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Electron transport typically dominates in NSTX
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•  χχχχ i, Dimp  < 1 m2/s (≈≈≈≈ neoclassical)

•  χχχχe  >  several m 2/s

•  Very large core  χχχχe

   in high n e H-mode ?
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Reduced electron transport observed at low n e

• Large χχχχe decrease with early NB injection into  low n e discharges

• χχχχe slowly decreases also in  intermediate n e case

• χχχχ i and D neon  nevertheless increase at low n e  (from < 1m 2/s to ≈≈≈≈ χχχχe)
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Evidence for shear reversal in low n e regime

• Off-axis T e crashes, two 1/1 modes suggest q reversal at low n e

• High electron transport with  s  ≥≥≥≥ 0, low transport with s < 0

• Steady χχχχe reduction at intermediate n e also correlates with shear

   slowly going  negative
• Interestingly, χχχχe decreases also well outside region of negative shear
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GS2 microstability assessment (K. Hill, C. Bourdelle) 

s=r/q dq/dr
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• s < 0 predicted to suppress ETG modes
•  However,  γγγγETG (0.4 ≤≤≤≤ r/a ≤≤≤≤  0.7)  higher in low

ne shot, while χχχχe lower

• Low n e also a determining factor ?

• µ-tearing activity can decrease with n e

  (M. Redi)
• Investigate both s and n e dependence of χχχχe
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Goals of proposed XP 

Produce conditions promoting s < 0 and s > 0 at low n e:
if χχχχe degrades when s > 0 , this would confirm that negative
shear rather than low collisionality  is the determining factor

Increase the density in discharges having improved χχχχe:
if higher collisionality cancels the confinement gain, one can
surmise that micro-tearing modes also play a significant role

Assess   the effects of increased beam and RF power on the T e
profile in conditions of improved χχχχe:
-  comparison with ‘critical gradient’ models
- obtain steeper electron and beta profiles towards a ‘beta-
prime’ turbulence stabilization experiment (C. Bourdelle)

Verify and understand the increased ion transport in the
improved χχχχe regime:
- role of fast particle MHD vs. long- λλλλ density fluctuations



Run plan
1.  Restore conditions in which improved χχχχe was observed :  4.5 kG, DND,

     k=1.9, d=0.6, <ne>≈≈≈≈ 2 1013 cm-3, 1 MA, 5 MA/s, src.C at 90 kV   (2 shots ).

2.  Move beam injection time to ≈≈≈≈ 30 ms, per MAST experience  (2 shots)

3.  Increase, κκκκ,,,,    δδδδ by 10%  to promote reversal (2 shots)

4.  Ip ramp rate scan: 6, 7, 4, 3 MA/s (8 shots)

5.  Ip  increase to 1.2 MA   at ramp-rate giving highest T e gain  (2 shots)

6.  Beam power scan at 1 MA and ramp-rate giving highest T e gain:

    C+B @ 0.2 s  (2 shots) ,   C+B +A @ 0.2  s (2 shots)

7.  At highest sustainable P beam,  add  RF after χχχχe improves:

    1.5 MW, 3 MW (4 shots)

8.  ne increase   at the ramp rate and P beam giving highest T e gain:

     <ne> ≈≈≈≈ 3.5 1013 cm-3,  5 1013 cm-3  (4 shots)

9.  Add RF to high n e, low χχχχe discharge: 1.5 MW, 3 MW (4 shots)

Total =32 shots (1 1/2 run days)



Gradient, height of T e (R) as in between-shots measure of the electron
confinement gain

GEM X-ray imaging + USXR mode identification + TRANSP magnetic
diffusion for q-profile estimate

Neon injection in selected shots for particle transport

CHERS Zeff, C profiles needed for TRANSP q-profile estimate

Core turbulence and fast MHD measurements highly desirable

MSE q0 constraint, lithium pellet conditioning highly desirable

   

Experimental tools and conditions


