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Critical gradient paradigm for electron transport

R/LTe =R/(Te/∇Te)

χe

gyro-Bohm behavior Critical gradient
for TEM, ETG turbulence

‘Stiff transport’
Tcore ~ Tedge

∇Te/Te (r) ≈ (∇Te/Te)c ≈ const. 

χe
pert >> χe

PB

Three parameter model recently applied to JET (Garbet, Mantica 2004)

(Ryter 2001)



Evidence for critical gradient  in tokamaks

≈≈

Tcore ~ Tedge

∇Te/Te (r) ≈ const. R/LTe ≈ 10 (ρ ≈ 0.5, electron heating)



Critical gradient evident in scaled  χe
PB profiles

ASDEX L-mode (Ryter 2001)



2 MW L-mode, no eITB
(112996, 0.250 s) ρ=0.8
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NSTX L-mode has lower critical gradient  ?
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• Critical gradient significantly increased by eITB/negative shear,
while stiffer transport outside ?

0.6



Is electron transport stiffness ‘causing’ Type-I ELMs?

• In H-mode critical gradient higher, transport less stiff than in L-mode ?   
• Appearance of strong Type-I ELMs seems to correlate  with higher ‘stiffness’
• Could it be that ‘Type-I’ ELMs are just ‘regular’ ELMs interacting with the 
stiff electron transport at high input power? 

• Perturbative transport studies can directly probe ∂χe/ ∂(∇Te) 
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Goals of proposed XP

• Measure ∂χe/ ∂(∇Te) to obtain ‘critical gradient’ model parameters for: 
- low ne L-modes without eITB
- low ne L-modes with eITB
- H-modes at increasing heating power (‘simulate’ Type I ELMs)
- H-modes at increasing beta, elongation  

• Questions addressed are ITPA relevant:
- role of magnetic shear in electron stiffness   
- role of beta (elongation ?) in electron stiffness   
- is the Type-I ELM transport  rather than MHD controlled

(compare ‘artificial’ ELMs with ‘natural’ ELMs from K. Tritz XP)

• Tools for controlled Te perturbations:
- C pellets and/or supersonic gas injector (Ne)
- Neutral beam modulation

• Tools for measuring Te perturbations:
- ‘two-color’ poloidal USXR system     
- ‘three-color’ tangential  optical SXR array (new diagnostic)

• Theoretical tools for 1st principles comparison, a  la JET



‘Two-color’ USXR system for Te perturbations

Hor. up
E > 0.4 keV

Re-entrant
E > 1.4 keV

E > 0.4 keV

E > 1.4 keV

Wtot

Dα

• Horizontal up and re-entrant arrays
used to measure Te crash at Type-I ELM
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Pedestal crash

Core perturbation
t1=0.427s t2

t1

t2

‘Two-color’ USXR profiles show different evolution

• Low energy profile shows rapid pedestal crash
• High energy profile indicates fast ‘cold pulse’ propagation in the core
• No reconnection evident in the core (transport rather than MHD effect)
• Fast EFIT shows only few % equilibrium change

down midplane



MPTS Te at t1=0.427

t (ms)
Chord #

Ratio of E > 1.4 keV /  E > 0.4 keV 
line integrated emission

MPTS Te profile ‘propagated’ by USXR modeling  

• USXR profiles first fitted for approximate  nC, nO profile  
(coronal equilibrium radiative coefficients + magnetic surface mapping)
• Ratio of profiles then fitted with Te(r,t1)MPTS+δTe(r,t) (relative change
• ne, nz perturbation neglected 
(USXR ratio not sensitive, also only few % perturbation from MPTS) 
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• Te perturbation reaches the center in ~  1.5 ms
• Also fast/deep propagation in JET  (why is the ELM ‘edge localized ?)
• Slight polarity inversion of Te perturbation near the axis ?

JET (Sarazin 2002)
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t (ms)

Te(keV)

MPTS t2

Subsequent MPTS Te profile at t2 well reproduced 

• In H-mode, the ‘two-color’ poloidal measurement applicable for δTe > 20 %
(hollow profiles, different plasma volumes, SNR limitations of fast USXR)

• In first stage of XP use the USXR arrays (also top) for L-mode studies
• In second stage of XP use new ‘multi-color’ Optical SXR system 
for improved accuracy with H-mode profiles and small perturbations

~



New ‘three-color’ tangential Optical SXR Array

• Main difficulty with ‘multi-color’ technique is viewing different plasma volumes
• OSXR array enables viewing the same volume at multiple energies
• Charge integrators (0.1-1ms) instead of µs amplifiers for improved SNR
• Tangential view for Abel inversion of emissivity
• Operational @1 ms integration time  for H-mode part of XP, later in the run
• 0.1 ms time integration dependent on XDAS software development
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C pellets for Te perturbations 

~ 10% of few milligram C pellet at 
r/a > 0.6 makes Prad ~ Pheat elec.

Electron heating power 7 MW H-mode

Ncarbon (x1012 cm-3)
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Modulated NBI for Te perturbations 

Intensity ratio E > 1.4 keV (H_up) 
E > 0.4 keV (H_down)
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SOL ‘anomaly’ ?

2 MW + 2 MW mod.

• Beams not usually used for δTe, but in NSTX heat mainly electrons 
• USXR system could see such modulations

(Low ne L-mode 112994)



Proposed run strategy

• XMP: test C pellet and SGI (Neon) as source of edge Te perturbation

• Part I,  L-mode experiments (mid-run):

C pellets and NBI modulation + poloidal USXR system

• Part II,  H-mode experiments (late-run):

NBI modulation + Optical SXR system at 1ms integration 

C pellets + Optical SXR system at 0.1ms integration, if available



Measurement and interpretation issues

• Pellets will make also (slower) nexnz perturbation

• Could however be estimated also from the USXR profiles

• Line integrated δne also from interferometry

• Ti perturbation main question: NPA in fast  Ti mode ? 

• TRANSP, EFIT with ≤ 1 ms resolution

• Fluctuation diagnostics 

• Theoretical  χpert predictive capability a la JETTO, ASTRA ?


