














approximated for all marginally second region stable equilibria by the value of S on the
flux surface on which the local shear changes sign on the outboard midplane of the
plasma. In addition, equilibria evolving from the first to the second region of stability
have been generated by a 11/, dimensional transport code. The transport model
enhances diffusion on flux surfaces that are unstable to large-n modes. Modification of
the g profile by neutral beam driven current reduces the size of the unstable region
sufficiently to allow transition to the second region. Auxiliary power requirements for
this transition are estimated. Stability of the transition equilibria to both small-n external

and internal modes is also examined.
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Introduction

density, 7, is the energy confinement time, and Tj is the ion temperature. The present
milestone in tokamak research is the achievement of scientific breakeven, when the
amount of energy generated by fusion reactions equals the amount of energy required to
sustain the plasma. The Py, performance of the large contemporary experimental
tokamak devices operating with deuterium plasmas, the TFTR at the Princeton Plasma
Physics Laboratory, and the JET, at the Culham Laboratory in England, is within a
factor of two away from the breakeven value in an equivalent deuterium-tritium plasma.
This seems a small factor when compared to the factor of greater than 108 improvement
of these devices over the pioneering efforts of the late 1950's. Yet, improvements in
Pgision are generally not trivially achieved, and development of methods for increasing
this product require an understanding of the physical properties of the plasma that limit

it.

The fusion product can be increased by raising the plasma pressure, p, or
increasing the confinement time. One method of doing so is to increase the size of the
machine. However, when scaling the machine up to values of Py, required for an
experimental test reactor, such as the International Tokamak Experimental Reactor
(ITER) design,? the technology involved in building and operating such a device is
daunting. One key difficulty is that since the plasma pressure stability limit at fixed
toroidal field, and the confinement time are observed experimentally to scale linearly
with the plasma current in conventional tokamak operation, the extrapolated current
needs to be uncomfortably large. This reality has led a part of the tokamak research
effort toward finding alternate methods of operating a tokamak plasma with the goal of
improving its efficiency. A measure of the efficiency of a magnetic confinement system
is the ratio of the plasma stored energy to the applied confining magnetic field energy, 8
= 24p/B?, where By is the vacuum toroidal field at the plasma geometric center. At

fixed By, maximizing 8 maximizes Py ., and also the fusion power density of a test
























10 Fundamental Equations

the macroscopic behavior of interest. In this section, the equations used to model the

plasma in the second stability region study are presented.

INicholson, D.R., Introduction to Plasma Theory, John Wiley and Sons, New York (1983) 37.

2.0.1 Ideal Magnetohydrodynamics

The equations of magnetohydrodynamics (MHD) model the macroscopic

dynamics of the plasma by representing it as a single, electrically conducting fluid.

They relate the fluid mass density (approximated as the ion mass density), p, the ion

fluid velocity, V, the fluid pressure, p, the current carried by the fluid, J, and the

electric and magnetic fields, E and B, by the following set of equations, written in

MKS units:

P .ve. -
8:+V (pV)=0,
t

p(ﬂ+(V oV)VJ=JxB-Vp,

E+VxB=nlJ,

_.9B
VXE_'&I’

VxB=yuylJ.

(Continuity)

(Momentum)

(Ohm's Law)

(Faraday's Law)

(Ampere's Law)

(2.0.1-1)
(2.0.1-2)
(2.0.1 - 3)
(2.0.1 - 4)
(2.0.1 - 5)
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primary interest for tokamak physics. Particle dynamics along the field lines are
unconstrained, and therefore a kinetic treatment is necessary to model the motion of

particles parallel to the magnetic field in low collisionality plasmas.

2.0.1.1 Equilibrium

In the analysis of tokamak stability, the first step is to establish an initial plasma
equilibrium state. Consider the ideal MHD equations in steady state without flow. The

relevant equations (2.0.1 - 2), (2.0.1 - 5), and (2.0.1 - 7) reduce to

IxB=Vp (2.0.1.1 - 1)
VxB=ypJ, ‘ 2.0.1.1 - 2)
VeB=0. (2.0.1.1 - 3)

These are the standard ideal MHD equilibrium equations. By specifying the magnetic
field, pressure profile, and the appropriate boundary conditions, Egs. (2.0.1.1 -1) -
(2.0.1.1 - 3) define the state of force balance between the plasma pressure and the

confining magnetic field pressure.












Fundamental Equations

Two identities that will be useful in the following section are the definitions of

the gradient and the divergence operators,

Vs = -g%ei, and (2.0.1.1.1 - 10)
i
Vegs= %a(%if—ﬂ, (2.0.1.1.1 - 11)

where 0/ represents the flux coordinates, and summation over repeated indices is
implied. A more complete list of identities defining operators in these coordinates can

be found in the literature containing generalized curvilinear coordinates.1»2

1 Borisenko, A.L, and Tarapov, LE., Vector and Tensor Analysis with Applications, Dover, New
York (1968) 23.
2Bateman, G., MHD Instabilities, MIT Press, Cambridge, Mass. (1978) 125.

2.0.1.1.2 Grad-Shafranov Equation

In systems with toroidal axisymmetry, the coupled partial differential equations
(p.d.e.s) describing ideal MHD equilibrium (2.0.1.1 - 1) - (2.0.1.1 - 3), can be
reduced to a non-linear, two-dimensional, elliptic p.d.e., thereby simplifying the
solution procedure. The solution of this form of the equilibrium equation, known as the
Grad-Shafranov equationl-4, is further simplified when considered in the flux

coordinate system outlined in the previous section.

The first step in deriving the Grad-Shafranov equation in flux coordinates is to

consider the axisymmetric flux coordinate form for the magnetic field,
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_R[ 9 (8"7), 2 (8123
Jf‘y[aw(;gz + 36| =2 | _ (2.0.1.1.2-7)

The final step is the evaluation of Eq. (2.0.1.1 - 1). Recalling that p is a flux function,
p - p(y),

Lop' (W) Vy=-g33(gVg + (RIPVY) +
[(VyxVg+gVg)e Vo] Ve. (20.1.12-8)

Note that g must be a flux function, g — g(w), to restrict the right hand side of this
equation to having only a Vy component, and the result is the Grad-Shafranov

equation in axisymmetric flux coordinates,

R 9 (IVyity L9 ((VyeVe) 5)| _
J|ow| R? d6 R? -

- 1g R2p"(y) - gg' (). (2.0.1.12 - 9)

Solution of this equation for y requires the specification of the two free functions, p(y)
and g(y), and appropriate boundary conditions. Since the free functions depend on the
solution, the full two-dimensional solution of (2.0.1.1.2 - 9) generally requires an
iterative technique for solution. Computational solution of this equation however, is
simplified since the derivatives and boundary conditions are evaluated in the natural
flux coordinates. Also, in lieu of the toroidal field flux function, g(y), the magnetic

field safety factor, g, is sometimes used as the second free function. In so doing, the

relation
2r 2r
_1 [ BeVo . _gw (I :
q’(',l’f)—zJt J B e Vo dg '’ = o J 2 ae (2.0.1.1.2 - 10)

0
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Therefore, there has been, and still remains, a considerable theoretical effort to
demonstrate under what conditions an initially established equilibrium state will return
to equilibrium when perturbed, and similarly, under what conditions the plasma will
depart from its initial state. This demonstration forms the basis of plasma stability

analysis.

While a plasma will exhibit kinetic and resistive instabilities,?-3 the present
work limits the scope to the examination of ideal MHD instabilities, that generally
match the driving forces of the plasma against the restoring forces of the confining
magnetic field. These instabilities are important to suppress as a first priority, since they
are the fastest growing modes that lead to significant loss of confinement or complete
collapse of the discharge. In this section, the basic equations that form the foundation
for the numerical and computational stability analysis shown throughout the remainder
of this work are presented. Additional detzlil of the derivations can be found in the book

by Freidberg.4

Since ideal MHD instabilities can be so detrimental to plasma performance, and
since their growth rates are fast when measured on a typical experimental timescale, it is
generally more important to determine how to avoid these modes entirely, rather than
examining their non-linear evolution or saturated states. Therefore, a simplification of
the analysis is made by considering a linear stability analysis. The initial state
considered is that of ideal MHD equilibrium defined by Egs. (2.0.1.1 - 1) - (2.0.1.1 -
3). Perturbations of the form S(x,r) = Sp(x) + §1(x,t) are introduced on the
background equilibrium. The momentum Eq. (2.0.1 - 2) is then linearized, with the

result
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2.0.2 Particle and Energy Transport

The ideal MHD model is inadequate for modelling the transport of particles,
energy, and magnetic field in a tokamak. Treating the plasma as a combination of
interpenetrating electron and ion fluids, the two fluid model allows a reasonable model
for tokamak transport for times larger than the Alfvén time, characteristic of ideal

MHD.

The magnetic field of a tokamak confines a plasma by reducing plasma particle
and energy flow perpendicular to B. From a single particle standpoint, individual
particles perform Larmor orbits about B (the helical magnetic field serves to cancel any
net VB particle drifts) until they collide with other particles, causing particle and energy
transport across field lines. On the contrary, there is no such confinement parallel to B,
along which particles free-stream unless they collide with other particles. This
asymmetry of behavior perpendicular and parallel to B leads to one of the many
imbalances in timescales characteristic of magnetically confined plasmas. In particular,
the ratio of the transport timescale parallel to B, to the transport timescale perpendicular
to B is large in a tokamak. Since a magnetic field line wraps around the device forming
each magnetic surface, the electron and ion densities and temperatures can each be
considered constant on these surfaces on the perpendicular transport timescale.! This
approximation reduces the general three-dimensional problem into a one-dimensional
transport problem, where the appropriate independent variable is the coordinate
perpendicular to a magnetic flux surface (along V). When evaluating the transport
properties of second region equilibria, where flux surfaces are distorted from being
circular, the general two-dimensional Grad-Shafranov equation (2.0.1.1.2 - 9) must be

determined to evaluate the geometry of the  surfaces. The one-dimensional transport
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9
OV ch> v = [n dadx . (2.02 - 14)
a9
0

In evaluating the averaged transport equations, it is desirable that particle and energy
fluxes be specified relative to the magnetic flux surfaces, that are generally in motion.
The following identity will be useful in converting to the flux surface reference frame.
The time derivative of a volume integrated quantity on a flux surface is related to the

integrated quantity at constant x by

d dh huVeVy
= h(x,t) d3x = J = d3x + § das (2.0.2 - 15)
BT Iu,I dtl, IV
where u¥ is the velocity of the flux surface.
The flux surface averaged particle conservation equation is obtained by

integrating Eq. (2.0.2 - 3) over space and converting the integrated divergence by the

divergence theorem,

an 43 nueVy .o
J.atlxdx+§ Vi ds=0. (2.0.2 - 16)

Converting to the flux surface reference frame using Eq. (2.0.2 - 15) and changing

variables from y to ¥ yields,

i 3 ﬂ(u-uﬂ).VT} _
arlﬂjnd x+§ o S =0. 2.0.2 - 17)
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3. 239 53
5 V() 3l [V(ﬂ) <nT>] +
-(;%[V'(ﬂ) (<qh> + %<T n(u-ud)e V19>ﬂ =V(9)<Q>. (2.0.2-22)

A brief discussion of the sources, sinks, and transport coefficients employed in the
modelling of the second stability region transition will be given in Sections 3.2.1 and

3.2.2.
The third transport equation describes the diffusion of the poloidal magnetic
field. Since the poloidal field is non-uniform over a flux surface, an “effective” poloidal

field

oy 1
By eff = (ggj R, ) (2.0.2 - 23)

is used. The time evolution equation is given by

dB, d (%) d (V(HB
eff — 77[18 o peff 2 .54
dr |y aﬁLOV'(ﬂ) <g33> 9 2(1%) <IVoi©e >ﬂ

L aven) (202 24)

where 7 is the resistivity parallel to B, and J e, represents non-inductive current
drive, for example, due to neutral beams or diffusion driven bootstrap current.® Asin
the calculation of the standard hydromagnetic equation, Eq. (2.0.2 - 24) is obtained by
combining Egs. (2.0.1 - 3) - (2.0.1 - 5). The detail of the calculation can be found in
Ref. [5]
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“unstable” region. Since the instability is thought to create alternate physical effects,
such as enhanced transport that would in turn reduce |p'(y)l bringing the plasma back to
a stable state,2 equilibria are thought not to be able to exist in steady state in the unstable
region. However, there are tokamak equilibria that exhibit favorable stability properties
such that no unstable region in p'(y) exists, either on a limited group of flux surfaces,
or across the entire plasma minor radius. Attaining these equilibria in an experimental
device may allow access to large p’(y), or large 8 operation in a tokamak without
encountering an unstable region. By theoretically investigating the stability of different
classes of equilibria, the most favorable candidates to reach the second region can be
ascertained, thereby providing a guide to achievement of a second region equilibrium in

an experimental device.

Both Bruno Coppi at MIT and J.B. Taylor at Culham Laboratory, England,
claim the discovery of the second stabilit}; region. After an experimental review talk of
second stability operation in tokamaks given by Mike Mauel of Columbia U. at the
1989 Sherwood theory conference, both Coppi and Taylor stood up and declared that
their respective research groups had theoretically established the existence of the second
region. The findings of the two groups had been published in 1978, however, the
relevant Culham publication of Connor, Hastie, and Taylor3, did not show the second
stable branch of the ballooning mode. Quite seriously, Taylor admitted at the meeting
that the Culham group had indeed discovered the second stable branch, but that he
himself forced the other researchers to remove the data since he was convinced that the
result was a numerical artifact of the model! This was very enlightening, since
previously it was puzzling why the results of Ref. [3] did not contain the second stable
region, when the model that was used did include it. Nevertheless, Taylor insisted that
his group had made the discovery, although he still believes that the second region is a

numerical fiction that is not obtainable experimentally.






3_6 Second Stability Region

3.0.1 Historical Overview of Second Region Research

Since the second stability region is a characteristic of the ballooning mode, the
foundation of ballooning modes is itself an important point of departure for a review of
research. The stability criteria of interchange modes in cylindrical!, and toroidal2.3
geometry are logical predecessors of the more general ballooning mode stability
studies. A fair amount of analytical research of the interchange mode in toroidal
geometry was performed by the Soviets in the late 1960’s and early 1970°s.47 While
ballooning perturbations were not explicitly analyzed, reference is made to the
ballooning mode,3? (see Ref. contained in Kadomtsev, et al. 1967), a perturbation that
is pronounced toward the outboard side of the plasma where the toroidal field
component of the normal field line curvature is unfavorable. An additional insight
relevant to the ballooning mode second-stability region is contained in the work of
Mikhailovskii (1974), where the possibility of stability at large pressure gradient is
explored.>:6 However, it would be approximately five years until the self-stabilizing
nature of the ballooning mode was appreciated. A key reason for the delay was the lack
of a published prescription for analyzing large toroidal mode number ballooning

modes.

Work of the late 1970’s not only provided sophisticated theoretical models for
ideal MHD stability, but also a wealth of numerical studies that supplied exact solution
of these models. The notable references are that of Grimm, et al.19 (1975) on the
stability of small-n ideal MHD modes (standard reference for the PEST stability code)
and the complementary studies of the large-n modes, that use the reduced form of the
potential energy functional in the large-» limit to derive the ballooning equation.i1-13

An advantage of the large-n ballooning approximation is the decoupling of the global
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stability of the ballooning mode. Analytical studies also began on determining the
stability boundaries of the ballooning mode.!# The multiple scale analysis of Pogutse
and Yurchenko (1978) produced a model of stability appropriate for small magnetic
field shear and low B, but for finite & The result of this work displayed a “second
stability region” for small values of § and & (produced by a term linear in p’ and €) but
since terms greater than O(g2) were dropped, the stable region did not extend
indefinitely to large pressure gradient. The inclusion of finite € produced a stable path
from the first to “second” stable regions. This stabilizing effect is due to the decrease in
the magnitude of x;, in the unfavorable curvature region at finite &, and is known more
colloquially as the “geometric magnetic well”. This effect holds the potential of
providing a direct access path to the second region, however, it will be shown that
competing effects can also lead to destabilization of the large-n modes when both finite
€ and large Shafranov shift are included. Published concurrently was a numerical re-
evaluation of the (S,c) model by Lortz and Nuhrenberg!? that clearly shows the second
stable branch of the ballooning mode. Recall that since finite £ effects are dropped in

this model, no stable path between the first and second region was shown.

The 1978 TAEA meeting (Proc. 7th Int. Conf., Innsbruck) included many
papers relevant to future second region studies.20-23 In a study of localized
displacements, Mercier included the prospect of a kidney bean shaped equilibrium as
providing enhanced stability properties. Zakharov introduced the shifted circular model
of equilibrium to the stability problem and included both finite € and Shafranov shift,
0. Unfortunately, terms of order £0’(r) were dropped. It will be shown in Chapter 3.1
that it is precisely these terms that lead to instability of the large-n modes at low A.
Sykes, et al. applied the ideal MHD stability analysis to the JET tokamak, and
introduced the stabilizing effect of raising the axis value of ¢ on the ballooning mode.

This paper shows the stabilizing effect of g and the characteristic outward shiit of the
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the destabilizing curvature region is mentioned as a cause for the reduced growth rate of
the mode at large values of 8. In the Comments article, the infinite A, shifted circular
flux surface model of equilibrium is used to demonstrate the existence of the second
stability region. The quasimode prescription is not used in the analysis. Instead, a
simpler model known as the “disconnected approximation™0 is used. This model
assumes that the eigenfunction is independent of the global magnetic field shear and that
the interval of integration is one poloidal period. The perturbation peaks at the outboard
side of the plasma and is assumed to be zero on the inboard side, thereby displaying the
ballooning character of the mode. Fortunately, these assumptions themselves do not
artificially produce the enhanced stability that leads to the formation of the second

region, however, the stability boundaries obtained are not quantitatively accurate.

Work of the early 1980’s emphasized the effects of tokamak parameters, plasma
boundary shape, and plasma profiles on stability. Second region stability was
somewhat neglected in the mid 1980’s due to the emphasis of the scaling of an
instability induced first region 3 limit. However, methods of direct access to the second
region still provided interesting second region research. A particularly important
reference on the effects of A on ballooning stability by Monticello, et al.31 is the first to
mention the destabilizing effect of small A on the ballooning mode for flux conserving
equilibria. This is a key point of the present work, addressed in Section 3.1.6.1 and is
caused by the destabilizing normal curvature term produced by the poloidal field. This
characteristic has been neglected in almost all prior and subsequent second region
studies. The work of Strauss, et al.32 examined the stability of both large and small-n
ballooning modes in high f equilibria. The results showed that a second stable region
exists for these modes, and that magnetic field shear can be stabilizing. The work of
Greene and Chance? is perhaps the most cited reference with regard to the physical

effects of the onset of second stability. Accurate, two-dimensional numerical equilibria
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of the bean shape by Grimm, et al. discussed later, this is the only reference found that

mentions the effect. This will be investigated in detail in the present study.

Analytic work on computing the ballooning mode stability boundaries at small
global shear was extended in 1982.35,36 The work of Mikhailovskii, et al. in particular
included a stability criteria computed for finite A, § ~ Q(&2), circular boundary plasma,
and pressure gradients terms retained to fourth order. The result, a necessary condition
for stability, repeated here for convenience is

52 13
2 128

+ae(1 : ;—2)-%Sa2+ 1 ot >0. (3.0.1 - 1)
The zeroth order term in o represents the stabilizing effect of the magnetic field shear.
The linear term in ¢ is the stabilizing e_:ffcct of the geometric magnetic well. The
quadratic term is a destabilizing term due to the coupling of S and ¢ . The new term is
the stabilizing fourth order pressure gradient term that produces the second stability
region in this model. Therefore, both the second stable region and a method for direct

access to it are incorporated in the model.

The global stability of a relaxed second region equilibrium state was examined
by Coppi, Crew, and Ramos37 (1983). One conclusion, although not verified by later
numerical work, is the existence of a “second stability” region for the internal kink
modes. More important is the consideration of the large-n stability across the entire

plasma. The result is illustrated as a diagram, reprinted below for convenience.






44  Second Stability Region

properties across the plasma minor radius (global). While the unstable region shown in
Fig. 3.0.1-1 will generally differ for self-consistently calculated, two-dimensional
equilibria of different f3,, it schematically represents an important diagnostic diagram
for global ballooning mode stability. These diagrams will be used throughout the
present analysis and will be considered in more detail in Section 3.1.5. In addition to
the global examination of the plasma equilibrium, the ability of crossing from the first
to the second stability region is mentioned. The point is made that a flux conserving
equilibrium with gy > 1.5 might access the second region without suffering an
instability throughout the heating process. This idea follows the pioneering work of
Sykes mentioned earlier in increasing the plasma stability by raising gq. Therefore, this
work changed the emphasis of second region research from proving its theoretical

existence to showing how it could be accessed in an experimental device.

As with the work of Sykes on the enhanced stability of the gy > 1
configuration, the pioneering work of Mercier on the enhanced stability of bean shaped
plasmas was expanded by the work of Chance, Jardin, and Stix,38 who showed that a
bean shaped plasma of sufficient indentation also has direct access to the second region.
Reference to the work of Mercier is made, as well as a numerical shape optimization
study of Miller and Moore.3? The significant stabilizing effects of the bean shape are
the externally induced axis shift produced by the indentation and the inherent shortening
of the connection length. It is also shown that the bean shape allows the zero point of
the local shear to more readily migrate into the favorable curvature region. In particular,
the local shear null can appear in the favorable curvature region at low S, before an
instability can onset, thereby allowing direct access to the second region on all flux
surfaces. The theory was convincing enough to persuade the Department of Energy to
support the design and construction of a bean shaped experiment whose goal was to

access the second region (PBX).#0 This device, and its successor, PBX-M, have had
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it does illustrate that divertor plasmas may be additional candidates for enhanced
ballooning stability and facilitate local direct access to the second region. Recent work
by Peng, et al.56 has investigated more sophisticated models of computing the

ballooning stability near a separatrix.

Access to second stability was studied in two papers presented at the 1986
IAEA meeting (Proc. 11th Int. Conf. Kyoto).57.38 The work of Todd et al.
demonstrated a stable trajectory of two-dimensional, numerically generated equilibria
with elevated values of g to the second region for ideal MHD modes. External kink
modes are stabilized by a conducting shell surrounding the plasma surface. It is also
shown that as the plasma enters the second stability region to large-n ballooning modes,
the conducting wall may be positioned further away from the plasma surface,
illustrating the stabilization of the pressure driven component of the high 8 kink mode
suggested by Coppi, Crew, and Ramos (1983). However, a second stability region to
the kink mode is not found without a sufficiently close fitting conducting wall. In
addition, small-» internal modes in regions of small shear, more colloquially known as
“infernal” modes,?? are described as being an additional deterrent to second region
access since they can be unstable when large-n modes are stable, contrary to the
prediction of -CHT that large-n modes are the least stable. The work of Yamazaki, et al.,
discusses the stability of conventional cross-section shapes at elevated qp and

introduces the “crescent” shape as a candidate for improved ballooning stability

Contemporary research on the second stability region (late 1980’s) focussed on
accessing the second stable region in experimental devices and improving models that
determine the scaling of the second region boundary. While all previous studies on
direct access to the second region used plasma pressure and g profiles that were

prescribed generically, the independent work of several groups®0-63 considered the
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stability region. In addition, the first high sﬁp experiments on TFTR designed by a
Columbia-Princeton collaboration were presented at this meeting. The preliminary
results showed that the previous eﬁp ~ (0.7 limit observed in TFTR was exceeded and
equilibria with sﬁp = 1.3 were established. Preliminary stability analysis of these
equilibria shows that S must be raised in these plasmas to place them in the second
stable region on all flux surfaces. However, the edge of these plasmas display a direct
access window to the second region and some flux surfaces may be slightly into the
second stable region. Future experiments hope to achieve high sﬁp plasmas with
improved confinement, by either establishing the enhanced confinement or “supershot”
regime, operating at higher plasma current, or possibly discovering an enhanced

confinement regime in the second stability region.62.79
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3.0.2.2 Short L Wavelength Ballooning Instabilities

Another class of instabilities that are believed to limit 3 in tokamaks is the large-n
ballooning mode. This instability is driven by the pressure gradient term of 6W , and
has long parallel and short perpendicular wavelengths (k  a >> 1). The mode is internal
and is the toroidal generalization to the cylindrical flute instability, and manifests the
ballooning characteristic of the perturbation increasing in the unfavorable curvature

region. A schematic illustration of the mode structure is shown in Fig. 3.0.2.2 - 1.

A
z

Fig. 3.0.2.2-1: Schematic illustration of mode structure for the large-n ballooning
mode in a tokamak. The fluted perturbation displays the typical ballooning
characteristic of having its largest amplitude on the outboard side of the plasma
where the field line curvature is unfavorable.
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&, =& exp(iS;) =&, exp(nl’); k, = VS, (303-1)

where é_ | varies slowly along B (on the equilibrium length scale) and VS, is large, so
that the exponential varies rapidly perpendicular to B. This description allows the
amplitude of (3.0.3 - 1) to model the ballooning character of the mode by allowing the
slow change of the amplitude as the field line travels from good to bad curvature

regions. The eikonal can then be chosen as constant along the field line to all orders,

BeVS.=0. (3.0.3 - 2)

The exponential factor models the short perpendicular wavelength of the mode. The
eikonal can be evaluated in the tokamak flux coordinates by using (3.0.3 - 2). With B
given by (2.0.1.1.2 - 1) and the gradient operator by (2.0.1.1.1 - 10),

1d g d

BOV—-“‘-EB—'B-{-RZ%. (303-3)
Integrating (3.0.3 - 2) by separation of variables gives
g
78 '
Se=n(-@p+ ]—gdﬂ + F(y)) . (3.03-4) .

0

The toroidal mode number n will serve as an expansion parameter. By taking the n —
oo limit, VS, will be a rapidly varying function, thus modeling short L wavelength,
“large-n" ballooning modes. The arbitrary function F(y) is usually absorbed into the

integral, and after eliminating g by using (2.0.1.1.2 - 10), the result is
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specify 7, for example, yielding a Hamada coordinate system,2 with 7 = 1, or the
PEST coordinate system,3 with o< R2, The latter case gives the arbitrary radial

wavenumber

LkDy=a W 6w . (303 - )

Although this result is simpler, it is more convenient for computational reasons to allow
Jto be specified, so equations relevant to a general Jacobian should be used. A general
Jacobian specification will also be useful when examining the ballooning equation
analytically by specifying the inverse transformation of flux coordinates in Chapter 3.1.

Therefore, the large-n ballooning equation will be derived below for a general Jacobian.

A dilemma now arises concerning the reality of the model eigenfunction (3.0.3 -
1) that was left unresolved in early analy-ses of the large-n ballooning mode. Since S,
given by (3.0.3 - 5) is only periodic on rational surfaces, generally it will not produce a
physically acceptable eigenfuction due to the lack of periodicity. This problem was
solved by Glasser,* and more popularly, by Connor, et al.,> by adopting the
quasimode form of the eigenfunction.® By doing so, the problem is extended to an
infinite domain in 6 and periodicity constraints are relaxed. The resulting eigenfunction
is not the physical mode, but rather a “quasimode”. The physical mode can be

constructed from a linear superposition of quasimodes

€ real (W,0)= 2& quasi (W,0 + 2xn[) . (3.03-9)
£
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incompressible can be found. This choice of eigenfunction minimizes the plasma

compression term. Therefore, § is to be chosen such that

VeE=0 (3.0.3 - 14)

is identically satisfied. After substituting the eikonal form of &, the remaining terms in

oW take the form (note zero subscripts denoting equilibrium quantities have been

dropped for clarity)
1 (1Q° B2 . 2
OWer=5 [——+ — |V o +iE, e nVI + 28, o ¢
=3 | |V e&) +i&, on £ 0 x|

2(8, . x)(g;-vp)-%}EleoQde. (3.03 - 15)

Expanding the perturbation in powers of n’},

£ =kg+n e +0OMmD), (3.0.3 - 16)
the lowest order contribution is

5W—"—ZJ|B|2|§ e VII% + O(1) 3.0.3 - 17
f_z.llo -LO : ( - )

Therefore to minimize 6Wy at this order, & 1q Is chosen to be perpendicular to the
wavevector, and the lowest order é)‘Wf vanishes. Since it is already perpendicular to B,
the lowest order perturbation can then be written in the form

BxVIHr
EJLO = é IB”VF[ ’ (3.03 = 18)
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are the normal and geodesic curvatures of the magnetic field line. An additional variable
related to Ap is introduced,

A EAPIVMZ _VyeVr

Bl - IBI . (3.0.3 - 29)
By taking the curl of (3.0.3 - 25) then dotting into (B x V), notice that
BxVy BxVy
BeVA, = eV x =S5 3.03-30
P vy Vyi2 el ( ‘

is the local shear. Therefore, Ap is identified as the integrated local shear. Also,

B2

W}Iz =(1+A)——= , 3.0.3-31
( v 2 ( )

and
VI'xBex _—EV (Kn - :‘i:g,) . (3.0.3 - 32)

substituting (3.0.3 - 3), (3.0.3 - 31), and (3.0.3 - 32) into (3.0.3 - 24), the large-n

ballooning equation becomes

19 (1+ A28, 2190 (W)
a8 )R (s Ak

1+ A2
+pa>2( lVyAz ]c‘jﬂ =0. (3.0.3 - 33)
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3.0.4 Local Shear Reversal

An unstable region to large-n bailooning modes forms in a finite 8 tokamak
equilibrium because the destabilizing effect of unfavorable field line curvature can
dominate the stabilizing effect of field line bending. These two conditions are satisfied
when the local shear of the magnetic field lines is sufficiently weak in the bad curvature
region of the tokamak. As a rule of thumb, a flux surface is usually unstable when the
local shear has a null point in the unfavorable curvature region. Therefore, physical
effects that increase the magnitude of the local shear in the tokamak are stabilizing. The
origin of a second stability region can be explained in this context. In a low [ tokamak,
the field lines on the inner flux surfaces travel more quickly in the poloidal direction
than the outer ones. As the pressure gradient is increased in a tokamak, the Shafranov
shift and p’ driven Phirsch-Schluter currents increase, and the local shear can decrease
in magnitude in the bad curvature region. This is caused by a strengthening of the

poloidal field on the outboard side of the machine that causes the local wrapping of the
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marginal stability on the second region boundary. Therefore, all effects are retained in
the present modeling, and coupling between effects such as large Shafranov shift and

aspect ratio that affect stability are examined.
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3.1.1 Objective and Key Results

The objective of this study is to determine the behavior of the local pressure
gradient and the global § variables that define the marginal second region threshold
with respect to variations in q profile, A, and the plasma outer boundary shaping. The
stability analysis is carried out on a collection of numerically computed, two-
dimensional, finite A equilibria that have pressure profiles that are marginally stable at

the second region boundary to large-~ ballooning modes. A novel feature of this study
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3.1.2 Predictor and Response Variables

The global predictor variables used for the modeling of the marginal second
region boundary are the basic variables that describe the plasma equilibrium. The
plasma major and minor radii are contracted into the tokamak aspect ratio. The plasma

current and toroidal field are combined in a “cylindrical” g variable, defined as

__am)?2B(M [+ 20 + 252))]
*=5R(m)](MA)[ ) . (3.1.2-1)

The ¢ profile is used as one of the free functions that specifies the equilibrium and is

defined in this analysis as

q(¥) =40+ qa- a0 ((¥ - Y0)/ (¥4 - ¥0))%a . (3.1.2 - 2)

Here, the subscripts 'a’ and '0' correspond to the plasma edge and magnetic axis
values, respectively. Therefore, three scalar variables are introduced that determine the
safety factor, gy, q,, and o which is a profile shape parameter. Note that the other free
function, p(v), is determined by the second region marginal stability constraint and is

not an independent variable. Finally, the outer boundary of the plasma is described by

the transformation
xp =Ry + a cos(8 + &sin()) , (3.12-3
zp = Kacos(@) (3.1.2 - 4)

where xand 6 are the elongation and triangularity of the plasma boundary.
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computed as the inverse mapping ¥ = YR, Z). The equilibria are assumed to possess
up-down symmetry with the number of meshpoints on the upper half plane typically
being (y, 6):(50,65). The distribution of the grid points over the poloidal angle
variable @ is determined by a prescribed Jacobian, typically chosen to produce equal
arc length spacing between adjacent gridpoints (y;, 6)) and (v, 6j+7). An initial guess
is provided for ¥(R, Z) and is iterated upon until both Eq. (2.0.1.1.2 - 9) and the
Jacobian constraint are satisfied [see Ref. 1 for an excellent, detailed description of this
process]. The derivatives that are contained in these two constraint equations are
computed by finite difference approximations accurate to O(A2) in the mesh spacing
parameter, &, and are coﬁsidered satistied when the residuals of these equations are less

than some specified tolerance, typically 10-7 for the normalized y variable, 0 < f < 1.

This routine additionally writes output files for use in computing the stability of
the equilibrium by the PEST and STBAL ideal MHD stability codes. EQGRUM also
accepts input data from 11/, dimensional transport codes to compute equilibria for

stability analysis.

IDelucia, J., Jardin, S.C., and Todd, A.M.M., J. Comp. Phys. 37 (1980) 83.

3.1.3.1.2 High-n Mode Marginal Second Region Solver

STBAL,! written by Mike Phillips, solves the large-» mode ballooning equaton
(3.0.3 - 33) as an eigenvalue problem on each y surface for w? and &, over the
poloidal angle variable in the infinite “quasimode” space. In the present study, the

equation is solved for the marginally stable quasimode. When solved with @2 = 0,
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1Delucia, J., Jardin, S.C., and Todd, A.M.M., J. Comp. Phys. 37 (1980) 83.

3.1.4.2 Boundary Conditions and Edge Current Density

While iterating the equilibria to marginal second region stability, g is held
constant and p is allowed to vary by matching the computed second region boundary.
The current density is unconstrained in this procedure, and as expected, it is found that
cases with large p” at the plasma edge also have a large current density at the plasma
edge.

It is presently a matter of some controversy whether or not large pressure
gradients and current densities can be -sustained at the plasma edge in an actual
tokamak. One problem is deciding where the “edge” of the plasma is actually located in
a real machine. This is usually defined by a divertor or a limiter, while most MHD
stability analyses, including the present one, assume that the edge is a rigid, perfectly
conducting boundary. Another problem is that the current density is difficult to measure
in a large tokamak experiment, so direct experimental verification is essentially
nonexistent. Also, almost all tokamaks run with pressure gradients in the first stability
region, and except for PBX, only recently have large tokamaks even considered
operation at pressure gradients characteristic of the second stability region. Finally, H-
mode plasma operation, for example in the DIII-D tokamak, displays very steep density
gradients at the plasma edge. While this H-mode edge plasma is not in the second

stability region, the gradients can occur on scale lengths that are too small to be

described by ideal MHD.
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that finite 6y is necessary in computing the eigenfunction that maximizes the
destabilization of the second region boundary. In contrast, studies of the marginal
second region boundary of fully two-dimensional equilibria4-3.6 show that the
destabilization of the second region boundary due to the variation of 6 is small and in
most cases has a negligible effect on the pressure gradient above which second stability
is attained. In fact, stabilization is seen on many unstable flux surfaces when 6 is
taken to be finite. The discrepancy can be understood when the integrated local shear is
examined in the (S,a) model and compared to more sophisticated numerical or analytic
models. The pressure gradient driven modulation of the integrated local shear, which is
responsible for the generation of the second stability region by reversal of the local
shear,7:8 is exaggerated in the (S,&) model. This leads to inflated values of the local
shear and causes a stabilizing effect in the ballooning equation that must be
compensated by finite 6 to yield the most unstable mode. However, in more complete
models of equilibria and stability, the effect of geometry on the local shear decreases the
role of the pressure gradient in the shear reversal process as the second region is
approached. This effect greatly decreases the influence of finite 8, on the marginal

second stability boundary.

The stabilizing effect of 6y can be understood by examining the large-n
ballooning equation at marginal stability, Eq. (3.1.4.1 - 1). The arbitrary function )
appears in A as an arbitrary constant of integration. This can be seen by combining
Egs. (3.0.3 - 26), (3.0.3 - 6), and the Grad-Shafranov equation (2.0.1.1.2 - 9), with

the result,
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the numerically generated equilibria, it is convenient to decompose it into geometric,

pressure gradient, and magnetic field shear components as

A, =A§e0m +Ag' +Ag’ (3.143 - 3)
where
0
JB, 2 o0z
geom — _ LN ’
A3 JRZBP [2"1’ *IR B, ae')de ¥
)
4 2
sz 7d6’
R Bp 2w
bp J B, 2 oz ,
T R%3, (2x,, * IR B, ae,JdG ,(3.1.43 - 4)
IJ‘B i
2
R2Bp
§ .
i 9 )
JB2 |
3 2d9
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AP = pgp'(y) JRBZM 2 JRB2d9 (3.1.4.3 - 5)
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As o increases to cause the reversal of S|,.,;, 0° subsequently increases to maintain
equilibrium, and the stabilizing effect is reduced. As |67 approaches its limiting value of
unity, the effect of geometry on the modulation of A, dominates over the effect of the
local pressure gradient. Therefore, if any decrease in the stability of the second region
boundary is found, it is seen at small y where o can be greater than S, yet o’ is still
small. This occurs only near the magnetic axis in the two dimensional marginally stable
elongated equilibria with no triangularity, that exhibit the largest threshold values of «

needed to reach second stability.4

6.0 ‘
4.0 :_. k—
20| N

7/

A, 0.0 — =
20 /L o'=-092
s / \
-4.0 7
-6.0
=4.0 -2.0 0.0 2.0 4.0
6

Fig. 3.1.43 - 5: Normalized integrated local shear for (S,c) and shifted circular
Jlux surface stability models; S = 1.3, ¢ =4.9,

1Connor, J.W., Hastie, R.J., Taylor, 1.B., Phys. Rev. Lett. 40 (1978) 398; Proc. R. Soc. London
Ser. A 365 (1979) 1.

2Chen, Liu, Bondeson, A., Chance, M.S., Nuclear Fusion 27 (1987) 1918.
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When g > 1, the large increase in 85 as A is decreased is no longer apparent.
In fact, for sufficiently low A and sufficiently high gy, 8, decreases as A decreases
(Fig. 3.1.6.1 - 1). Fig. 3.1.6.1 - 3 shows that when gy = 2.0 at A < 4.5, for equilibria
with ¢, = 1.1, there is local direct access on all surfaces (global access), and Ba=0.
The global (§,) diagram for the o, =2.5 case (Fig. 3.1.6.1 - 4) shows that the slope _
of o, is greatly reduced for gy > 1, and that the linear relationship between @, and §
returns. Notice however that a direct access window does not appear at the edge as g
is increased. Therefore, the reduction of the slope of 5, and not the appearance of a
local direct access window at the plasma edge, is responsible for the reduction of 3, at
low A and high gy. Global direct access occurs suddenly as gy is increased, and occurs
first in lower A configurations. Fig. 3.1.6.1 - 3 also shows that at high A, the
sensitivity of 3, to variations in gy is reduced. Increasing g decreases Efp, atall A,
€fp2 is shown to be insensitive to A at low A, but there is a marked decrease of fp,

toward zero as global direct access is apprz)ached atlow A and high gq,.
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Global Alpha vs. Psi : Phillips Diagram
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Fig. 3.1.6.1 - 4: Global stability diagrams for A=3 cases of Fig 3.1.6.1-1: gp=1.01,
L5, 2.0, o, = 2.5. Note that the linear relation of Oz to § returns as qg increases.
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As a guide to the origins of the stabilizing effect, consider the ballooning equation

(3.1.4.1 - 1) for the shifted circular flux surface model of equilibrium (Section 3.1.3.2)

which yields
A2
:F! 1+ ——'
g 4 & rBg . A K _
96| Rr¥, 96 '(qw,Ja’ﬂR ("n -~ |§=0 (3.1.6.1-1)
with no € ordering, and
A =S (8-8p) +(¢ o' + ) sin(6) - 7 sin(Gp) + O(e) . (3.1.6.1-2)

See Eqgs. (3.1.4.3 - 11) and (3.1.4.3 - 12) for the definitions of #, 1, and 0. As |07l
increases, Scriy increases, thereby making local direct access easier. This enhanced
stability is caused by the shortening of the connection length between the good and bad
curvature regions of xj, in the tokamak3 and is expressed mathematically by the #2
factor that multiplies x, in Eq. (3.1.6.1 - 1), reducing the instability drive as lo'
increases. For gp ~ 1 in the marginally stable equilibria (Fig. 3.1.6.1 - 5), lo”l is
sufficiently large at the plasma edge such that § < S.r;; and an access window forms.
However, as qg increases, the shift of the flux surfaces decreases. In so doing, Sy
decreases more quickly than §, and the edge access window is lost. The other key
aspect that is noticeable in this model is the reduction of the pressure gradient
modulation in the integrated local shear as discussed in Section (3.1.4.2). Specifically,

512
)( )

the & component is reduced by the factor ( 1-072 . Therefore, although the A
stabilizing terms are increased by factors of (1/#2) , A is similarly decreased, and the

strong stabilizing effect is reduced.
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3.1.6.3 Plasma Shaping Effects

Elongation without triangularity increases S, (Fig. 3.1.6.3 - 1.). The global
(§,) diagram shows that the slope of ap increases as a function of S as x increases
and that there is no longer a direct access window at the edge. Consequently, the edge
current density is a large fraction of the central current den'sity. These negative

characteristics show that increasing xat 6 = 0 is unfavorable in attaining second region

operation. |
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Fig. 3.1.6.3 - 1: By and €By; vs. x and g, for elliptical boundary equilibria: A= 7.5,
gg=4.1, o, = 2.5, 8 =0.
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Fig. 3.1.6.3 - 3: Global stability diagrams for dee-shaped equilibria of Fig 3.1.6.3-2:
é =0, 0.25, 0.5.
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3.1.6.4 Local Direct Access to the Second Region

Although seen numerically and analytically in previous second region studies, !
4 the local direct access window has been studied analytically using low 8 models of
equilibria that do not include important geometric effects such as magnetic shift at high
£fp. One of the key results of the present study is the illustration of the stabilization
and destabilization of the second region boundary on the outer flux surfaces in different
regions of the tokamak operating space. The importance of operating a plasma that
exhibits a local direct access window to high-n modes at the plasma edge is already
being shown in DIII-D, where giﬁnt ELMs are suppressed in such plasmas.5-6 As
remarked in Section 3.1.4.2, an edge access window may be necessary in a second
region plasma to allow the pressure gradient to be reduced to zero in a stable manner at

the plasma edge.

As noted in Section 3.1.5, a local direct access window occurs on flux surfaces

where

S(¥) < Scrie (W). (3.1.6.4 - 1)

This is the general criterion that must be met to have local direct access to the second
stability region. Other conditions for direct access, such as having gy sufficiently larger
than one, are merely prescriptions of the global parameters of the equilibrium chosen to
satisfy (3.1.6.4 - 1). Therefore, local direct access is most easily obtained for an
equilibrium by reducing the global magnetic field shear, S(), or by increasing the
stability of the equilibrium itself by increasing Scri; (). For the simplest models of

stability, these requirements would seem trivial to satisfy, for example, by keeping g,
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Note that the stability calculations of Choe, et al.” for the infinite A, shifted
circular equilibrium model also confirm this finding. Consider the local (S, &) marginal
stability contours for this model as a function of o’(r), reprinted in Fig. 3.1.6.4 - 3.

Superimposed on this diagram are the curves of S;,.4; =0 at 8 =0 for this model. The

expression defining these curves is

5
N b L ) S PR (3.1.64 - 2)
(1+2072)

0=z,
—>Wwerg A

rruma D
NAONNN NN NN

‘SLocaL'—‘ O
Ar @ =0.

Fig. 3.1.6.4 - 3: Local (S,c) marginal stability contours for the infinite A, shifted
circular equilibrium model. Superimposed are the lines Sjpcql =0 at 6=0.
Intersections of these lines and the marginal stability contours yield a good

approximation for Scris.
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3.1.7 Equations Defining the Second Region Stability Threshold

In this section, models for the second region boundary threshold values of €fp,
and ¢, and the local direct access criterion S(¥) < Scr¢ (W), are considered for the

marginally stable, circular boundary equilibria.

3.1.7.1 £f3, Threshold

Bp can be expressed in terms of an integral of ¢ by combining Egs. (3.1.2 - 8)
and (3.1.2 - 9). In general, the integral cannot be solved analytically for an arbitrary
two-dimensional equilibrium. Even the simple case of the shifted circular equilibrium

model (no £ expansion) yields the form

qa

2B, oy r
ﬁp2=(#0[T Js ; pE dq, (3.1.7.1- 1)

40

the difficulty of the solution being primarily the specification of ¢, when a direct access
window appears at the plasma edge. For instance, if only one access window appears

near the edge and oy = 0 when S(y) < S¢rir (W), the appropriate integral form would be

q(.‘rlt

ZTI:BO azr
= 3.17.1-2
Pp2 (#01 Jz js R g3 ( )
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3.2.1 Computational Transport Study

The MHD stability study of the p}cvious section is useful for determining the
behavior of <>y and (Eﬂp)2 while prescribing the pressure and safety factor profiles
independently. In an actual experiment, precise measurement and control of these
profiles is difficult. Therefore; while certain areas of parameter space may seem optimal
for operation of a tokamak in the second stability region, the necessary parameters may
not be experimentally obtained or sustained. A less restrictive approach in modeling
transition to the second region is to allow the equilibrium profiles to evolve toward
second stability by the solution of density, energy, and magnetic field transport
equations, while m:iintaining equilibrium quasi-statically. In the present work, all

| plasma profiles, including the beam deposition profile, evolve self-consistently in this

manner.
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Fig. 3.2.4.1 - 1 is the effect of the neutral beam on the flux surface averaged current

density profile defined as </@B@>/(RBp <1/R>).
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Fig. 3.2.4.1 - 1: Effect of neutral beam on current density, qp=2.45 case. The
current density is plotted as a flux surface averaged quantity <J@B@>/(RB¢p <1/R>).
The current profile flattens and becomes hollow as the off-axis beam heating begins.

The point of tangency of the beam centerline is shifted off-axis, toward the outboard
side of the plasma, in order to broaden the current profile thus raising g,. At the start of
the simulaﬁon, the current density profile relaxes to an ohmic shape. However, shortly
after the beam turns on, half of the plasma current is driven by the beam. Since q is
greater than one throughout the plasma, there is no sawtooth activity. Fig. 3.2.4.1 - 2

shows the evolution of the g profile.
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dee-shaped plasma with R = 1.5m, @ =0.17m, x = 1.5, and & = 0.23 was considered
as a transition case. While a high-n unstable region was encountered near the plasma
edge during the start of the beam heating phase, the time required to make the transition
to the second region was reduced as compared to the circular boundary cases. In
addition, the minimum power required was reduced to 2MW for the dee-shape,
constituting as 23% reduction in the required power to make the transition. This
reduction is due to the reduced size of the unstable region created by the inclusion of the
plasma shaping and the increased value of g that this case displayed. The value of g
was greater than one during the ohmic phase of the discharge simulation, in this case,

qp ~ 1.5 as the beams turned on.

3.2.4.3 Power Requirements for Transition

There is a critical auxiliary power level, P,;; , below which the transition to
second stability does not occur. Since the beam qriven current scales as P Tz/(ng R),
where T, and n, are the electron plasma temperature and density, and P is the beam
power!l, a reduction of the beam power and the accompanying decrease in T, both
conspire to reduce the magnitude of the beam driven current. When the auxiliary power
is less than Py , the current profile is flattened, but the edge flux surfaces do not
cross into second stability. This behavior limits T, on the high-n unstable surfaces near
the plasma edge, thus reducing the beam driven current locally. This reduces g, and the

profiles are again driven toward marginal first region stability.

The minimum power density, Py, / V, needed to accomplish transition to the

second stability region is found to decrease with increasing A. Here, V represents the
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Fig. 3.2.4.3 - 3: Unstable gap in <> as a function of A for transport generated
equilibria; qg~1.6.
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Fig. 3.2.4.3 - 4: <> as a function of power density for A=4. As PIV increases, <fi>
saturates at <f3>}, and increases abruptly to <>, when P/V reaches P .y IV.
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(a)

(b)

Fig. 3.2.5 - 1: Internal mode stability of A=9 transition equilibria. The cases shown
have a conducting wall on the plasma surface. a) Eﬂp = 0.56; n=3 ballooning modes
are unstable and infernal behavior is evident for n<2.5. b) Eﬂp = 0.95; shows a
restabilization of these modes as E[J’p increases toward unity. The second stable
equilibrium with eﬁp = 1 is stable to low n modes withn <5,

Low-n infernal modes have not yet been identified in tokamak experiments, so

their effect on the plasma is unclear. The stability of these internal modes is sensitive to






182 Transition to the Second Region
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Fig. 3.2.5 - 3: Poloidal projection of unstable eigenvectors for n=3 bailooning mode.
The mode localizes on the outer flux surfaces which are high-n unstable.

A low-n external kink mode has also been studied for these equilibria, which is
found to be stabilized by a close fitting conducting wall. Fig. 3.2.5 - 4 shows the
growth rate as a function of wall position for the transition equilibria shown in Fig.
3.2.3 - 3. The n=1 and 2 unstable modes at eBp = 0.5569 contain both pressure
gradient and current driven components, the latter being stabilized as the wall is brought
closer to the plasma. The pressure gradient contribution is strongly unstable in this
external kink-ballooning mode. This is reflected in the extremely small wall-plasma
separation needed to stabilize the n=2 component. The wall radius, (b+a), must have a
value that is 5% larger than the plasma radius (b/a=5%). This restriction is relaxed

substantially as Eﬁp increases and the second region is reached. The most restrictive
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observed. In this section, the consequences of the results of the present work are
discussed in the context of a proposed second region experiment at Columbia
University, SRX, and the two large tokamak experiments in the U.S., TFTR at the

Princeton Plasma Physics Laboratory, and DIII-D at General Atomics.

1Bhattacharjee, A., lacono, R., Marshall, T.C., Mauel, M.E., Navratil, G.A., Paranicas, C.,
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ZKesner, J., Nuclear Fusion 29 (1989) 1397.

4.1.1 SRX

The Second Regime Experiment (-SRX) is a tokamak experiment proposed by
Columbia University whose purpose is to operate a plasma in the second stability
region. The present work grew from a design study for SRX,! the transition to the
second region (Chapter 3.2) being a generalization of the original A = 9 study to
include conventional aspect ratios of A = 3. With regard to large-n modes, SRX was
designed as a high A device to avoid the destabilization of the second region boundary
at low A and gp ~ 1. The method of accessing the second stability region was to
increase g by driving plasma current non-inductively through neutral beam injection.
The beamlines were oriented tangentially to the magnetic axis to maximize driven
currents on the outer flux surfaces and produce the largest values of g,. The beam
injection angles could be made more tangential than present devices since the larger A
allowed the additional advantage of greater accessibility to the machine itself. The large

A design also permitted operation of a lower plasma current for a given value of g,
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equilibrium was also observed clearly by a tangential viewing video camera. Also, a
confinement enhancement of a factor of 2.5 times greater than the benchmark Goldston
“L-mode” scaling was calculated. The cause of the enhanced confinement is presently

unknown, but may be due to the high 3, effects of the equilibrium.
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Fig. 4.1.2 - I1: Supershot operating regime in TFTR. The various point markers
indicate the MHD activity observed in the discharges. The data seems to be limited to
values of Eﬁp dia 0.7, although the region of g* > 10 is basically unexplored.

The initial stability results support the findings of the present work. A free boundary
equilibrium solver! was used to reconstruct the TFTR high ﬁp equilibrium. The routine
uses magnetic flux loops and also internal poloidal field measurements taken from a
diagnostic that uses the injection of lithium pellets to determine the field.2 The global
equilibrium parameters for this case were A= 3.06, I, =265kA,qp=1.5,q,=58, k=
0.75, B = 0.14%, €f, = 1.20, B/B; = 0.5. The global stability diagrams for this

equilibrium are shown in Fig. 4.1.2 - 2. The g, value is not large enough to totally
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The local (S, o) stability contours are shown in Fig. 4.1.2 - 3 for the flux surfaces
with the largest values of a. These three points clearly have S <S¢y and-have o values
that are slightly greater than the « value corresponding to dS/da = 0 on the
corresponding marginal stability contour. Since ¢ changes from about 0.5 to 4.0 while
§ ~ 1.5, it is clear that the profile trajectory would normally enter the unstable region
predicted by the standard (S, &) model of stability. Future stability analysis of the
present experimental data as well as future experimental runs will aim to uncover
plasma equilibria with more enhanced stability properties and greater (¢, S) values than

those presently known.
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Fig. 4.1.2 - 3: Local stability diagrams for efp = 1.2 equilibrium in TFTR. The
marginal stability contours for the flux surfaces with the largest values of o are
plotted. For these surfaces, § < Scrj; and the surfaces are entering the second
stability region.
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This experiment not only discovered a method of controlling the giant ELM, but
also suggests a series of experiments that could be performed on DIII-D that could map
out the onset of the edge access window with respect to varying additional plasma
parameters. Varying g, by ramping the current down during the discharge, the edge
access window could be made to appear (see Section 3.1.6.2) and could be used to
further corroborate the boundary shaping results by suppressing the giant ELM. A
similar experiment could be performed, varying the g, by changing the ratio of co- to
counter-injected neutral beam heating during the discharge. Although this experiment
may not be as conclusive as the g, variation (since gy is more difficult to approximate
from the experimental measurements), it may also manifest the ability to suppress the
giant ELM and reveal the effect of the beam orientation on achieving an edge access

window,
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