

Comments on partial row program

Vlad Soukhanovskii

To high-Z or Not to High-Z PPPL 11 August 2016

DivSOL TSG is planning extensive experimental program for FY2017-2018 run

- Tier I experiments from FY2015 Research Forum
 - SOL transport and turbulence (SOL width)
 - Radiative divertor
 - Divertor profiles w/ 3D fields
 - Snowflake divertor physics
 - B2Li transition studies
- Lower divertor / SOL diagnostics readiness (partial list as of 08/2016)
 - IR cameras took first data in FY2016
 - Divertor Langmuir probes took first data in FY2016
 - Divertor bolometry not installed in FY2016 (LADA operational in FY2016)
 - Filtered cameras all operational in FY2016
 - Lower divertor spectrometers (VIPS, DIMS) operational in FY2016
 - GPI passively operational in FY2016 (no gas injector)

DivSOL TSG likely not to be impacted by the absence of high-Z tiles

High- δ or low- δ ? Milestones ?

Disadvantages / advantages of partial row

Plasma operations

- Con: no experience with high-Z/graphite tile environment, always some risk
- Pro: somewhat reduced risk with few high-Z tiles
- Pro: total gross / net erosion source scaled down
- Pro: larger operational window? (radial OSP sweeping over few high-Z tiles allowed?)
- Experimental program
 - Con: range of scientific topics severely limited
 - Gross eroson due to low-Z impurities not characteristic of full row / full high-Z divertor
 - Leading-edge melting / erosion not characteristic of full row / full high-Z divertor
 - Studies of lithium on high-Z complicated
 - Small high-Z source for meaningful studies
 - Con: Select torioidal location(s) imply select diagnostics (likely fewer)
 - Pro: High-Z spectroscopy commissioning and new development
 - Pro: Basic studies possible (e.g., erosion gross / net fluxes, yields, leading-edge, "heat pathways")
- Research program
 - Con: certain groups / researchers impacted to a large extent (e.g., LLNL collaboration)
 - Pro: resources may be freed for base DivSOL Program and existing diagnostics

LLNL Collaboration Research Focus Areas support NSTX-U priorities in FY2016-2018 (high-Z related in bold)

- 1. Scrape-off Layer and Divertor physics
 - Snowflake divertor transport, turbulence and radiation
 - Radiative (detached) divertor and detachment front control
 - Experiment support for cryo-pump design

2. Plasma-surface interactions and material migration

- Divertor and wall recycling with lithium
- Divertor and wall material erosion and migration
- Mixed-material interactions (Li, B, C, O, Mo, W)

3. Core impurity studies

- Low and high-Z impurity transport
- Laser blow-off impurity injector for impurity transport experiments
- Impurity spectroscopy and Atomic physics
- 4. Coaxial helicity injection (CHI) modeling
 - NIMROD modeling of MHD effects on CHI

Lawrence Livermore

National Laboratory

High-Z erosion and transport studies is one of major elements of LLNL collaboration research

- High-Z spectroscopy ready in FY2016 (summarized in three RSI papers – Scotti, Weller, Soukhanovskii)
 - Core: XEUS, LoWEUS, MonaLisa Mo XIII- Mo XXXII and W XXVIII - W XLIV
 - Divertor: divertor SPRED (finish in FY2017) Mo III-Mo XIV in divertor leg
 - Divertor PSI: TWICE-1, TWICE-2, Phantom cameras, DIMS, VIPS – Mo I-Mo III, W I-W III, Iow-Z near PFC
- Modeling
 - Collaboration with Auburn U. on Mo I-II and W I-II atomic physics (SXBs) for gross and net erosion measurements
 - Mo and W atomic data for STRAHL and MIST core impurity transport

Lawrence Livermore National Laboratory

LLNL diagnostics and plans summarized at

http://nstx.pppl.gov/DragNDrop/Program_PAC/Collaborator_research_plans/FY2016_2018_diagnostics/Meeting_1/Soukhanovskii-LLNL-diagnostics-FY16-18.pdf

Photometrically-calibrated, fast cameras with wide angle view provide full toroidal divertor imaging

- Described in F. Scotti, RSI 83, 10E532 (2012)
- Cameras Phantom v710, Phantom v7.3, Miro 4
- Spatial resolution better than 1cm/pixel, framing 10-100kHz w/o cropping
- Fast optics and narrow bandpass filters allow studies of impurity emission, non-axisymmetric effects, turbulence
- Available filters: C I, C II, C III, C IV, B III, Li I, Li II, D-α, D-γ, Gero band (CD), O II on remotely controlled filter wheels

Duo-chromatic intensified camera systems (TWICE-1,2) for mixed material plasma surface interaction studies

- Described in F. Scotti, RSI 86, 123103 (2015);
 - Single filtered cameras described in
 - M. E. Fenstermacher, W. H. Meyer, R. D.Wood, D. G. Nilson, R. Ellis, and N. H. Brooks, Rev. Sci. Instrum. 68, 974 (1997)
 - A. James et.al.,, Plasma Phys. Control. Fusion 55, 125010 (2013)
- Duo-chromatic imaging with rad-hardened intensified cameras
 - ThermoScientific CIDTEC cameras CID8710, CID 3710
 - VGA resolution (720x480) 8 bit, 30 Hz interlaced
- TWICE-I
 - Beam splitter for simultaneous 2-color imaging on same detector
 - Four filter wheels (2 for bandpass filters, 2 for neutral density filters)
 - BI, BII, Li I, D-γ, CD, O-II
- TWICE-II
 - 2.5x higher light throughput, 2 orders of magnitude higher intensifier
 - Fixed filters, currently dedicated to CD/D γ

TWICE-I (Bay J)

LLNL diagnostics provide full poloidal and toroidal coverage of SOL and divertor impurity emission at multiple wavelengths

Meeting name, presentation title, author name, date

Divertor SPRED spectrometer has broad applications for NSTX-U program

- Support plasma-facing component program
 - Steady-state and transient divertor impurity measurements
 - edge / divertor Mo III-XIV line emission
 - SOL / divertor Li II, Li III, C II, C III, C IV line emission
- Support divertor program
 - Divertor carbon ionization balance (steady-state and during ELMs)
 - Divertor *T_e* estimates from C II, C III, C IV line ratio (LR) measurements
 - Deviation from Maxwellian EEDF might be detected from these LR's
 - Improved divertor *P_{rad}* analysis
 - Most P_{rad} is due to several strong C III C IV emission lines in the VUV
 - Radiative divertor impurity radiation (CD₄, N₂, Ne, Ar)
 - Detached divertor Lyman series for recombination rate, T_e , opacity

Three EUV spectrometers provide simultaneous measurements of all low Z, medium-Z, and high-Z impurities

- Described in
 - J. K. Lepson, J. Phys. B: At. Mol. Opt. Phys. 43, 144018 (2010)
 - J. Clementson, RSI 81, 10E326 (2010)
 - J. K. Lepson, RSI 83, 10D520 (2012)
 - M. Weller, RSI 2016
- Midplane sightlines
- Two upgraded NSTX spectrometers
 - XEUS, 5 to 60 Å region, 2400 gr/mm grating
 - LoWEUS, 200 to 400 Å region, 1200 l/mm grating
 - Princeton Instruments PIXIS XO 100B CCD detector
- New MonaLisa (Metal Monitor and Lithium Spectrometer Assembly) spectrometer, 60 to 220 Å
 - 0.23 m, 1200 l/mm grating
 - Princeton Instruments PIXIS XO 100B CCD detector

LLNL EUV Spectrometers Mounted on NSTX-U

First MonaLisa spectrum