (B10)

1F1

3

2
;
3

2
; z

� �
¼ exp zð Þ; (B11)

1F1

5

2
;
1

2
; z

� �
¼ 1þ 4zþ 4

3
z2

� �
exp zð Þ; (B12)

1F1

5

2
;
3

2
; z

� �
¼ 1þ 2

3
z

� �
exp zð Þ; (B13)

1F1

7

2
;
1

2
; z

� �
¼ 1þ 6zþ 4z2 þ 8

15
z3

� �
� exp zð Þ; (B14)

1F1

7

2
;
3

2
; z

� �
¼ 1þ 4

3
zþ 4

15
z2

� �
exp zð Þ; (B15)

where Z ¼
ffiffiffi
p
p ffiffi

z
p

expðzÞErfð
ffiffi
z
p
Þ. Then the first terms of

Jkða; bÞ are

J0ða; bÞ ¼ a�1=2C; (B16)

J1 a; bð Þ ¼ a�3=2

2
bC; (B17)

J2 a; bð Þ ¼ a�5=2

4
2aþ b2ð ÞC; (B18)

J3 a; bð Þ ¼ a�7=2

8
6aþ b2ð ÞbC; (B19)
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J4 a; bð Þ ¼ a�9=2

16
12a2 þ 12ab2 þ b4ð ÞC; (B20)

J5 a; bð Þ ¼ a�11=2

32
60a2 þ 20ab2 þ b4ð ÞbC; (B21)

J6 a;bð Þ¼ a�13=2

64
120a3þ180a2b2þ30ab4þb6ð ÞC; (B22)

and so forth and so on, with C ¼
ffiffiffi
p
p

exp b2

4a

� �
if a 2 Rþ?.

APPENDIX C: USEFUL RELATIONS FOR THE
SECONDARY ELECTRON EMISSION

From the definition of Jkða; b; 0Þ given by Eq. (32), we

found a generalization of the function Jkða; b; 0Þ

Jk a; b; 0ð Þ ¼ a� kþ2ð Þ aC k þ 1ð Þ 1F1 k þ 1;
1

2
;
b2

4a

� ��

þ b
ffiffiffi
a
p

C k þ 3

2

� �
1F1 k þ 3

2
;
3

2
;
b2

4a

� �#
; (C1)

with the Kummer confluent hypergeometric functions of the

first kind 1F1 given in Appendix B. Then the first terms of

Jkða; bÞ are

J0 a; b; 0ð Þ ¼ a�1=2

2
C; (C2)

J1 a; b; 0ð Þ ¼ a�3=2

4
bCþ 2

ffiffiffi
a
p	 


; (C3)

J2 a; b; 0ð Þ ¼ a�5=2

8
2aþ b2ð ÞCþ 2b

ffiffiffi
a
p	 


; (C4)

J3 a; b; 0ð Þ ¼ a�7=2

16
b 6aþ b2ð ÞCþ 2

ffiffiffi
a
p

4aþ b2ð Þ
	 


; (C5)

J4 a;b;0ð Þ¼ a�9=2

32
12a2þ12ab2þb4ð ÞCþ2b

ffiffiffi
a
p

10aþb2ð Þ
	 


;

(C6)

J5 a; b; 0ð Þ ¼ a�11=2

64
b 60a2 þ 20ab2 þ b4ð ÞC½

þ2
ffiffiffi
a
p

2aþ b2ð Þ 16aþ b2ð Þ�; (C7)

with C ¼
ffiffiffi
p
p

exp b2

4a

� �
1þ Erf b

2
ffiffi
a
p

� �� �
and ErfðzÞ is the error

function at z.

APPENDIX D: USEFUL RELATIONS FOR THE
LANGMUIR PROBE INTERPRETATION

From the definition of Jkða; b; cÞ given by Eq. (38) and

by using the change of variable x ¼ v� b=ð2aÞ we found

Jk a; b; cð Þ ¼ exp
b2

4a

� �ð1
C

xþ b

2a

� �k

exp �ax2ð Þdx;

¼ exp
b2

4a

� �Xk

n¼0

k

n

 !
b

2a

� �k�n C
nþ 1

2
; aC2

� �
2a nþ1ð Þ=2

;

(D1)

with C ¼ c� b=ð2aÞ, the help of Equation (3.381.9) on page

346 of Ref. 72, and where Cða; bÞ is the incomplete Euler

Gamma function detailed in Appendix E. The first terms of

Jkða; b; cÞ are

J0ða; b; cÞ ¼ G2; (D2)

J1 a; b; cð Þ ¼ 1

2a
E2 þ bG2½ �; (D3)

J2 a; b; cð Þ ¼ 1

2að Þ2
bþ 2acð ÞE2 þ b2 þ 2að ÞG2

	 

; (D4)

J3 a; b; cð Þ ¼ 1

2að Þ3
b2 þ 4aþ 2ac bþ 2acð Þ
� �

E2

þ 1

2að Þ3
b b2 þ 6að Þ G2

E2

; (D5)

J4 a; b; cð Þ ¼ E2

2að Þ4
bþ 2acð Þ b2 þ 4a2c2ð Þ þ 12a2cþ 10ab

� �

þ 1

2að Þ4
12a2 þ 12ab2 þ b4ð Þ G3

E2

; (D6)

with the following definitions:

E1 ¼ exp
b2

4a

� �
; (D7)

E2 ¼ exp ð�ac2 þ bcÞ; (D8)

G1 ¼ Erf
b� 2ac

2
ffiffiffi
a
p

� �
; (D9)

G2 ¼
1

2

ffiffiffi
p
a

r
E1 1þ G1ð Þ; (D10)

G3 ¼
1

2

ffiffiffi
p
a

r
E1 1þ b� 2acð ÞG1ð Þ: (D11)

APPENDIX E: USEFUL RELATIONS FOR THE
INCOMPLETE GAMMA FUNCTION

The used form of the incomplete Gamma function is

C nþ 1; xð Þ ¼ n! exp �xð Þ
Xn

k¼0

xk

k!
; (E1)

C nþ 1

2
; x

� �
¼ C nþ 1

2

� �
Erfc

ffiffiffi
x
p� �
þ �1ð Þn�1

exp �xð Þ
ffiffiffi
x
p

�
Xn�1

k¼0

1

2
� n

� �
n�1�kð Þ

�xð Þk; (E2)

with n2N?;Cð0Þ¼1;Cðk;0Þ¼CðkÞ;ðuÞk is the Pochhammer

symbol and the first terms of the incomplete Gamma function

read

Cð1; xÞ ¼ exp ð�xÞ; (E3)

Cð2; xÞ ¼ ð1þ xÞ exp ð�xÞ; (E4)

C
1

2
; x

� �
¼ X; (E5)
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C
3

2
; x

� �
¼ Cþ 1

2
X; (E6)

C
5

2
; x

� �
¼ xþ 3

2

� �
Cþ 3

4
X; (E7)

where C ¼
ffiffiffi
x
p

expð�xÞ; X ¼
ffiffiffi
p
p

Erfcð
ffiffiffi
x
p
Þ, and ErfcðxÞ

¼ 1� ErfðxÞ are the inverse error functions.

APPENDIX F: ENTROPY CORRECTIONS

From the entropy defined by Eq. (42), we found using

the previously defined function Jkða; bÞ and with the fact that

log
f0
n

� �
¼ log

D
n

� �
� 1

2T
v2 þ v

T
v; (F1)

that the entropy for a MDF is

s0 ¼ �kB

ð1
�1

D
n

exp � 1

2T
v2 þ v

T
v

� �

� log
D
n

� �
� 1

2T
v2 þ v

2T
v

� �
dv; (F2)

¼ �kB
D
n

log
D
n

� �
J0

1

2T
;
v

T

� �"

� 1

2T
J2

1

2T
;
v

T

� �
þ v

T
J1

1

2T
;
v

T

� ��
; (F3)

s0 ¼ �kB
D
n

log
D
n

� � ffiffiffiffiffiffiffiffi
2pT
p

exp
v2

2T

� �"

� 1

2T

ffiffiffiffiffiffiffiffi
2pT
p

exp
v2

2T

� �
T þ v2ð Þ

þ v

T

ffiffiffiffiffiffiffiffi
2pT
p

exp
v2

2T

� �
v

#
; (F4)

s0 ¼ �kB log
D
n

� �
� 1

2
þ v2

2T

� �
þ v2

T

" #
; (F5)

s0 ¼
kB

2
1þ log 2pTð Þ
	 


; (F6)

Then,

sI ¼ �kB

ð1
�1

f0

n
þ df

n

� �
log

f0

n

� �
þ log 1þ df

f0

� � !
dv;

¼ s0 � kB

ð1
�1

df

n
log

f0

n

� �
dv

þ kB

X1
k¼1

�1ð Þk

k

ð1
�1

f0

n
þ df

n

� �
df

f0

� �k

dv; (F7)

sI ¼ s0 � kB

ð1
�1

df

n
log

f0

n

� �
dv

þ kB

n

X1
k¼1

�1ð Þk

k

ð1
�1

dfð Þk

f0ð Þk�1
þ dfð Þkþ1

f0ð Þk
dv: (F8)

The first order (k¼ 1) of the last integral is proportional toÐ1
�1 dfdv ¼ 0. This last sum can be written with the fact that

f0ð Þk ¼ Dk exp � k

2T
v2 þ k

v

T
v

� �
; (F9)

dfð Þk ¼ Dk
I v� cð Þk exp � k

2W
v2 þ k

c

W
v

� �
; (F10)

and by using the previously defined function Jkða; bÞ, as

X1
k¼1

�1ð Þk

k k þ 1ð ÞD
DI

D

� �kþ1Xkþ1

m¼0

k þ 1

m

 !
�cð Þkþ1�m

� Jm
k þ 1

2W
� k

2T
;

k þ 1ð Þc
W

� kv

T

� �
: (F11)

Then sI ¼ s0 þ ds with

ds ¼ �kB
1

n

ð1
�1

df log
f0
n

� �
dv

þkB
D
n

X1
k¼1

�1ð Þk

k k þ 1ð Þ
DI

D

� �kþ1Xkþ1

m¼0

�cð Þkþ1�m

�
k þ 1

m

 !
Jm

k þ 1

2W
� k

2T
;

k þ 1ð Þc
W

� kv

T

� �
: (F12)
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