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• Motivations

• EBW heating and current drive experiments on 
COMPASS-D

• EBW emission observations on MAST

• Preliminary results of ECRH breakdown and EBW 
heating experiments on MAST
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MotivationsMotivations

• Electron Bernstein waves (EBW) have potential for providing efficient 
heating and current drive in overdense plasmas (ωce < ωpe ):

– EBWs have no density limit (no high density cut-off )
– EBWs experience strong damping on electrons near th e Doppler-

shifted electron cyclotron (EC) resonance and its h armonics

• EBWs are predominantly electrostatic waves and do not exist in 
vacuum. They can be excited with e/m waves launched from vacuum:

– via X-B or O-X-B mode conversion mechanisms with EC RF power 
launch from the low field side ( ωωωω RF > ωωωωce ) or

– via direct coupling of the slow X-mode into EBW at the UHR with ECRF 
power launch from the high field side ( ωωωω RF < ωωωωce )
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Experimental Layout Experimental Layout 

The schematic of EBW heating and 
CD experiment on COMPASS-D
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Experimental SetExperimental Set --upup

A highly reproducible 
plasma has been chosen as 
a target

• Major radius R = 0.56 m
• Minor radius a = 0.2 m
• Elongation κ = 1.73
• Triangularity δ = 0.22
• Plasma current Ip = 150 kA
• Toroidal field Bo = 2.05 T

From shot to shot the 
toroidal launch angle was 
changed from -32.6 o to 
+32.6o with a step of ~8 o
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Experimental Results Experimental Results 

TS electron temperature profiles measured at 
different launch angles during ECRH
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• Electron temperature during 
ECRH is higher for launch 
angles close to perpendicular 
to the magnetic field

• Electron temperature profile 
does not show any significant 
transformations, such as 
peaking or flattening, in a 
whole range of launch angles
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Heating Efficiency Heating Efficiency 

Central electron temperature during ECRH against to roidal launch
angle counted from perpendicular to the magnetic fi eld

At perpendicular launch X-
mode absorption is small, 
so plasma heating is 
predominantly due to EBW 
absorption
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EBW Current Drive EBW Current Drive 

Non-inductive current driven in the plasma 
estimated from experimental data

• Assuming small changes in profile 
shapes, Te, Zeff and jp, one can estimate 
the non-inductive current using simple 
relation

• Bootstrap current varies from 15 to 21 
kA over the range of launch angles 

Electron temperature rise and loop 
voltage decrease are consistent 
with a non-inductive current of 
~100 kA driven in the counter 
direction
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Virtual Beam Tracing Results Virtual Beam Tracing Results 

Poloidal projection of EBW beam tracing results 
for negative toroidal launch angle of -16.7 o

Poloidal projection of EBW beam tracing results 
for positive toroidal launch angle of +16.7 o

With the existing antenna set-up the EBW power depo sition profile is 
located well below the midplane for all negative an d positive launch angles 
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Virtual Beam Tracing Results Virtual Beam Tracing Results 

Toroidal projection of EBW beam tracing results 
for negative toroidal launch angle of -16.7 o

Toroidal projection of EBW beam tracing results 
for positive toroidal launch angle of +16.7 o

At the absorption region EBWs have predominantly po sitive k ||
for all negative and positive launch angles 
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EBW heating and CD modelling EBW heating and CD modelling 

EBW power deposition profiles for 
different toroidal launch angles
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EBW modelling results EBW modelling results 

EBW beam tracing results for currents driven by ECR H and 
experimental results

• Fokker-Planck codes 
include trapping effects. 
Without trapping, codes 
predict almost twice higher 
EBW driven current

• The sign of the EBW 
driven current does not 
depend on the toroidal 
launch angle. The current 
is always in the counter-
direction
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SummarySummary

• It was found that the heating efficiency with the E BW-mode is much 
higher than with the X1-mode alone

• From the plasma power balance the EBW driven curren t has been found 
to be in the counter direction for all launch angle s with the maximum of 
~100 kA and current drive efficiency ηηηη20 = ne20RICD/PRF ≅≅≅≅ 0.035 (1020 A/W m2)

• Beam tracing simulation along with 2D-Relativistic Fokker-Plank codes 
predict EBW driven current in the counter-direction  with the maximum in 
the range of 72-80 kA, which is consistent with exp erimental results

•For the existing antenna configuration in COMPASS-D  the EBW driven 
current is always directed in the counter-direction  to the plasma current 
independent of the launch angle and the direction o f the plasma current

• The direction of the driven current can be changed from counter- to co- if 
the EBW is absorbed predominantly above the midplan e
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EBW emission in COMPASSEBW emission in COMPASS --DD

shot #28718 <nel>⋅1021m-2

Dα, a.u.

54.0 GHz

62.5 GHz

66.5 GHz

ELM-free

EBW emission from fundamental ωωωωce resonance 
during H-mode, B 0 = 1.8T 

Cut-offs and resonances in COMPASS-D during 
H-mode, B 0 = 1.8T, ne0 = 1.4⋅⋅⋅⋅1020m-3
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EBW emission in COMPASSEBW emission in COMPASS --DD

EBW emission from 2 ωωωωce resonance 
during H-mode, B 0 = 1.2T 
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EBW emission in MASTEBW emission in MAST
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Midplane topology of cut-offs and 
resonances during H-mode in MAST
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OO--XX--B mode conversion B mode conversion 
efficiencyefficiency

Contour plot of the O-X-B mode conversion efficienc y represented in angular co-ordinates. 
Tetb angle (elevation) is measured upward in the pol oidal direction.
Phib angle (azimuth) is measured clockwise in the to roidal direction.
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EBW emission in MAST
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EBW emission in MASTEBW emission in MAST

Shot #7695 EBW spectrum measured during 
H-mode in low TF (I TF =77 kA)

See also J. Preinhaelter’s poster 
on Ray-tracing modelling of the 
EBW emission in MAST
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EBW Scenario DevelopmentEBW Scenario Development
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EBW Scenario DevelopmentEBW Scenario Development

Plasma current

Line integrated density

Edge density gradient

Dα emission
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EBW emission in MASTEBW emission in MAST

Shot #7680 EBW spectrum in low TF (I TF =77 kA) 
with  the plasma current ramp down
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EBW emission during high density HEBW emission during high density H --modemode

EBW signals degradation during high density H-mode in MAST
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EBW heating in MASTEBW heating in MAST

Midplane topology of cut-offs and resonances in tar get shot for EBW heating  in MAST
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EBW Heating on MASTEBW Heating on MAST

Cross-section of cut-offs and resonances in MAST 
for 60 GHz launched at optimal angle
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EBW emission resultsEBW emission results

• In high density and high current H-mode plasmas the  ELM 
modulation behaviour of EBW emission can be inverte d at some 
harmonics. 

• In high density and high current H-mode plasmas the  EBW 
emission intensity decays with the time scale of ~2 0- 30 ms.

• These unusual effects are less pronounced at high T F. They 
can be reduced or totally suppressed by plasma curr ent ramp up 
and by plasma compression. Emission also can come b ack to 
‘normal’ after the giant ELM or IRE.

• Apparently, these effects can be attributed to the plasma 
current redistribution initiated by the H-mode. Thi s could 
produce local magnetic field inhomogeneity in the g radient zone,
which has a dramatic effect on the EBW ray trajecto ries.
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Quasioptical Quasioptical components of the EBW Launchercomponents of the EBW Launcher



V Shevchenko, Seminar at PPPL 16 May 2003, Princeton, USA

EBW Launcher in MASTEBW Launcher in MAST
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EBW Steerable Launcher for MASTEBW Steerable Launcher for MAST



V Shevchenko, Seminar at PPPL 16 May 2003, Princeton, USA

EBW Steerable Launcher in MASTEBW Steerable Launcher in MAST

• Final polarisation can be chosen from linear to cir cular
• Resultant beam divergency is less than +/-2.5 o (ωωωω = 25 mm)
• Beams are grouped by the poloidal position 2-3-2
• Each group has a united remote control for poloidal a nd toroidal steering
• Poloidal steering range of +/-13 o, toroidal +/-24 o, accuracy of 0.5 o
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ECRH Breakdown in TF only ECRH Breakdown in TF only 

CCD image of the ECRH 
breakdown phase at ωωωωce in a 
pure toroidal magnetic field

Vertical magnetic field induced by plasma during EC RH breakdown.
ECRH pulse of 20 ms (0.3 MW), O-mode polarisation.
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ECRH Breakdown in TF and Small Vertical FieldECRH Breakdown in TF and Small Vertical Field

CCD image of the ECRH 
breakdown phase in toroidal and 
5 mT vertical magnetic field

Vertical magnetic field induced by plasma during EC RH breakdown. ECRH 
pulse of 20 ms (0.3 MW), O-mode polarisation.
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OO--XX--B heating heating in MAST B heating heating in MAST 

EBW emission from ωωωωce and 2ωωωωce harmonics during ECRH

EBW emission during ECRH pulse in ELM-free phase

ECRH

Dα

•Radiative temperature exceeds T e
during ECRH pulse 
•Radiative temperature increase due to 
EBWH is always delayed by ~5 ms from 
the ELM
•TS shows broadening of the scattered 
spectra at major radii corresponding to 
EBW power deposition
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EBW rayEBW ray --tracing results tracing results 

Poloidal cross-section of EBW ray-tracing 
in MAST for 60 GHz launched at optimal 
angle for target shot parameter
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EBWH diagnosticsEBWH diagnostics

• Mode conversion process of the high power X-mode to  EBW at the 
UHR layer must be accompanied by the lower hybrid w ave 
generation due to the parametric decay

• LH frequencies corresponding to plasma layers where  the X-B 
mode conversion occurs during EBW heating experimen ts cover the 
range from 100 MHz to 150 MHz

• LH antenna with the spectrum analyser was developed  for the 
frequency range of 80 - 550 MHz

• LH antenna is installed on the reciprocating probe allowing good 
coupling to LH plasma waves

• Heterodyne radiometer is installed in one of the EC RH 
transmission lines. It receives plasma emission in exactly reversed 
way as the gyrotron power entering the plasma.
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Lower hybrid antenna for MASTLower hybrid antenna for MAST
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EBWH plasma scenarioEBWH plasma scenario

Major Radius, m

Pellet

ITB like

O-mode cut-off
for 60 GHz
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SummarySummary

•••• EBW steerable launcher has been installed on MAST. 

•••• The new launcher will allow us to conduct EBW heati ng experiments 
based on O-X-B mode conversion scheme.

•••• First ECRH pre-ionisation experiments demonstrated reliable 
breakdown in pure toroidal field and in the mixture  of toroidal and small 
vertical fields. Preliminary indication of pressure  driven currents (~5 kA) 
has been observed.

•••• EBW ray-tracing code has been developed in collabor ation with Ioffe
Institute. It’s a powerful tool for the EBW emissio n interpretation and 
EBW heating and CD modelling on MAST.

•••• First EBW heating experiments based on the O-X-B mo de conversion 
scheme have been conducted. Preliminary indication of peripheral RF 
power deposition has been observed.
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Future PlansFuture Plans
Short term:

•••• Conduct EBWH experiments with TF scan using EBW pla sma scenario.
Define TF providing maximum accessibility to the co re plasma.

•••• Exploit other scenarios: ITB-like, Pellet and high density L-mode

•••• Conduct fast EBWE measurements during EBWH experime nts. Evaluate
the applicability of EBWE signals for feedback cont rol.

Long term:

•••• Explore EBW ray-tracing code with different equilib rium codes to find 
the explanation for the EBWE decay and inverse modu lation by ELMs 

•••• Low frequency (40 GHz, 2x0.2 MW) EBWH experiments o n MAST

•••• Propose a high power (~5 MW) EBWH system for MAST


