XP 619 Physics of Passive RWM Stabilization

¢ XP to explore the passive stability physics of the RWM
rotation control allows RWM destabilization ‘on-demand’

® past attempts hindered by high rotation
® n = 3 rotation control demonstrated on several occasions

® examine parametric dependencies predicted by dissipation models

v,: important parameter in several theories
* wyth @ q =2 was previous factor cited for stability determination

® NSTX data shows increased rotation across entire profile required as
compared to DIII-D
data at near constant v,
scan v, independent of v, when q is fixed
v.: NTV, neoclassical damping

® dissipation included in MHD model as modification to parallel viscosity
NTV has inverse dependence on v;
neoclassical parallel viscosity proportional to v;

MHD amplitude: alteration of RWM stability
¢ alteration of drive or dissipation?




Determining v, Scaling of RWM Stability Leads
to Understanding of Physical Model

¢ Alfven speed important in
stabilization modpels Rotation at marginal stability
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Rotating MHD Appears to Affect RWM Stability

* RWM growth
coincides with end
of rotating MHD in
both cases

discharge with
longer period of n=2
survives with lower
rotation at =2

faster mode growth
with delayed onset
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Parameter Scans

® At fixed q, scan B, — vary Alfven speed
® ion Landau damping dependent upon v,

vary |, and B, simultaneously

® Vary collisionality with density scan
vary time of mode onset

natural density rise of ~ 20% during MHD free
window

® Vary MHD at time of mode onset

brake rotation earlier or later to move before/after
n=1 free window




Shot List

® Control shot

reproduce 119250 2
® v, scan
baseline scan at first g value
*1,=10MAB;=045T 2
*1,=089MAB,=04T 3
*1L,=11MAB;=05T 3
*1,=0.78 MAB,=0.35T 3
higher q
*1,=089MAB,=05T 3
*1,=071MAB,=04T 3
lower q
*1,=11MAB;=035T 3
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Shot List

® Density scan
beginning of n=1 free window — 0.5 s (n_/ ~ 8.7¢e"°)
middle of n=1 free window — 0.6 s (n ¢ ~ 9.5e°)

end of n=1 free window — 0.7 s (n_ ¢ ~ 10.5e"%)

®* MHD scan

just before n = 1 free window 2
just after n = 1 free window 2
Total: 32
A.C. Sontag =



Duration and Required / Desired Diagnostics

¢ XP could be completed in 1 run day
0.5 T desired for wide range of q at high performance

® Required
Magnetics for equilibrium reconstruction
Internal RWM sensors
CHERS toroidal rotation measurement
Thomson scattering
Diamagnetic loop

® Desired
USXR diagnostic
MSE
Toroidal Mirnov array




