

Columbia U. Group - Collaborative Research on NSTX-U for Disruption Avoidance

S.A. Sabbagh – for the Columbia U. / NSTX-U Group (J.W. Berkery, J.M. Bialek, Y.S. Park)

Report to DOE and NSTX-U Program PPPL 7/23/15

Near 100% disruption avoidance is a critical need for future tokamaks; Columbia Research on NSTX-U is focused on this

- □ The new "grand challenge" in tokamak stability research
 - □ <u>Can be done</u>! (JET: < 4% disruptions w/C wall, < 10% w/ITER-like wall)
 - ITER disruption rate: < 1 2% (energy load, halo current); << 1% (runaways)</p>
- □ <u>Strategic plan</u>: utilize/expand stability/control research success
 - Disruption prediction, avoidance, and mitigation (<u>DPAM</u>) is multi-faceted, best addressed by a focused, (inter)national effort (multiple devices/institutions)
- FESAC 2014 Strategic Planning report defined "Control of Deleterious Transient Events" highest priority (Tier 1) initiative
- NSTX-U is a world-leading laboratory for focused research on disruption avoidance with quantitative measures of progress
 - Columbia U. group endorsed by NSTX-U Program in a leadership role for this research, building on past success in MHD stability and control research

Columbia Group Research at PPPL provides key disruption avoidance research, emphasis on global mode stabilization

Physics Elements

Kinetic RWM stabilization physics - unification between NSTX / DIII-D

student

- NTV used in plasma rotation control (supports NSTX-U V_{ϕ} control) Princeton
- Physics model-based active RWM state-space controller
- Dual-component sensor RWM PID control
- RWM control analysis of upgraded 3D coils for NSTX-U
- NSTX-U equilibrium reconstruction key basis for stability analysis
- Planned real-time MHD spectroscopy for NSTX-U (in 5 Year Plan)
- Related high normalized beta and NTV experiments on KSTAR

Research synergism

- These elements now being brought together as part of a disruption prediction/avoidance system; NSTX-U DPAM working group formed)
- New Disruption Characterization and Prediction code / initial results

Response to DOE call for enhanced university participation

CU-PPPL group outreach to Columbia U. APAM department; new diagnostic proposal to be submitted (Volpe/Sabbagh)

Joint NSTX / DIII-D experiments and analysis gives unified kinetic RWM physics understanding for disruption avoidance

RWM Dynamics

- RWM rotation and mode growth observed
- No strong NTM activity
- Some weak bursting MHD in DIII-D plasma
 - Alters RWM phase
- No bursting MHD in NSTX plasma

NSTX-U

S. Sabbagh et al., DIII-D/NSTX experiments S. Sabbagh et al., APS Invited talk 2014

Columbia U. Group - Collaborative Research on NSTX-U for Disruption Avoidance (S.A. Sabbagh, et al.) July 23rd, 2015

Evolution of plasma rotation profile leads to linear kinetic RWM instability as disruption is approached

S. Sabbagh et al., DIII-D/NSTX experiments; S. Sabbagh et al., APS Invited talk 2014

5

Kinetic RWM stability evaluated for DIII-D and NSTX plasmas, reproduces experiments over wide rotation range

1.0

Summary of results

- Plasmas free of other MHD modes can reach or exceed linear kinetic RWM marginal stability
- Bursting MHD modes can lead to non-linear destabilization before linear stability limits are reached

Extrapolations of DIII-D

NSTX-U

plasmas to different V_{ϕ}

show marginal stability is

bounded by $1.6 < q_{min} < 2.8$

0.5 = 2.8**q**_{min} unstable Normalized growth 0.0"weak stability" region -0.5 -1.0 $q_{min} = 1.6$ **Ø** major disruption stable X minor disruption ······ extrapolation -1.5 70 10 20 30 40 5060 ()Plasma rotation [krad/s] ($\psi_N = 0.5$)

Reduced models of kinetic RWM stability now being investigated to support realtime disruption avoidance (e.g. by rotation profile control)

J.W. Berkery, J.M. Hanson, S.A. Sabbagh (Columbia U.)

Kinetic RWM stability analysis for experiments (MISK)

Rotation feedback controller designed for NSTX-U using non-resonant NTV and NBI used as actuators

• Momentum force balance – ω_{ϕ} decomposed into Bessel function states

$$\sum_{i} n_{i} m_{i} \left\langle R^{2} \right\rangle \frac{\partial \omega}{\partial t} = \left(\frac{\partial V}{\partial \rho} \right)^{-1} \frac{\partial}{\partial \rho} \left[\frac{\partial V}{\partial \rho} \sum_{i} n_{i} m_{i} \chi_{\phi} \left\langle \left(R \nabla \rho \right)^{2} \right\rangle \frac{\partial \omega}{\partial \rho} \right] + T_{NBI} + T_{NTV}$$

□ NTV torque:

$$T_{NTV} \propto K \times f\left(n_{e,i}^{K1} T_{e,i}^{K2}\right) g\left(\delta B(\rho)\right) \left[I_{coil}^{2} \omega\right] \quad (\text{non-linear})$$

NTV physics studies for rotation control: measured **NTV** torque density profiles quantitatively compare well to theory

T_{NTV} (theory) scaled to match *peak* value of measured *-dL/dt* Scale factor (*(dL/dt)/T_{NTV}*) = 1.7 and 0.6 for cases shown above – O(1) agreement

NSTX-U

S. Sabbagh et al., IAEA FEC 2014 (EX/1-4)

Model-based RWM state space controller including 3D model of plasma and wall currents used at high β_N

9

NSTX RWM state space controller sustains high β_N, low l_i plasma

Run time has been allocated for continued experiments on NSTX-U

S. Sabbagh et al., Nucl. Fusion 53 (2013) 104007

Active RWM control: dual $B_r + B_p$ sensor feedback gain and phase scans produce significantly reduced n = 1 field

Active RWM control design study for proposed NSTX-U 3D coil upgrade (NCC coils) shows superior capability

Columbia U. experiments yield record β_N for KSTAR, significantly surpassed the ideal MHD n = 1 stability limit

^{**}Y.S. Park, et al., Phys. Plasmas 21 (2014) 012513

- Plasma parameters
 - □ *q*₉₅ ~4.5
 - P_{NBI} = 2.7 4 MW (2 or 3 beam sources)
- $\square \quad \beta_N/l_i > 6 \quad (50\% \text{ increase} \\ \text{from the highest values} \\ \text{in previous operations)}$
 - A high value for advanced tokamaks
 - $\square \ \beta_{\sf N} \text{ up to } 4.3$
 - □ I_i ranging 0.66 0.87 with $\beta_N > 4$
 - Discharge β_N was <u>not</u> limited by n > 0 events

Y.S. Park, S.A. Sabbagh, et al., KSTAR Conference 2015

^{**} O. Katsuro-Hopkins, et al., Nucl. Fusion 50 (2010) 025019

Disruption event chain characterization capability started for NSTX-U as next step in disruption avoidance plan

Columbia U. Group - Collaborative Research on NSTX-U for Disruption Avoidance (S.A. Sabbagh, et al.) July 23rd, 2015 14

JET disruption event characterization provides framework to follow for understanding / quantifying DPAM progress

 JET disruption event chain analysis performed by hand, need to automate
 <u>NSTX-U DPAM Working Group formed (w/ Columbia U. Group leadership)</u>: List of disruption chain events defined, interested individuals identified

NSTX-U Columbia U. Group - Collaborative Research on NSTX-U for Disruption Avoidance (S.A. Sabbagh, et al.) July 23rd, 2015 15

Disruption Characterization Code now yielding initial results: disruption event chains, with related quantitative warnings

- 10 physical disruption chain events and related quantitative warning points are presently defined in code
 - Code is easily expandable, portable to other tokamaks
 - <u>This example</u>: Pressure peaking (PRP) disruption even chain identified by code
 - 1. (PRP) Pressure peaking warnings identified first
 - 2. (VDE) VDE condition subsequently found 20 ms after last PRP warning
 - 3. (SCL) Shape control warning issued
 - 4. (IPR) Plasma current request not met

J.W. Berkery, S.A. Sabbagh, Y.S. Park (Columbia U.)

NSTX-U is a world leading program on disruption avoidance, Columbia U. Group Research providing a leadership role

Physics Elements

- Kinetic RWM stabilization physics
- NTV physics for plasma rotation control (for instability avoidance)
- Active RWM control (physics-based RWM state-space controller)
- RWM control analysis of upgraded 3D coils for NSTX-U
- NSTX-U equilibrium reconstruction key basis for stability analysis
- Planned real-time MHD spectroscopy for NSTX-U (in 5 Year Plan)
- Related high normalized beta and NTV experiments on KSTAR

Research synergism

- Elements now being brought together as part of a disruption prediction/avoidance system; NSTX-U DPAM working group leadership
- Disruption Characterization/Prediction code initiated

Action to enhance university / student / post-doc participation

New diagnostic proposal to be submitted (Volpe/Sabbagh)

Supporting slides follow

Modification of Ideal Stability by Kinetic theory (MISK code) is used to determine proximity of plasmas to stability boundary

- Initially used for NSTX since simple critical scalar ω_{ϕ} threshold stability models did not describe RWM stability Sontag, et al., Nucl. Fusion 47 (2007) 1005
- Kinetic modification to ideal MHD growth rate
 - Trapped / circulating ions, trapped electrons, etc.
 - Energetic particle (EP) stabilization
- Stability depends on

$$\gamma \tau_{_{W}} = -\frac{\delta W_{_{\infty}} + \delta W_{_{K}}}{\delta W_{_{wall}} + \delta W_{_{K}}}$$

Hu and Betti, Phys. Rev. Lett 93 (2004) 105002

- Integrated $\underline{\omega}_{\delta}$ profile: resonances in δW_{κ} (e.g. ion precession drift)
- Particle collisionality, EP fraction

<u>Trapped ion component of δW_{κ} (plasma integral over energy)</u>

$$\delta W_{K} \propto \int \left[\frac{\omega_{*N} + (\hat{\varepsilon} - \frac{3}{2})\omega_{*T} + \omega_{E} - \omega - i\gamma}{\langle \omega_{D} \rangle + l\omega_{b} - i\nu_{eff} + \omega_{E} - \omega - i\gamma} \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon}$$
precession drift bounce collisionality

 ω_{ϕ} profile (enters through ExB frequency)

analysis references J. Berkery et al., PRL 104, 035003 (2010) S. Sabbagh, et al., NF 50, 025020 (2010)

Some NSTX / MISK

- J. Berkery et al., PRL 106, 075004 (2011)
- J. Berkery et al., PoP 21, 056112 (2014)
- J. Berkery et al., PoP 21, 052505 (2014) (benchmarking paper)

Bounce resonance stabilization dominates for DIII-D vs. precession drift resonance for NSTX at similar, high rotation

 $|\delta W_{K}|$ for trapped resonant ions vs. scaled experimental rotation (MISK)

Increased RWM stability measured in DIII-D plasmas as q_{min} is reduced is consistent with kinetic RWM theory

 $|\delta W_{K}|$ for trapped resonant ions vs. scaled experimental rotation (MISK)

Experiments directly measuring global stability using MHD spectroscopy (RFA) support kinetic RWM stability theory

NSTX is a spherical torus equipped to study passive and active global MHD control

□ High beta, low aspect ratio

□ R = 0.86 m, A > 1.27

- □ $\beta_t < 40\%, \beta_N > 7$
- Copper stabilizer plates for kink mode stabilization

Midplane control coils

- n = 1 3 field correction, magnetic braking of ω_φ by NTV
 n = 1 DWM control
- $\square n = 1 \text{ RWM control}$

Combined sensor sets now used for RWM feedback

□ 48 upper/lower B_p, B_r

Open-loop comparisons between measurements and RWM state space controller show importance of states and model

Improved agreement with sufficient number of states (wall detail) 3D detail of model important to improve agreement

When T_i is included in NTV rotation controller model, 3D field current and NBI power can compensate for T_i variations

NSTX-U: RWM active control capability increases as proposed 3D coils upgrade (NCC coils) are added

Columbia U. Group - Collaborative Research on NSTX-U for Disruption Avoidance (S.A. Sabbagh, et al.) July 23rd, 2015

26

Real-time MHD spectroscopy, model-based active control, and kinetic physics will be used for disruption avoidance

MHD Spectroscopy

 Use real-time measurement of plasma global mode stability to "steer" toward increased stability

Advanced active control

NSTX-U

- Combined Br + Bp feedback reduces n = 1 field amplitude, improves stability
- RWM state space controller sustains low l_i, high β_N plasma

Simplified kinetic physics models

 "steer" profiles (e.g. plasma toroidal rotation) toward increased stability in real-time

NSTX-U DPAM Working Group meeting: List of disruption chain events defined, interested individuals identified

	Impurity control (NC)	Abbreviations:
	bolometry-triggered shutdown (SPG); "tailoring" radiation-induced TM onset (LC	D, DG) JWB: Jack Berkery
	change plasma operational state / excite ELMs. etc. (TBD – perhaps JC)	AB: Amitava Bhattacharjee
	Greenwald limit (GWL)	DB: Devon Battaglia
_	density/power feedback, etc. (DB)	MDB: Dan Boyer
	Locked TM (LTM)	JC: John Canik
-	TM onset and stabilization conditions, locking thresholds (JKP, RI H, ZW)	LD: Luis Delgado-Aparicio
	TM entrainment (YSP)	DG: Dave Gates
	Error Field Correction (EEC)	SPG: Stefan Gerhardt
	NSTX-IJ EE assessment and correction optimization (CM SPG)	MJ: Mike Jaworski
	NSTX-II EF multi-mode correction (SAS, YSP, EK)	EK: Egemen Kolemen
	Current ramp-up (IPR)	RLH: Rob La Haye
	Active aux power / CD alteration to change g (MDB_SPG)	JEM: Jon Menard
	Shape control issues (SC)	CM: Clayton Myers
	\square Active alteration of squareness triangularity elongation – REA sensor (SPG M	JKP: Jong-Kyu Park
	Transport barrier formation (ITB)	YSP: Young-Seok Park
	\square Active global parameter V etc. alteration techniques (SAS IWB EK)	RR: Roger Raman
	H_{I} mode back-transition (HI B)	SAS: Steve Sabbagn
	Active global parameter V ate alteration techniques (SAS IM/R EK)	KI: Kevin Intz
	Δ Active global parameter, v_{ϕ} , etc. alteration techniques (SAS, v_{ϕ} , EK)	ZVV: Zhirui Wang
	Plasma shape shape oto (SPC MDR)	TED. (To be decided)
	Posistivo wall mode (PMM)	Interest from Theory
	\square Active global parameter V at a alteration techniques (SAS IM/P)	
	\square Active global parameter, v_{ϕ} , etc. alteration techniques (SAS, 500D)	Amitava
	dool woll mode (IM/M)	Bhattacharjee, Allen
	Active global personator V esta alteration techniques (IEM)	Boozer, Dylan
	\Box Active global parameter, v_{ϕ} , etc. alteration techniques (JEW)	12 contact: Brennan, Bill Tang
	Active slebel personator (CAC IMP)	appl.gov have requested
	\square Active global parameter, v_{ϕ} , etc. alteration techniques (SAS,JWB) raman@t	ppl.gov involvement
		involvement

arjee, Allen Dylan **Bill Tang** uested ent

NSTX-U

28

Disruption Characterization Code now yielding initial results: disruption event chains, with related quantitative warnings (2)

- This example: Greenwald limit warning during I_p rampdown
 - 1. (GWL) Greenwald limit warning issued
 - (VDE) VDE condition then found
 7 ms after GWL warning
 - (IPR) Plasma current request not met

J.W. Berkery, S.A. Sabbagh, Y.S. Park