Ideas for DIII-D National Campaign – LLNL collaboration

- Radiative divertor and detachment using D₂ and CD₄ seeding in highly-shaped plasmas with I_p and P_{NBI} similarity to NSTX and NSTX-U.
- Search for the snowflake divertor churning mode in high-triangularity plasmas with new Divertor Thomson System view.
- 3. Studies of heat transport in snowflake divertor via slow configurations scans.
- 4. Density control in snowflake-minus divertor configuration.

Cryo-pumped snowflake-minus divertor configuration is a candidate for NSTX-U high-power H-mode scenario

- NSTX-U 10-12 MW, 0.5 n_e/n_G plasmas
- (J. Canik, NSTX-U PAC31)
 - High flux expansion in SFD gives *better* pumping with SOL-side configuration
 - More plasma in far SOL near pump
 - More room to increase
 R_{OSP} at high I_p
- This experiment will attempt to establish divertor n_e, n_{sep}, n_{ped}, and neutral pressure trends in the snowflake-minus configuration for comparison with simple and UEDGE models.

Initial comparison between cryogenically pumped and unpumped snowfake divertor obtained

- Strike-point geometries nonoptimal for pumping
 - 10 % effect on density
- Future optimization desirable
- Important for NSTX-U divertor heat and particle control planning

