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Critical gradient paradigm for electron transport

R/LTe =R/(Te/∇Te)

χe

gyro-Bohm behavior Critical gradient
for TEM, ETG turbulence

‘Stiff transport’
Tcore ~ Tedge

∇Te/Te (r) ≈ (∇Te/Te)c ≈ const. 

χe
pert >> χe

PB

Three parameter model applied at JET using controlled Te perturbations
(Garbet, Mantica 2004)

(Ryter 2001)



Critical gradient evident in scaled  χe
PB in tokamaks

ASDEX L-mode (Ryter 2001)



Critical gradient picture different  in NSTX ?

• L-mode: very low critical gradient, increasing with negative shear
• H-mode:  puzzling core picture, critical gradient moves  to periphery ?  
• χe

pert profile from Type-I ELM also very different from χe
PB

• Magnetic shear knob on electron transport in low ne L-modes (XP411)
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χe
pert from ELM markedly different from χe

PB

Model from Inagaki et al, PPCF 04 (neglects ion damping)
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• Rapid perturbed transport in the Te gradient region, decreasing  inside

• Goal of proposed work: study critical gradient behavior using controlled Te

perturbation  from low-Z pellet
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How does pellet injection look so far 

1.7 mg Li (1.6x1020 atoms) in 4 MW H-mode with beam notch

• Large Te, smaller ne perturbation -> try smaller pellets and/or no notch  
• Plasma particle inventory = 9x1020 particles 
• Note: stored energy begins to roll over before pellet reaches pedestal 

pellet in
pedestal
t=0.613

115872
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(0.627s)
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Multi-color USXR gives good picture of pellet perturbation 

Strong C Lyα marks pellet deposition
(likely CX between C6+ and neutral Li)

Pedestal cooling increases the
low energy continuum

Core cold pulse decreases the
high energy continuum



Goals of joint XMP and XP

• Develop pellet injection as a perturbative transport tool for L- and H-mode 

• Study perturbed Te gradient vs. magnetic shear changes in L- and H-mode  
(T&T milestone)

• Apply ‘multi-color’ USXR technique for perturbative transport:
- poloidal diode system     
- tangential  ‘optical’ system (initial testing stage)

• Strategies for magnetic shear changes (within limited run time)
- L-mode: vary beam source and ne (XP223)
- H-mode: vary beam timing (XP411)     

• Analysis with JET critical gradient model  

• Experiments will also provide Li III Lyα light for new JHU Telescope 



Magnetic shear variation in L-mode

• Large shear  changes with Ip ramp/beam time difficult this run (XP522)
• Moderate shear reversal however consistently obtained at low ne
• Use change of source/higher ne to reduce Te and flatten q(r) (XP 223) 
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108213, Src. C, ∫neL ≈ 4.4x1015115734, Src. A, ∫neL ≈ 3.0x1015



Magnetic shear variation in H-mode

• High Te and peaked profile with late H-mode; likely also different shear  
• Delay beam injection for ELM-free H-mode with changed shear

(hints also from XP522)

112032, late A

115872, early A+B, C  
H

H

Te Ne



Or: probe χe
pert while shear naturally evolves in H-mode



Proposed run strategy 
• Little discharge development possible -> compare first the established scenarios:

Low ne L-mode (115734,src A) vs. High ne, ELM-free H-mode (115872, src A+B)

(i) Optimize L-mode pellet injection for measurable but moderate edge Te perturbation 
at t ≈ 0.35 s (e.g., ≈ 30-40% at r/a ~ 0.7, from MPTS a few ms after pellet ) 
- Li pellets with/without beam notch,  0.5 mg/1 mg /2.0  mg,  75 ms-1/150 ms-1

(Li likely better suited for low ne L-mode)
(ii) Measure cold-pulse propagation at t ≈ 0.35 s with optimal pellet

(iii) Develop pellet injection for measurable but moderate pedestal Te perturbation 
in H-mode (e.g., 30-40% at r/a ~ 0.7, from MPTS a few ms after pellet )
- B pellets with/without beam notch: 0.5 mg/1 mg/2.0 mg, 75 ms-1/150 ms-1 

(B likely better suited for pedestal penetration in high ne H-mode)

(iv) Measure cold-pulse propagation at t = 0.35 s with optimal pellet

(v) Time permitting, proceed to pellet perturbations with changed magnetic shear  

Two shots per condition



10 ms notch 0.5 mg 75 m/s
150 m/s

10 ms notch 1.0 mg 75 m/s

no notch 1.0 mg 150 m/s

no notch 2.0 mg 150 m/s

LiL-mode (2 x 5 shots)

10 ms notch 0.5 mg 75 m/s
150 m/s

10 ms notch 1.0 mg 75 m/s

no notch 1.0 mg 150 m/s

no notch 2.0 mg 150 m/s

BH-mode (2 x 5 shots)

Time permitting, use optimized pellet perturbation with changed magnetic shear

Proposed shot matrix



Measurement and interpretation issues

• Aim to minimize (~10 ms) or eliminate the beam notch

• Pellet nexnz perturbation could be estimated  also from the multi-color USXR 

• Line integrated δne also from interferometry

• Ti perturbation from NPA in fast  Ti mode and δWtot-δWel (small at ELM)

• TRANSP, EFIT with ~ 0.1 ms resolution

• All fluctuation diagnostics of interest

• Theoretical  χpert predictive capability (a la JETTO, ASTRA)  


