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Results of 3D nonlinear simulations of neutral-beam-driven compressional Alfv!en eigenmodes
(CAEs) in the National Spherical Torus Experiment (NSTX) are presented. Hybrid MHD-particle
simulations for the H-mode NSTX discharge (shot 141398) using the HYM code show unstable
CAE modes for a range of toroidal mode numbers, n ¼ 4" 9, and frequencies below the ion cyclo-
tron frequency. It is found that the essential feature of CAEs is their coupling to kinetic Alfv!en
wave (KAW) that occurs on the high-field side at the Alfv!en resonance location. High-frequency
Alfv!en eigenmodes are frequently observed in beam-heated NSTX plasmas, and have been linked
to flattening of the electron temperature profiles at high beam power. Coupling between CAE and
KAW suggests an energy channeling mechanism to explain these observations, in which beam-
driven CAEs dissipate their energy at the resonance location, therefore significantly modifying the
energy deposition profile. Nonlinear simulations demonstrate that CAEs can channel the energy of
the beam ions from the injection region near the magnetic axis to the location of the resonant mode
conversion at the edge of the beam density profile. A set of nonlinear simulations show that the
CAE instability saturates due to nonlinear particle trapping, and a large fraction of beam energy
can be transferred to several unstable CAEs of relatively large amplitudes and absorbed at the reso-
nant location. Absorption rate shows a strong scaling with the beam power. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4979278]

I. INTRODUCTION

Flattening of electron temperature profiles and anoma-
lously low central temperature at high beam power in the
National Spherical Torus Experiment (NSTX) have been
linked with strong activity of Alfv!en modes in the sub-
cyclotron frequency range.1 The reduced heating of the
plasma core in NSTX can significantly limit plasma perfor-
mance, and potentially can have important implications for
future fusion devices, especially low aspect ratio tokamaks.
Modes in the sub-cyclotron frequency range are frequently
observed during neutral beam injection (NBI) in NSTX, and
they were identified as compressional Alfv!en eigenmodes
(CAEs) and global Alfv!en eigenmodes (GAEs), driven
unstable through the resonance with the super Alfv!enic NBI
ions.2–4 The GAE in toroidal geometry is characterized by
shear Alfv!en wave polarization and frequency below the
minimum of the Alfv!en continuum,5–8 and the CAE is a fast
magnetosonic eigenmode.9–11

Previous theoretical studies attributed flattening of the
electron temperature profile to an enhanced electron transport
due to sub-cyclotron frequency Alfv!en modes. Several mech-
anisms have been suggested, including interaction of Alfv!en
eigenmodes with bulk electrons via parallel electric field, as
well as stochasticity of the electron orbits in the presence of
multiple unstable and overlapping GAE modes of sufficiently
large amplitudes.12 However, other estimates13 suggest that

AE-induced transport should have a minor effect, but the
energy channeling from core-localized GAEs to continuum
damping closer to the edge can be responsible for the
observed flattening of the electron temperature profiles. This
paper presents results of nonlinear self-consistent simulations
of neutral-beam-driven CAEs, which support an alternative,
the energy channeling mechanism originally proposed in Ref.
14. Three-dimensional hybrid MHD-particle simulations
show that an essential feature of CAEs is their coupling to
kinetic Alfv!en waves (KAW) that occurs on the high-field
side (HFS) at the Alfv!en resonance location. The beam-driven
CAE can mode-convert to KAW, channelling energy from the
beam ions at the injection region near the magnetic axis to the
location of the resonant mode conversion at the edge of the
beam density profile. This mechanism can explain the reduced
heating of the plasma core in NSTX. It is also shown that
strong CAE/KAW coupling follows from the dispersion rela-
tion, and will occur for unstable CAEs in other toroidal devi-
ces. This paper extends the previous work,14 and presents the
results of a set of nonlinear simulations, which quantify reso-
nant power absorption. The CAE instability drive and mode
structure are investigated in detail, and results of beam ion
parameter scan are presented.

Fast wave conversion and absorption at the Alfv!en reso-
nance have been known previously, and studied in applications
to space plasma physics,15–18 as well as tokamak plasmas.19–22

It was found that the compressional wave can mode convert
into KAW with amplitude enhanced compared with the driving
compressional wave at the Earth’s magnetopause.16 Hybrida)ebelova@pppl.gov
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simulations in a 2D box geometry investigated mode conver-
sion of an incident fast mode to KAWs,17 and beam-ion-driven
compressional wave mode conversion to KAWs18 in nonuni-
form plasmas.

Fast wave conversion has also been investigated exten-
sively in relation to ion cyclotron resonance heating
(ICRH)21,22 and Alfv!en wave heating.15 Analytical and
numerical studies of the fast wave heating in tokamak plas-
mas found that mode conversion can be an important para-
sitic damping mechanism.21,22 It was shown that a
conversion of an antenna-driven fast wave to shear Alfv!en
wave can take place on HFS near the plasma boundary in a
small aspect ratio tokamak. One-dimensional calculation
indicates that a relatively large fraction of the power
(20%–40%) can be mode converted, resulting in a parasitic
damping near the edge.21 The change in the Poynting flux
across the resonance has been shown to scale with plasma
density, and mode parameters, and stronger absorption has
been predicted at the resonances situated further inside
plasma,21 where the density is higher, and the scale lengths
are larger. Comparison of full-wave equations with a 2-
fluid model has demonstrated the importance of the parallel
electron dynamics.22 Importance of finite-frequency effects
(x=xci) on resonant absorption was also considered in Refs.
19 and 20.

The problem of CAE to KAW conversion considered
here is different to some degree from the previous studies,
because the CAE is a beam-driven eigenmode, which can be
described as a standing wave in the poloidal plane, rather than
an incoming wave driven by an antenna. Three-dimensional
self-consistent simulations show multiple unstable CAEs for a
range of toroidal mode numbers, coupled with KAW on the
high field side. Linearized simulations show that the coupling
to KAW is the main damping mechanism for CAEs. The
numerical model in the HYM code allows a full kinetic
description of the beam ions, including the cyclotron resonan-
ces, but a one fluid MHD description is used to model the
thermal plasma; therefore, the radial width of KAW is deter-
mined by the beam ion Larmor radius. The numerical model
and results of linearized simulations for different toroidal
mode numbers are described in Sections II–IV. Both experi-
mental observations and numerical simulations presented here
demonstrate that for this particular H-mode NSTX discharge
a large number of GAEs and CAEs were excited by the beam
ions. The calculated range of the unstable toroidal mode num-
bers, frequencies, and mode polarizations are compared with
experimental observations23,24 in Section III. Section IV
focuses on the linear properties of CAE/KAW, and resonant
beam ion drive. Results of fully nonlinear simulations are
described in Sections V and VI, where possible effects of
CAE/KAW coupling on the electron temperature profiles in
the NSTX are discussed.

II. MODEL/CODE DESCRIPTION

The hybrid code HYM25–27 has been used to investigate
properties of beam ion driven sub-cyclotron frequency
Alfv!en modes in NSTX. The HYM code is a 3D nonlinear,
global stability code in toroidal geometry, which treats the

beam ions using full-orbit, delta-f particle simulations, while
the one-fluid resistive MHD model is used to represent the
background plasma. The two plasma components are cou-
pled using a current coupling scheme. In this scheme, the
momentum equation for the thermal plasma is:

qdV=dt ¼ "rpþ ðJ" JbÞ & B=c" qnbðE" gdJÞ þ !DV

(1)

where q, V, and p are the thermal plasma density, velocity,
and pressure, respectively; nb and Jb are the beam ion density
and the beam ion induced current, respectively; J ¼ c=4pr
&B is the total plasma current; dJ ¼ c=4pr& dB and dB
are perturbed current density and perturbed magnetic field,
respectively; and ! is a viscosity coefficient. Equation (1)
can be obtained by adding momentum equations for the ther-
mal ions with density ni and thermal electrons, neglecting
the electron inertia, and using a quasineutrality condition:
ne ¼ nb þ ni.

The rest of the fluid equations are:

E ¼ "V& B=cþ gdJ;

@B

@t
¼ "cr& E;

J ¼ c=4pr& B;

@q
@t
¼ "r ' Vqð Þ

@p

@t
þ V 'rpþ cpr ' V ¼ c" 1ð Þ gJ ' dJþ ! r& Vð Þ2

h

þ! r ' Vð Þ2
i
:

(2)

Here E is the perturbed electric field, B is the total magnetic
field, the pressure equation includes Ohmic and viscous heat-
ing, and c¼ 5/3. It is assumed that the fast ion pressure can
be comparable to that of the thermal plasma, but the beam
ions have a low density nb ( ne. In this case, the MHD
Ohm’s law (2) applies.

Energy conservation for this system can be written as:

dEtot

dt
¼
þ

c
B& E

4p
" q

V2

2
V" c

c" 1
pV"

ð
mi

v2

2
vF d3v

" #

ds;

where the total energy is the sum of the fluid energy (mag-
netic field and thermal plasma) and the beam ion energy:

Etot ¼
ð

B2

8p
þ p

c" 1
þ q

V2

2

 !

d3xþ
ð

mi
v2

2
F d3vd3x;

and F is the beam ion distribution function.
The beam ions are described as kinetic particles using

PIC simulation method and full-orbit equations of motion.
The delta-f method28 is used to reduce numerical noise in the
simulations. In this method, the equilibrium distribution
function of NBI ions needs to be known analytically, and the
equation for the perturbed distribution function dF ¼ F" F0

is integrated along the particle trajectories:
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dx

dt
¼ v

dv

dt
¼ qi

mi
E" gdJþ v& Bð Þ

dw

dt
¼ " 1" wð Þ d ln F0ð Þ

dt

(3)

where w ¼ dF=F and F0 is the equilibrium distribution func-
tion, taken to be a function of the particle integrals of motion
F0 ¼ F0ðe; k; p/Þ, where e is the particle energy, k ¼ lB0=e
is the pitch-angle variable, p/ ¼ "wþ Rv/ is the normalized
toroidal angular momentum, and l is an adiabatic invariant
l ¼ l0 þ l1,26 including first-order and some of the second-
order corrections in qi=L, where L is the equilibrium mag-
netic field scale length.

For the simulations presented in this paper, the equilib-
rium distribution function is taken to be of the form:26

F0 ¼ F1ðvÞF2ðkÞF3ðp/Þ, where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2e=mi

p
is the particle

velocity, and functions F1;2;3 are defined by

F1ðvÞ ¼ 1=ðv3 þ v3
)Þ; for v < v0;

F2ðkÞ ¼ C expð"ðk" k0Þ2=Dk2Þ;

F3ðp/Þ ¼ ðp/ " pminÞ=ðpmax " pminÞ
$ %a

; for p/ > pmin;

where F0 ! 0 for v > v0 or p/ < pmin; v0 is the injection
velocity, and we assumed v) ¼ v0=2. The parameters for the
pitch-angle distribution are Dk ¼ 0:3 and k0 ¼ 0:7. The func-
tion F3ðp/Þ is used to match the TRANSP profiles of the beam
ion density, where a¼ 6 is a numerical parameter, and the con-
dition p/ > pmin describes a prompt-loss boundary, where
pmin ¼ "0:1w0 and pmax ¼ R0v" w0 was assumed, R0 is
magnetic axis radius, and w0 is value of poloidal flux on axis.
A generalized form of the Grad–Shafranov equation solver has
been developed, which includes, non-perturbatively, the effects
of the beam ions with anisotropic distribution.26 The beam ion
beta in the NSTX can be relatively large, and the beam ion cur-
rent density can be comparable to that of the thermal plasma.
As a result, significant modifications of equilibrium occur due
to self-consistent inclusion of the beam ions: more peaked cur-
rent profile, anisotropic total pressure shifted relative to the
flux surfaces, and increase in Shafranov shift—which all can
have an indirect effect on stability properties.

III. SIMULATIONS OF SUB-CYCLOTRON FREQUENCY
MODES FOR NSTX SHOT 141398

The excitation of CAEs has been studied for the H-mode
plasma of NSTX shot 141398, and equilibrium profiles and
plasma parameters have been chosen to match magnetic field
and plasma profiles for this shot using the TRANSP code.29

In the experiment, the plasma was heated by 6 MW of 90 keV
Deuterium beams with nb¼ 3:5 '1018m"3; ne¼ 6:7 '1019m"3;
Bt¼ 0:325 T, and Ip¼ 0:8 MA. For this particular shot, nor-
malized beam ion injection velocity was high, v0¼ 4:9VA, due
to a relatively low toroidal field, and as a consequence, signifi-
cant GAE/CAE activity has been observed. Detailed measure-
ments of GAE and CAE amplitudes and mode structures were
obtained,23,24 and the observed modes have been identified as

counter-propagating CAE for frequencies f>600 kHz, and
small toroidal mode numbers jnj< 6, and as counter-
propagating GAEs for f<600kHz, and jnj * 6–8 based on
dispersion relations.23,24 Co-propagating CAEs with higher
toroidal mode numbers n>8 have also been observed in the
same shot.30 Frequencies of the experimentally observed
CAEs and GAEs24,30 versus toroidal mode number are shown
in Fig. 1 (open symbols), including a Doppler shift due to
plasma rotation measured to be about 0:01xci near the mag-
netic axis. Figure 1 also summarizes the HYM simulation
results. Numerical simulations show that most unstable modes
for n¼4 and n¼8, 9 are co-rotating CAEs, which have been
identified based on the calculated large compressional compo-
nent of perturbed magnetic field in the core (Fig. 2(a)). The
most unstable modes for n¼ 5–7 are counter-rotating GAEs,
which have shear Alfv!en wave polarization in the core with
small dBjj (Fig. 2(b)). All unstable modes in simulations have
small main poloidal mode numbers with m+ 3. Calculated
frequencies for n¼ 5–7 GAE are x=xci¼ 0:15–0:22
(f ¼ 380–550 kHz), and higher frequencies for CAEs have
been obtained with x=xci¼ 0:35–0:5 (f ¼ 870–1200 kHz).
Here all frequencies are given in plasma frame (no plasma
rotation included in the numerical model), and normalized to
the ion cyclotron frequency at the axis fci¼2.5MHz.

The most unstable modes and, in some cases, second
most unstable modes from the simulations are shown in Fig. 1
by solid symbols. The HYM code is an initial-value code;
therefore, usually only the most unstable modes can be
obtained in the linearized simulations for a given toroidal
mode number. In some cases, a second most unstable mode
can be found, if the two modes have comparable growth rates
and different polarization (see Fig. 1 for n¼ 4, 5, and 8). Both
experimental observations and numerical simulations demon-
strate that for this particular shot a large number of GAEs and
CAEs were excited by the beam ions. The calculated range of
the unstable toroidal mode numbers, frequencies, and mode
polarizations appears to be reasonably close to experimental
observations.23,24 Preliminary comparison of the radial struc-
ture of the GAEs shows a good agreement in the amplitude
profiles, but differences in the phase profile plots.31 One sig-
nificant difference is that the unstable n¼ 4 CAE in simula-
tions is co-rotating, whereas most experimentally observed

FIG. 1. Frequency versus toroidal mode number for unstable GAEs (red)
and CAEs (blue), from HYM simulations and experimental data;24,30

fci¼ 2.5 MHz.
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low-n CAEs are counter-rotating.24 The reasons for these dis-
crepancies are not understood, and will require further investi-
gations. These could be related to the simplified form of the
beam ion distribution functions used in the simulations or
missing two-fluid effects and the bulk plasma rotation. It
should be noted that some of the analytical calculations32 also
predict stronger instability of co-rotating CAEs, driven by the
regular resonance with the beam ions, compared with the
counter-rotating CAEs, driven by the Doppler-shifted cyclo-
tron resonance. In addition, the simulations show that, at the
low-field-side (LFS) plasma edge, both GAEs and CAEs have
comparable amplitudes of compressional and perpendicular
dB, which may contribute to the difficulty of correctly identi-
fying these modes in the experiments based on the polariza-
tion data, especially for low n, when the two branches have
similar frequencies *0:3xci.

Both numerical and experimental data in Fig.1 demon-
strate increase of the unstable CAE frequencies with toroidal
mode number. This is consistent with reduction of the radial
size of the effective potential well for CAE (described in
Section IV) for higher jnj, and a related increase in k? * kr .

10

Unstable counter-rotating GAEs, on the other hand, exhibit a
somewhat counter-intuitive decrease of frequency with jnj.

Simulations show that co- and counter-rotating AEs satisfy
different resonant conditions, namely a regular resonance: x
¼ kjjvjj and the Doppler-shifted cyclotron resonance xþ kkvk
, hxcii, respectively, where vk and hxcii are the orbit-
averaged parallel velocity and cyclotron frequency. For
counter-GAEs, it follows that x ¼ hxcii=ð1þ vk=VAÞ, and
the reduction of the most unstable x implies that the reso-
nance shifts well into the tail of the beam ion distribution.
Thus, for the numerically calculated n¼ 8 counter-GAE:
x ¼ 0:11xci, and this resonant condition gives unreasonably
large value of vk=VA ¼ hxcii=x" 1 * 7 > V0=VA (where
hxcii * 0:9xci0, as calculated for resonant particles in simula-
tions). This is resolved by retaining the particle drift fre-
quency in the resonant condition, which can also be cast into
the form hxdi , svk=ðqRÞ,32 where s ¼ 0;61; ::: is integer, q
is the safety factor, and R is the major radius, so that Doppler
shift becomes ½kk þ s=ðqRÞ.vk. The more accurate condition
vk=VA ¼ ðhxcii=x" 1Þ=ð1þ sVA=ðqRxÞÞ then gives vk=VA

< 5 for s / 3.

IV. LINEAR SIMULATIONS

A. CAEs coupling to kinetic Alfv!en wave

Figure 2(a) shows poloidal contour plots of the per-
turbed magnetic field for the n¼ 4 (x ¼ 0:35xci) CAE. It
can be seen that the CAEs are localized in the core, near the
magnetic axis, where they have mostly compressional polari-
zation, and dBk is significantly larger than dB? everywhere,
except in the radially localized region on the high-field-side
(HFS) where the resonant condition xAðR; ZÞ ¼ x is satis-
fied (xAðR; ZÞ ¼ kkVAðR; ZÞ is the local Alfv!en frequency,
and x is the frequency of the CAE mode in the simulation).
Simulations for both low-n and high-n co-rotating CAEs
always show resonant coupling to the shear Alfv!en wave.
The amplitude of dB? at the resonance location is larger than
the amplitude of the driving compressional mode (Fig. 3(a)).
Analysis of magnetic and velocity perturbations of the reso-
nant mode shows that its polarization is consistent with that
of the kinetic Alfv!en wave (KAW), namely that dBZ and dVZ

are the dominant components, and dVZ * "dBZ. Figure 3
shows radial profiles of magnetic field and thermal pressure
perturbations in the midplane. The resonant shear Alfv!en
perturbation can be seen at R * 0:7 m, in dBR profile (green)
and, most noticeably, in dBR&b component of magnetic field

FIG. 2. Contour plots of magnetic field perturbation for (a) n¼ 4 co-rotating
CAE and (b) n¼ 6 counter-rotating GAE. Also shown are poloidal flux con-
tours and resonance contour xAðZ;RÞ ¼ x for CAE. The CAE shows
dBk 0 dB? in the core and a resonant coupling to KAW on HFS; for the
n¼ 6 GAE, dBk ( dB? in the core, but for both mode types dBk * dB? at
the edge.

FIG. 3. Radial profiles of (a) magnetic field perturbation and (b) normalized
thermal pressure perturbation (au) for the n¼ 4 CAE versus major radius.
The CAE peaks near the magnetic axis R¼ 1.07 m.
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(red). In contrast, the compressional component of dB, the
radial profile of perturbed pressure (Fig. 3(b)) and the radial
profile of plasma density perturbation (not shown) all show a
smooth behavior across the resonance, with very small short-
scale resonant perturbations at R * 0:7 m. This demonstrates
mostly incompressible nature of KAW. Note that the large-
radial-scale structure of dBR is related to the CAE.

The poloidal location of CAEs can be described by a
simplified 2D wave equation using an effective potential3,30

@2dBk
@r2

¼ Vef f dBk; where Vef f ¼ "x2=V2
A þ k2

k:

The radial profiles of Veff for the n¼ 8 CAE mode with x
¼ 0:48xci (solid) and n¼ 4 CAE with x ¼ 0:34xci (dashed)
are shown in Fig. 4 for kk ¼ n=Rðm ¼ 0Þ. Compressional
Alfv!en waves can propagate for Veff< 0, but will be evanes-
cent where Veff> 0. CAE can be described as a standing
wave with radial extent of Veff< 0 which is 0.73 m <R <
1.45 m for the n¼ 4 mode, consistent with the mode struc-
ture shown in Figs. 2(a) and 3. Effective potential well for
n¼ 8 mode is narrower and deeper than Veff for n¼ 4 result-
ing in more localized CAE mode with larger frequency. Both
modes have m , 0, and satisfy the fast wave dispersion rela-
tion with good accuracy.33 Magnetic wells are shifted radi-
ally outwards relative to the magnetic axis location at
R¼ 1.07 m. One of the notable features of CAEs is that the
location of the shear Alfv!en resonance always coincides with
the edge of an effective potential within which the CAE is
non-evanescent, because the condition Veff¼ 0 is identical to
the Alfv!en resonance condition (neglecting two-fluid effects
and terms *ðx=xciÞ2). This leads to a strong linear coupling
between the compressional mode and the KAW. Resonance
is more pronounced on the HFS, as can be seen, for example,
from dB? plots in Fig. 3(a). As is shown below, this is
related to the shape of the CAE potential well, which is rela-
tively steep on the HFS, and has a very low wall at the LFS
(Fig. 4), where Vef f , "x2=V2

A * ni , 0 near the plasma
edge and further out.

In the ideal MHD model, there is a logarithmic singular-
ity at the resonance location where the CAE frequency
matches the local Alfv!en frequency.15 In the full kinetic
model, this singularity is resolved by the thermal ion and fast
ion FLR effects, and mode conversion to KAW. For the

thermal plasma, neglecting the beam ion effects, the solution
near the resonance can be expressed in terms of Airy and
Scorer functions with an asymptotic form given by15

dER ¼ "p
L

q

& '2=3

E0 iAi " x

D

& '
þ Gi " x

D

& '( )

," E0

ffiffiffi
p
p L

q

& '2=3 D
x

& '1=4

exp i
2

3

x

D

& '3=2

þ p
4

 !" #

þ E0
L

x
; (4)

where for our application L is a characteristic radial scale
length of VAðRÞ, x ¼ R" Rres, Rres is the resonance location,
E0 is the amplitude of the CAE at the resonance,
D ¼ ðLq2Þ1=3, q2 ¼ ð3=4þ Te=TiÞq2

i , and qi is the thermal
ion Larmor radius. In a three component plasma including
the thermal ions, electrons, and the beam ions, the expression
for the effective Larmor radius becomes14

q2 ¼ 3

4

ni

ne
þ 3

4

nb

ne

Tb

Ti
þ Te

Ti

& '
q2

i ¼
3

4
1þ bb

bi

( )
þ be

bi

& '
ni

ne
q2

i ;

(5)

where bb and bi are the beam and thermal ion beta, respec-
tively. As can be seen from Eq. (4), the effective wave num-
ber of KAW near the resonance is k? * 1=D ¼ ðLq2Þ"1=3,
and further away from the resonance it increases to k? * 1=q.
From TRANSP data for this shot we have bb ¼ 0:12 and
bi ¼ 0:09, Te=Ti ¼ 0:88, and the effective beam ion tempera-
ture calculated from bb=bi ¼ 1:33 is Tb=Ti ¼ 25:2. The mag-
nitude of the equilibrium magnetic field at the HFS resonance
is B * 1:5B0 ¼ 0:49 T, and the local thermal ion, beam ion,
and effective Larmor radius from Eq. (5) can be calculated as
qi ¼ 0:9 cm, qb ¼ 4:4 cm, and q ¼ 1:5 cm, respectively. At
the midplane (z¼ 0) the KAW-related magnetic perturbation
is dBZ ¼ ndER=ðxRÞ * "Gið"x=DÞ, where the distance
between first two maximums of the Scorer function GiðnÞ is
,4:7.34 The radial scale of KAW at the resonance defined as
4:7D, therefore, can be estimated as DR ¼ 4:7ðLq2Þ1=3 * 21
cm, assuming L * 40 cm on HFS.

The HYM numerical model treats the thermal plasma as
an MHD fluid, and the KAW perpendicular scale in the simu-
lations is determined only by the beam ion FLR effects.
Neglecting thermal plasma FLR effects in Eq. (5), we get q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=4ðnb=neÞ

p
qb * 1 cm. The radial scale of KAW in this

model is DR ¼ 4:7ðLq2Þ1=3 * 16 cm, which agrees reason-
ably well with the simulation results where DR * 15" 20 cm
(Fig. 3(a)). However, it should be noted that Eqs. (4) and (5)
were derived assuming that k?qb ( 1, whereas for the simu-
lation parameters, k?qb * 1:4 > 1, and more accurate calcu-
lations including a full Bessel function without the expansion
would be needed for a proper comparison. Since the HYM
does not include thermal ion FLR effects, it underestimates
the KAW radial scale length; however, the CAE/KAW cou-
pling in this model is qualitatively correct, as follows from the
local dispersion relation.14

The CAE potential well (Fig. 4) is shifted radially out-
wards relative to magnetic axis, and it is not symmetric. The

FIG. 4. Radial profiles of the effective potential Veff for the n¼ 8 CAE with
x ¼ 0:48xci0 (solid) and n¼ 4 CAE with x ¼ 0:34xci0 (dashed). The
potential well corresponds to Veff< 0.
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low field side near the edge has a much flatter VAðRÞ profile
compared with the HFS, and a very shallow “potential wall,”
which means that the characteristic scale length L becomes
too large for the assumptions used to obtain the KAW solu-
tion15 to be valid. Thus, the KAW radial scale, estimated as
above, becomes larger than that of the background plasma.
In simulations, this is manifested as a lack of sharp reso-
nance structures on the LFS even for the higher-n CAEs.
Also, since the KAW is mostly an incompressible mode, the
plasma pressure and density perturbations associated with
the KAW are very small, as can be seen in Fig. 3, which
does not show any small scale resonant structures in the
radial perturbed pressure profile at R * 0:7 m.

The condition k?qb * 1 implies that the beam ion and
electron motions are decoupled in KAW, leading to genera-
tion of finite parallel electric field perturbations, which is
typical for KAW. Figure 5 shows the radial profiles and
poloidal contour plot of dEk obtained in simulations of the
n¼ 4 and n¼ 8 CAE/KAW instabilities. It is seen that the
dEk location and poloidal structure are related to the KAW,
whereas the CAE has an ideal MHD character with negligi-
ble dEk. Finite dEk is important for effective dissipation of
the wave energy at the resonance location, and electron heat-
ing via Landau damping. In addition, radially overlapping
KAWs can strongly enhance plasma heat transport due to
finite dEk. Previous studies have shown that addition of the
finite parallel electric field to ideal GAE structure has a
strong effect on the electron transport.12 Our simulations
show that the radial width of KAWs is relatively large on the
HFS in NSTX. Therefore, in cases when several CAEs are
observed, the KAWs will overlap radially. For example, for
the n¼ 8 and n¼ 4 CAEs considered here with resonances
located at R¼ 0.73 m and R¼ 0.85 m, respectively, the
KAWs overlap significantly as can be seen from radial pro-
files of dEk in Fig. 5(a). Therefore, in addition to the energy
channelling mechanism, discussed in Sec. V, several over-
lapping KAWs with relatively large dEk can also have a
direct effect on both the electron transport and the beam ion
re-distribution.

B. Resonant excitation of CAEs by the beam ions

In NSTX, the CAEs are driven unstable by the resonant
interaction with the beam ions. The delta-f method used in

the HYM code permits a simple numerical criterion for reso-
nant particles. Thus, we label a simulation particle as a reso-
nant whenever its weight is significantly larger than the
average weight. Specifically, the condition jwj > 0:15wmax

has been used in most cases.
In the simulations the orbit-averaged cyclotron fre-

quency, toroidal and poloidal frequencies, and the averaged
parallel velocity have been calculated for each particle.
Several examples of the resonant particle plots obtained in
linearized simulations of the n¼ 8 CAE with x ¼ 0:48xci

are shown in Figs. 6 and 7 and discussed in detail in this
subsection.

The general resonance condition can be written as
x" nxtor " kxpol ¼ lxci, where xtor and xpol are toroidal
and poloidal orbit frequencies, k is an integer, and l ¼ 0;61.
Numerical analysis of the resonant wave-particle interaction
for the n¼ 8 CAE simulation (Fig. 6(a)) shows two separate

FIG. 5. (a) Radial profiles of dEk from CAE/KAW simulations for n¼ 4
(black) and n¼ 8 (red); (b) contour plot of dEk for the n¼ 8 CAE/KAW.

FIG. 6. (a) Scatter plot showing orbit-averaged cyclotron and toroidal fre-
quencies of resonant particles normalized to the ion cyclotron frequency at
the axis, xci0; (b) Particle weight w * dF=F vs cyclotron resonance condi-
tion: xþxci " nxtor " kxpol ¼ 0 for all particles, k is integer; (c) particle
weight vs orbit-averaged parallel velocity for all particles. From HYM simu-
lations of the n¼ 8 co-rotating CAE with x ¼ 0:48xci. Particle colour corre-
sponds to different energies: from e ¼ 0 (purple) to e ¼ 90 keV (red) with
colour scale shown in Fig. 7(a).
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groups of resonant particles, one group which satisfies the reg-
ular (l¼ 0) resonance condition: x" kkvk ¼ 0 (or approxi-
mately, x" nxtor ¼ 0), and a group of higher energy
particles which satisfy the Doppler-shifted cyclotron resonant
condition: xþ xci ¼ kkvk with l¼ –1 (solid line in Fig. 6(a)
corresponds to the cyclotron resonance xþ xci ¼ nxtor).
Poloidal frequency is small compared with other frequencies,
xpol * 0:08xci0, resulting in the fine splitting of resonances,
as can be seen in Fig. 6(b), where the weights of all simula-
tions particles are plotted vs k ¼ ðxci þ x" nxtorÞ=xpol (all
frequencies are orbit averaged). Cyclotron resonances corre-
spond to integer values of the abscissa, as can be seen by the
peaks of dF=F, whereas lower energy particles which satisfy
x" nxtor , 0 are out of k range in this plot. Note that in
order for a co-rotating CAE to satisfy the cyclotron resonance
condition, the Doppler shift has to be larger than the cyclotron
frequency, which can be a case for the large-n CAEs. Lower-
n CAEs, in particular the n¼ 4 CAE, show resonant interac-
tion only for the main l¼ 0 resonance.

There is a third group of large-weight particles seen in
Fig. 6 in light blue colour. A separate simulation with

suppressed CAE has shown that these particles are in l¼ 1 res-
onance with counter-rotating GAE mode, with x ¼ 0:11xci,
which was also unstable in the n¼ 8 linearized simulation.
These particles have hxcii * 0:85, and nxtor–x , 0:35 in
Fig. 6(a); they can be seen as large-weight particles for
k * 4:5–6 in Fig. 6(b), and do not satisfy l¼ –1 cyclotron res-
onance condition.

Figure 6(c) shows distribution of particle weights versus
orbit-averaged vk=VA values, and particle colour corresponds
to different energies: from e ¼ 0 (purple) to e ¼ 90 keV (red),
where the colour coding could be seen in Fig. 7(a). Large-
weight (resonant) particles which satisfy regular (l¼ 0) reso-
nance condition with CAE have vk=VA * 1:5–2:0; the l¼"1
cyclotron resonant condition is satisfied for particles mostly
from the tail with vk * V0 , 5VA; and a group of particles
resonant with the counter-GAE have vk=VA * 3. It has been
found that the main contribution to the CAE instability drive
comes from the regular resonance, i.e., from the beam ions
with parallel velocity comparable to the phase velocity of the
CAE: vk * x=kk. This was verified by a separate simulation,
where the contribution of the high-energy cyclotron-resonant
particles was “turned off” by setting their weights to zero,
resulting in no significant changes in the growth rate of CAE.
For the n¼ 8 mode with x ¼ 0:48xci, the resonant velocity
can be estimated as vk , xR0=n ¼ 1:7VA, in good agreement
with the simulation results in Fig. 6(c).

Figure 7 shows the location of the resonant particles in
the phase space ðe; k; p/Þ, where p/ ¼ "wþ ðmic=qiÞRv/ is
the toroidal angular momentum normalized in the code units
(normalized by B0d2

i , where di ¼ 3:93 cm is the ion skin
depth at the axis; the normalized flux is w0 ¼ "110 at the
axis, and w¼ 0 at the edge). With the exception of the light-
blue group of particles which are resonant with counter-GAE
(e * 25–35 keV, k < 0:4, and p/ * 200), two types of par-
ticles resonant with the n¼ 8 CAE can be seen. Largest
effect on the CAE instability (l¼ 0 resonance) have lower-
energy particles which have wide range of pitch-angle
parameter k ¼ 0:1–1:2 and energies e ¼ 10–60 keV, with
p/ * 130–160. At the same time, these particles have a rela-
tively narrow range of vk, and their distribution in ðk; eÞ
space can be described approximately by a relation k
¼ B0=hBið1–miv2

k=2eÞ for a fixed vk, which is plotted by a
solid line in Fig. 7(a) for vk ¼ 1:7VA and hBi=B0 ¼ 0:9.
Wider spread from this line at large k is related to larger
FLR corrections to l.26 This group includes both passing and
trapped particles. The high-energy group (l¼"1 resonance)
are passing particles with e ! 65 keV, low k (k < 0:4), and
p/ * 170–265. Sharp boundaries in p/ plot in Fig. 7(b) indi-
cate that low-k resonant particles are located close to the
boundary p/ + pmax in the phase-space, where values p/

¼ pmax ¼ "w0 þ R0v
ffiffiffiffiffiffiffiffiffiffiffi
1" k
p

correspond to orbits passing
through the magnetic axis.

Linear theories of the beam-driven CAE instability have
been developed in Refs. 3 and 32. Only counter-CAEs driven
by the l¼ 1 resonance have been considered in Ref. 3, and
the instability condition 1 < k?qb < 2 has been obtained,
where k? is a perpendicular wave number for the CAE. It
has been suggested that the main instability drive comes
from the trapped beam ions. Both co- and counter-CAEs

FIG. 7. Location of resonant particles in phase space, (a) k ¼ lB0=e vs
energy, and (b) k vs toroidal angular momentum p/ ¼ Rv/ " w; from simu-
lations of the n¼ 8 CAE. Solid line approximately corresponds to vk ¼
1:7VA condition, and dashed line represents condition: @F0

@e "
k
e
@F0

@k ¼ 0.

Particle colour corresponds to different energies: from e ¼ 0 (purple) to
90 keV (red).
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have been studied in Ref. 32, and it has been shown that co-
CAE driven by l¼ 0 resonance are unstable for a wider range
of the beam ion parameters, i.e., 0 < k?qb + 2, but this cal-
culation considered only the circulating particles. Both cal-
culations assumed no p/ dependence in F0, and delta-
function distribution in k, F0 ¼ F0ðe; kÞ * dðk" k0Þ. For
comparison, our calculations show that the particles satisfy-
ing the l¼ 0 resonance condition in simulations of the n¼ 8
co-CAE have range of k?qb values from *0:7 for colder
beam ions to k?qb * 2:1 for the particles with energies *50
keV. The gaps in k distribution around k0 ¼ 0:7 seen in Fig.
7 show that there are no resonant particles in the simulation
with large weights near k * k0, where @F0=@k ¼ 0. This
indicates that in the weight evolution equation of the delta-f
scheme Eq. (3), the term proportional to @ðln F0Þ=@k makes
the largest contribution to dðln F0Þ=dt, at least for the reso-
nant particles. The dashed line plotted in Fig. 7(a) shows a
condition: D ¼ @F0=@e" ðk=eÞ@F0=@k ¼ 0, where D> 0
above the dashed line and D< 0 below it. Assuming that the
growth rate of co-CAE is approximately proportional to D,32

the regions of the ðe; kÞ phase-space above this line are
responsible for the instability, and therefore, in the simula-
tion the instability is driven mostly by the trapped beam
ions, whereas lower-energy passing ions are stabilizing. Note
that the above expression for D applies only for the l¼ 0
resonance.

The resonant particle plots similar to Figs. 6 and7 have
also been obtained for the n¼ 4 co-rotating CAE, except that
in case of n¼ 4 CAE, there were no particles satisfying the
l¼ –1 cyclotron resonance condition due to smaller value of
kk and a smaller Doppler shift. Linear simulations also show
that both low-n and high-n unstable CAEs have low poloidal
mode numbers m ¼ 0–2, and their poloidal mode extent
overlaps significantly with the beam ion orbits, indicating a
very effective resonant interaction.

V. NONLINEAR SIMULATIONS OF n 5 4 co-CAE

Nonlinear simulations of the n¼ 4 CAE have been per-
formed for the beam ion parameters corresponding to NSTX
shot 141398. These simulations have been carried out in
order to identify the CAE saturation mechanism, find the
mode amplitude at the saturation and compare with experi-
mental data, and calculate self-consistently the fraction of
the beam power going into the excitation of a CAE, and
being channeled to KAW and absorbed at the resonance. The
simulations are fully nonlinear including 32 toroidal harmon-
ics, and show saturation of the n¼ 4 CAE mode. Initial con-
ditions for the nonlinear run were obtained by running the
n¼ 4 linearized simulations (txci ¼ 0–600, Fig. 8) to obtain
a converged linear mode structure of the CAE. The nonlinear
run starts at txci ¼ 600, and also shows growth of the n¼ 5,
6, 7 GAEs and n¼ 8 CAE modes. The n¼ 6 and 7 GAEs
have larger linear growth rates than the n¼ 4 CAE mode,
and saturate at higher amplitudes as seen in Fig. 8. The tim-
ing of the switch between the n¼ 4 linearized run and the
fully nonlinear run was chosen in such a way, as to allow the
n¼ 4 CAE saturate (txci * 750) while the amplitudes of
other unstable modes were still relatively small. This

allowed a calculation of the fraction of the beam power taken
by the n¼ 4 CAE and the energy flux from the single CAE
to KAW near the saturation.

In the simulations, the unstable n¼ 4 mode (x ¼ 0:34xci,
and c ¼ 0:01xci) has been identified as a co-rotating CAE
based on a dominant parallel component of the perturbed mag-
netic field in the core; however, significant perpendicular com-
ponent jdB?j * jdBkj has been found at the plasma edge on
the LFS for this mode. Figure 9 shows the time evolution of
dBk and two components of dB? at the core, and close to the
plasma edge in the equatorial plane from the same nonlinear
simulations of the n¼ 4 CAE as in Fig. 8. It is seen that in the
core, the compressional perturbation is 3–4 times larger than
the jdB?j till txci < 800, at which point the higher-n GAE per-
turbations grow to large amplitude (Fig. 9(a)). It is interesting

FIG. 8. Time evolution of volume-averaged amplitudes of different toroidal
harmonics of the perturbed magnetic field from simulations of n¼ 4 CAE.
Fully nonlinear simulations start at txci ¼ 600.

FIG. 9. Time evolution of dBk and two components of dB? at the core, and
close to the plasma edge in the equatorial plane on LFS. From nonlinear
simulations of the n¼ 4 CAE.
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that the mixed compressional/shear polarization near the
plasma edge on the LFS was also obtained in simulations of
the GAEs,27 where the magnetic perturbations have shear
Alfv!en wave polarization in the core with dominant dB?; how-
ever, they also have a significant compressional component at
the edge. Strong coupling between shear Alfv!en and compres-
sional perturbations in the NSTX simulations is related to
small aspect-ratio, relatively high beta and kinetic effects due
to energetic particles. Thermal plasma two-fluid effects, which
are not included in HYM version used here, will also contrib-
ute to coupling. Experimental magnetic measurements at the
edge also show the mixed compressional/shear Alfv!en polari-
zation for both CAEs and GAEs in NSTX.30,35

The saturation amplitude of the n¼ 4 CAE instability in
the simulations is dBk=B0 ¼ 6:6& 10"3, which is larger than
the values obtained by analysing experimental data from the
same NSTX shot. Thus, measured plasma displacements jnj
¼ 0:1–0:4 mm of unstable CAEs24 correspond to magnetic
perturbations in the range dBk=B0 ¼ ð0:9–3:4Þ & 10"3, where
we have used the HYM-calculated mode structure to relate dis-
placement and magnetic field perturbation amplitudes. More
recent analysis of experimental data31,36 suggests even smaller
values dBk=B0 ¼ ð0:2–0:7Þ & 10"3. In the simulations the
instability saturates due to nonlinear particle trapping, which
has been confirmed by scaling of the saturation amplitude with
the growth rate dBk * c2, as reported in Sec. VI, and it has
been verified in a separate nonlinear simulation including only
the n¼ 4 toroidal harmonic. Figure 10 shows a comparison of
time evolutions of the n¼ 4 CAE amplitude from the fully 3D
nonlinear and single harmonic nonlinear simulations. The satu-
ration amplitude is identical in both cases, indicating that the
instability saturates mainly through the changes in the beam
ion distribution function, and field nonlinearities play a minor
role. The frequency of nonlinear oscillations in Fig. 10 is
xbounce * 0:04xci, which is comparable with linear drive
cdrive , 0:03xci, calculated in Sec. VI, which is also consistent
with the particle trapping saturation mechanism.

Convergence of the nonlinear results has been verified by
running nonlinear simulations with higher grid resolution, and
changing the number of simulation particles from 2 M to
20 M - no significant changes have been observed in linear
growth rate or saturation amplitude of the n¼ 4 CAE.
Another indication of sufficient resolution in the simulations

is a good conservation of the total energy, as shown in Fig.
11, where the relative change in the total energy vs change in
the beam ion kinetic energy is about 4% at t < 880ð1=xciÞ,
and less than 12% overall. Here the bulk fluid energy (i.e.,
magnetic field plus thermal plasma energy) was calculated as
EMHD ¼

Ð
½B2=8pþ p=ðc" 1Þ þ qv2=2.d3x.

Figure 11(b) shows that the rate of change of the beam
ion energy, calculated as dKbeam=dt ¼

Ð
ðJbeam ' EÞd3x, can

be as large as *1:5 MW near the n¼ 4 CAE saturation at
t * 750ð1=xciÞ, demonstrating that a significant fraction of
the total beam power can be transferred to a single CAE of
relatively large amplitude. Note that this estimate reduces to
*0:4 MW, if scaled to experimentally relevant amplitudes
dB=B0 ¼ 3:4& 10"3.14

Energy flux from unstable CAE to KAW location can be
calculated as S ¼ E& B=4pþ pVc=ðc" 1Þ, where the bulk
plasma kinetic energy flux can be neglected as being a third-
order in the perturbation amplitude. Calculations show that
the pressure related term has the same sign as the Poynting
flux, but it is about 14% of the total flux, proportional to
plasma beta.

Plots of the normal energy flux Sw ¼ ðS ' nÞn (where
n ¼ rw=jrwj) in the poloidal plane (Fig. 12) shows that the
energy flux is mostly directed radially away from the mag-
netic axis and towards the HFS resonance with KAW. There
is a significant drop in Sw at the KAW location, indicating the
power absorption. Calculated change of the energy flux across
the resonant layer at R ¼ 0:6–0:7 m at time t ¼ 750ð1=xciÞ,
corresponding to the peak of the CAE amplitude, is
3& 105W=m2. Calculating the surface integral over the whole

FIG. 10. Time evolution of n¼ 4 CAE amplitude from fully nonlinear simu-
lations (red), and from a nonlinear simulation including only the n¼ 4 har-
monic (blue).

FIG. 11. (a) Time evolution of change in bulk fluid energy (green), the beam
ion energy (blue), and the total energy of the system (red); (b) Time evolu-
tion of rate of change of beam ion energy, calculated as

Ð
ðJbeam ' EÞ d3x.

042505-9 Belova et al. Phys. Plasmas 24, 042505 (2017)



Z range at each R as P ¼ ð2pRÞ
Ð

SRdz, the power absorption
at R¼ 0.7 m can be calculated as P * 1:2 MW. This value is
overestimated, because the numerically obtained saturation
amplitude of the CAE is larger than the observed amplitudes.
When scaled down to dB=B0 ¼ 3:4& 10"3, the estimated
power absorption becomes *0:3 MW, proportional to the
square of the local CAE amplitude.21 In the case of smaller
observed magnetic perturbations of dB=B0 * 1& 10"3,31,36

at least 4 unstable CAEs will be needed for *0:1 MW power
absorption at the resonance. In either case, the nonlinear simu-
lations demonstrate that a significant fraction of the total
beam power can go into the excitation of a single CAE, and
then be channeled by the CAE to the resonance location at the
edge of the beam, and absorbed there. Considering a large
number of unstable CAEs observed experimentally in this par-
ticular NSTX shot,24 the total power channeled to the KAWs
can significantly affect the beam energy deposition profile,
and lead to electron heating closer to the edge. The HYM
thermal plasma model includes viscous damping and Ohmic
dissipation of dJk. In collisionless plasma, the energy can be
dissipated at the resonance location via the electron Landau
damping,15 resulting in increased electron temperature near
the edge, and flattening of the electron temperature profile.
The nearly field-aligned structure of the KAW with finite dEk
(Fig. 5) will result in a strong interaction with resonant elec-
trons, and heating.

VI. SCALING WITH BEAM POWER

An additional set of linearized and nonlinear simulations
have been performed for the n¼ 4 CAE instability for vary-
ing the beam ion density. The results of these simulations,
namely the scaling of the instability growth rate, saturation
amplitude, and mode-converted power, are summarized in
Fig. 13.

Simulations have been performed for fixed beam ion dis-
tribution function and thermal plasma parameters, except that
the peak beam ion density has been varied from 0:03ne to
0:063ne. A new self-consistent equilibrium has been calcu-
lated for each case. Figure 13(a) shows that the growth rate of
the n¼ 4 CAE scales linearly with beam ion density, and
there is a threshold of nb + 0:035ne, below which the mode is
stable. The parameters for the NSTX shot # 141398 corre-
spond to nb0 ¼ 0:053ne and c ¼ 0:0095xci. Assuming that
the instability drive is proportional to the beam ion density
and using 0:035ne as threshold density, we can estimate the
drive and damping rates from c ¼ cdr0ðnb=nb0Þ " cdamp,
where cdamp ¼ 0:0185xci is the CAE damping rate due to
coupling to KAW, and cdr0 ¼ 0:028xci is the beam ion drive
for the experimental value of the beam density nb0 ¼ 0:053ne.
Due to strong linear CAE/KAW coupling, the damping rate is
large cdamp ¼ 0:66cdr0. The beam power for the NSTX shot #
141398 was P¼ 6 MW; therefore, the threshold value of the
beam power needed for the excitation of the n¼ 4 CAE can
be estimated as P * 4 MW. This estimate is consistent with
experimental results showing a large number of unstable sub-
cyclotron frequency Alfv!en modes when the beam power is
sufficiently large P / 4 MW.1 Damping rates of higher-n
CAEs due to coupling to KAW are expected to be higher than
that for small n, because of a smaller radial extent of the

FIG. 13. (a) Dependence of linear growth rate of the n¼ 4 CAE on the
beam ion density; (b) Saturation amplitude of CAEs vs square of the linear
growth rate; (c) Calculated change of the energy flux at the resonance loca-
tion near the instability saturation vs the normalized growth rate. Solid sym-
bols (green) correspond to the experimental conditions for NSTX shot
# 141398.

FIG. 12. (a) Vector plot of the energy flux Sw; (b) contour plot of the normal
component of Sw in poloidal plane from nonlinear simulations of the n¼ 4
CAE/KAW at t ¼ 750ð1=xciÞ.
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large-n CAE effective potential well, and localization of the
resonances at smaller minor radii, where the plasma density is
higher and absorption is stronger.21

Fully nonlinear simulations, similar to those described
in Sec. V have been carried out for each value of beam ion
density, and show that the saturation amplitude of the n¼ 4
CAE scales approximately as square of the growth rate, i.e.,
jdBk=B0j * ðc=xciÞ2 (Fig. 13(b)), consistent with the particle
trapping saturation mechanism. Analysis of the experimental
data from the database of the NSTX shots37 shows somewhat
stronger than quadratic scaling of the GAEs and CAEs
amplitudes with beam power; i.e., it gives jdB=B0j * P2:6.38

The difference with simulation results could be related to
separation of the single unstable mode in the nonlinear simu-
lations, or, possibly, due to the amplitude-weighted averag-
ing done in the data analysis.

Absorption rate, calculated as a change in the Poynting
flux across the resonance layer, has been obtained in each sim-
ulation, and it shows a very strong scaling with growth rate/
beam power (Fig. 13(c)). The best fit with the power law gives
DS * ðc=xciÞ5, implying that the energy loss at the resonance
scales as the fifth power of the beam ion density (or the beam
power). The strong scaling could be explained, if one assumes
that the power absorbed at the resonance is proportional to the
change in the CAE energy P ¼ 2c

Ð
ðdBÞ2=4p d3x * c5.

These results suggest that the energy channelling mechanism
might play a significant role in the NSTX-U due to higher pro-
jected beam powers, provided that the CAEs are still unstable
for larger toroidal field values (i.e., smaller values of v0=VA

parameter).

VII. SUMMARY

Numerical simulations presented here demonstrate that
the beam-driven CAEs are strongly coupled with kinetic
Alfv!en waves at the Alfv!en resonance location in NSTX.
The resonant mode conversion of CAE to KAW occurs for
any unstable CAE, independent of toroidal mode number or
mode frequency, and it follows from dispersion relation. The
strong linear CAE/KAW coupling supports an alternative
mechanism14 for Te flattening, in which beam-driven CAE
dissipates its energy at the resonance location close to the
edge of the beam, therefore significantly modifying the
energy deposition profile (similar to a mechanism suggested
qualitatively for GAEs in Ref. 13).

Both experimental observations and numerical simula-
tions presented here demonstrate that for this particular H-
mode NSTX discharge a large number of GAEs and CAEs
were excited by the beam ions. The calculated range of the
unstable toroidal mode numbers, frequencies, and mode
polarizations appears to be reasonably close to experimental
observations.23,24 Linear simulations show multiple unstable
CAEs for a range of toroidal mode numbers n ¼ 4–9, cou-
pled with KAW on the high field side. Resonance with KAW
is located at the edge of CAE well, and just inside beam ion
density profile, and the radial width of KAW is determined
by the beam ion Larmor radius and VAðRÞ scale length as
ðLq2Þ1=3, where q is the effective Larmor radius defined by

Eq. (5). It is shown that localization of KAW on HFS is
related to the shape of the CAE effective potential well.

Analysis of the particle phase-space for unstable CAEs
shows that the resonant particles have wide range of pitch-
angle parameter k ¼ 0:1–1:2 and energies e ¼ 10–60 keV,
but a relatively narrow range of resonant vk. While this group
includes both passing and trapped particles, the co-CAE
instability is shown to be driven by the trapped ions. Beam
ion power scan allows estimating a damping rate of CAE
due to its linear coupling to KAW, and shows that the CAE
instability is close to marginal for the experimental parame-
ters. The CAE/KAW coupling is the main linear damping
mechanism for CAE, and the damping rate is cdamp

¼ 0:66cdr for the n¼ 4 CAE. This sets up a threshold value
of the beam power needed for the excitation of this mode for
a given set of NSTX parameters at P * 4 MW.

A set of nonlinear simulations demonstrate that the CAE
instability saturates due to nonlinear particle trapping, which
has been confirmed by scaling of the saturation amplitude
with the growth rate dBk * c2, that is, the instability saturates
mainly through the changes in the beam ion distribution func-
tion, and field nonlinearities play a minor role. A calculated
fraction of NBI energy which can be transferred to single
unstable CAE is significant: up to P * 0:4 MW for one mode
with amplitude dB=B0 * 3 ' 10"3. Therefore, this study dem-
onstrates that a large fraction of beam energy can be trans-
ferred to several unstable CAEs of relatively large amplitudes
and absorbed at the resonant location. Energy flux is shown to
be directed away from the magnetic axis (CAE) toward the
resonance location (KAW). Absorption rate, calculated as a
change in the Poynting flux across the resonance layer, shows
a very strong scaling with growth rate (Fig. 13(c)), implying
that the energy loss at the resonance scales as a fifth power of
the beam power. Calculated magnitude of power absorption is
significant enough to have a direct effect on the electron tem-
perature profile. Comparison of CAE/KAW energy channel-
ing mechanism considered here and the earlier study of the
enhanced electron transport in the presence of multiple unsta-
ble GAEs demonstrate that the scaling of absorption rate with
mode amplitude DS * c5 * dB2:5 is weaker than predicted by
alternative mechanism, where v * dB3 or *dB6.12 At the
same time, the presented energy channeling mechanism pre-
dicts significant changes in Te profile at lower and more realis-
tic CAE amplitudes, and does not require a large number of
unstable modes as in Ref. 12, where at least 15 modes with
amplitudes dB=B0 * 5 ' 10"3 are needed to explain the
observed changes in Te.

Strong CAE/KAW coupling follows from dispersion
relation; therefore, the energy channelling mechanism is
generic and it applies to any device with unstable CAEs and
the related ion cyclotron emission (ICE) observed in toka-
maks.11 The CAEs are generally predicted to be unstable in
tokamaks with V0=VA > 1;3 however, a recent set of HYM
simulations (a parameter scan performed for a fixed shape of
the beam ion distribution function)39 shows that excitation of
a significant number of unstable CAEs with different toroidal
mode numbers requires relatively large values of normalized
beam injection velocity, V0=VA > 3–4. Future work will
include investigation of the effects of the beam ion
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distribution function on the CAE and GAE instabilities. A
more complete description of the mode conversion in NSTX
would require inclusion of the thermal ion FLR effects, and
two-fluid (finite x=xci) effects, which is beyond the scope of
this paper.

In summary, it is found that beam-driven CAE modes in
NSTX mode-convert to KAWs, and therefore can channel
the energy of the beam ions from the injection region near
the magnetic axis to the location of the resonant mode con-
version at the edge of the beam density profile. This mecha-
nism provides alternative explanation to the observed
reduced heating of the plasma core at high beam power in
the NSTX. Detailed comparison of the relative importance
of the energy channelling and anomalous electron transport
mechanisms will be reported in future publication.
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