& U.S. DEPARTMENT OF Office of

ENERGY science

NSTX Supported by

Overview of ITER Urgent Needs / Cross-Cutting
Research TSG for FY2011 Research Forum

College W&M

Colorado Sch Mines -
Columbia U Culham Sci Ctr
Comp-X J.E. Menard e
General Atomics

INL . - Chubu U
LANL Hiroshima U
LLNL Hyogo U
Lodestar Kyoto U
MIT Kyushu U
Nova Photonics PPPL 8318 Kyushu Tokai U
New York U NIFS
Old Dominion U MaI’Ch 4, 2011 Niigata U
ORNL U Tokyo
PPPL JAEA
PSI Hebrew U
Princeton U loffe Inst
Purdue U RRC Kurchatov Inst
SNL TRINITI
Think Tank, Inc. KBSI
UC Davis KAIST
UC Irvine POSTECH
UCLA ASIPP
UCSD ENEA, Frascati
U Colorado CEA, Cadarache
U Maryland IPP, Jul.ich
U Rochester IPP, Garching
U Washington ASCR, Czech Rep
U Wisconsin U Quebec




ITER Urgent Needs + Cross-Cutting (ITER/CC) TSG

* The purpose of the ITER/CC TSG is to coordinate/lead
research on issues urgent to ITER design and operation that
cross-cut multiple NSTX TSGs.

 The ITER/CC TSG will also coordinate/lead research on
cross-cutting issues critical to NSTX, NSTX Upgrade, and
ST development.

« The primary organizing principle for the ITER/CC TSG for
the FY2011-12 run is to utilize and understand various
particle transport control methods to optimize integrated
plasma performance.
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Research Priorities for ITER/CC TSG

 |Investigate H-mode pedestal transport, turbulence,
and stability response to 3D fields
— Especially the influence of 3D fields on ion/impurity particle transport
 |nvestigate combinations of active techniques for
reducing core impurity accumulation - especially in
ELM-free H-mode

* Organize experiments and analysis in support of
cryo-pump design for NSTX Upgrade

* Oversee ELM research to ensure a coherent
research program and minimize experimental overlap

* Other cross-cutting research?
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NSTX provides a unigue environment to better understand
the H-mode pedestal response to 3D fields for ELM control

 ELMs stabilized by Li coatings

7
=
— Edge density, pressure gradients reduced o
« Maingi et al, PRL 103, 075001 (2009) s

CO

« ELMs triggered by 3D fields, not suppressed
— Small density change during n=3 3D fields

=
— T, and pedestal pressure increase - ELM 2
« Canik et al, PRL 104, 045001 (2010) -
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Pedestal profiles show varying response
to n=3 field application with/without lithium

Profiles compiled from several shots:
Black before, colors after n=3 (but before ELMS)

Without Lithium
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« Flattening in n,
seen from
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 Alsoseenin T,->
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ExB convective transport and island shielding

Island and stochastic field line E x B convection - 10
increases transport, reduces Vp, stabilize P-B modes [N, §-,$~ E SN ,
—~ | TRl | ;
* Ambipolar E, hypothesis @ 0 = "'l-"q,‘\‘... ™
(contributes to island convection) M ‘i;”mm"." AR5 IR
— stochastic field lines, due to F3 -5 ' : ¢ } '. . ]
island overlap, intersect divertor j 10 ] : L) .
. = 10+ .
* Island E x B convective cell transport ~  electrons leave resulfing in an g e R
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hypothesis convection of ions and r:gv -15 + * ZVIthoufi Rr\éﬁpt : Lo
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« Rotation screening reduction
I.E. Evans 10 ECPM Evans-1/1 and enhanced transport when
PP D 0 (0P P=0, +0p,p)

1 Sept. 2010

Can we control o PP = 0 in pedestal using n=3 and n=2 RMP
Does particle transport increase when o PP = 0 ?

* Infer island opening from measured/simulated 3D equilibrium response?
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Milestone R(11-4): H-mode pedestal transport, turbulence, and stability
response to 3D fields - Responsible TSGs: ITER/CC, T&T, BP, MS

The use of three-dimensional (3D) magnetic fields is proposed
to control the H-mode pedestal to suppress ELMs in ITER

— However, the mechanisms for particle and thermal transport modification
by 3D fields are not understood

Study possible mechanisms for modifying transport:
— zonal flow damping

— stochastic-field-induced ExB convective transport

— island shielding reduction as w, , = W.* + Wg,g 2 0 (XGCO)
— banana diffusion or ripple loss

Measure pedestal turbulence trends vs. applied 3D field
— BES, high-k scattering, gas-puff imaging
— Independent control of n=1,2,3 applied 3D fields - 2" SPA (ARRA)

Measure pedestal profile response, edge particle transport
— Improved Thomson scattering, impurity injection, edge SXR
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Possible strategy for R(11-4)

from Nov 2010 brainstorming meeting + PAC-29

1. Develop/utilize 2-4 scenarios where 3D 6B induced transport
modification is likely, compatible w/ broad diagnostic coverage

Reproduce shots with varied ELM triggering threshold vs gy
Reproduce shots with varied n,, T, profiles with/without Li and 3D fields
Develop L-mode target, also lower-collisionality H-mode

Develop targets w/ slow time-varying qgs, Jegqe to look for “resonances”

2. Perform perturbative transport experiments using scenarios

Vary amplitude, phase, n-number (n=2 and 3) of 3D 6B

ME-SXR + impurity puffs with varied species to extract impurity D, v

SGI for An,, heat pulse propagation using ME-SXR, MPTS, reflectometry
BES, high-k, GPI, FIReTIP to look for changes in edge turbulence

SXR imaging to detect edge islands

HDLP array to measure changes in SOL hot electron fraction

SOLPS (b2/EIRENE) to model edge transport vs. g, Li, 3D oB

@ NSTX
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NSTX can maintain constant deuterium inventory
with Li evaporation for range of operating scenarios

1.4} 135445 i35117 133911 T
 Range of optimization 1ol E: L
targets: £ 08| =3
— Long Pulse ol il
— Sustained high-f+ 2 0002040608101214 0002040608 101214
— Maximized Wy,p 6 . gqf
s\ oo _
ol |t :
e Strong LITER = | 2 _
evaporation and few or | Lo %/’Af
no ELMs. 66364050810137a 0503040808 0T Ta
» Carbon is accumulated, < ol RN I
but Deuterium inventory | = o fﬂzﬂ_{,\,&,:
IS constant. S R R
A ETYITTTIr RV MR TETY YT TEXREEY

time (sec) time (sec)

@D NSTX NSTX ITER/CC TSG Overview for FY2011 Run 04 Mar 2011



Greenwald fractions evolve similarly for range of I

* Definitions:

— Electron Greenwald fraction 0.8
ﬁe 2 0.6
fGW,e oc I_ a E _g

— Inventories: N, Np, Ng
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Can carbon inventory be reduced/controlled
while maintaining constant (low) D inventory?
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Impurity control research plan
will focus on combining techniqgues

« Envisioned techniques

— Magnetic balance control for early carbon reduction
* Will look for I-mode as part of ITPA JEX and FY11 JRT

— Divertor gas puff and/or snowflake for source reduction
— ELM triggering (3-D fields, vertical jogs) for impurity flushing
— Core radiation control with central HHFW

— Explore the accessibility of reduced Li evap. scenarios with high
performance + intrinsic small ELMs for particle control

« NSTX device modifications:
— Improved tile-to-tile alignment
— Mo covers on RWM B, zensors; removed some CHI gap B, sensors
— Mo tile upgrade

@D NSTX NSTX ITER/CC TSG Overview for FY2011 Run 04 Mar 2011 11



Beginning-of-run issues, longer-term activities

* Need to address several cross-cutting beginning-of-run issues:

— Incremental/controlled Li introduction to access high performance
research-grade plasmas - with ELMs (use D glow for passivation?)

« XMP or XP? Led by LR, ASC, or BP, or ITER/CC?

— Initial assessment of Mo tile performance — impurity response, Mo
Influx, plasma performance

* Led by BP, ASC, or ITER/CC?

« QOrganize experiments and analysis in support of cryo-pump
design for NSTX Upgrade

« Qversee ELM research to ensure a coherent research
program and minimize experimental overlap

e Other?
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BACKUP

@D NSTX

NSTX ITER/CC TSG Overview for FY2011 Run

04 Mar 2011

13



Particle Transport can be measured via X-ray Emission from

Plasma Impurities with new high-resolution SXR array

« 5 photodiode arrays with different filters

« 20 spatial channels with ~1 cm resolution
of plasma edge, time resolution >10 kHz
— Older array can not assess edge transport

— Preliminary data obtained in 2010
— Synergy with pulsed Thomson (8 add’l edge
channels) plus supersonic gas injector i

« Transport studies

— Carbon build up in ELM-free discharges:
separation of diffusion and convection

— Transport variation in pedestal region: how
does the particle transport change with lithium
and/or with applied 3D fields?
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Models for increased transport with 3D fields and
measurement capabilities being assessed

Turbulence change with applied 3D fields

— Radial/poloidal coverage with BES; compare [170cm 120cm 130 am 140 cm 150 cm
and contrast with results on DIII-D

— Midplane separatrix and SOL with GPI; no
obvious differences so far)

— Midplane edge with new {10cm

H 5cm

— Tunable radius with high-k scattering 1 0cm
— Midplane separatrix and SOL with
reciprocating probe

— Lower divertor with dense Langmuir probe o
array (requires particular geometry)

0.2

* Look for pumpout in L-mode plasmas

* Increase divertor turbulence with divertor biasing

* Probe edge stability with new SPA (more spectral control)
 Use Snowflake and 3D fields to probe edge stability
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Control of core deuteron typically achievable with LI
coatings, but core impurity control more difficult

Example with SGI fueling

« ELM triggering with n=3 pulses
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ELMs triggered with

3-D fields successful at

ge Zy, but not core Zy

reducing P4 and ed

- t=0.365sec  reference « ELM triggering with n=3 pulses
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Biasing upward (unfavorable VB) reduces early
carbon, but impurities still increase in time
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Divertor D, puffing reduces core carbon density and
Lo famp rate

» Drop attributed to reduced sputtering

« Central fo and Z; still rising
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Snowflake configuration also reduces edge carbon

Standard, Snowflake

Snowflake shape facilitates

8
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0 R=138 cm o — Points again for need for central
5 Divw_\m impurity density control
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Combination of n=3 triggered ELMs and vertical jogs
show promise for carbon impurity control
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Preliminary erosion modeling for inboard Mo tiles
shows low sputtering and plasma contamination

» Goal: Determine if Mo sputtering and plasma contamination is acceptable
« Sofar[D + 1% C,1% Li] sputtering of bare Mo surface

« First results encouraging:
Mo sputtering low (<0.01), little core plasma contamination; two caveats:

— 1: Mo self-sputtering ok but little margin for one sheath condition

— 2: iIf substantial carbon impinges on Mo divertor, from e.g., inner wall C
sputtering; re-sputtering of this carbon would tend to reach core plasma
(~10% of sputtered flux), thus negating some of the benefit of the Mo

 More thorough analysis in progress

— WBC analysis of inner Mo divertor, with C, Li on Mo w/ material
mixing/evolution models...

— High D pumping / low recycling solution
« Possible issue: melting as observed in C-Mod (no such melting observed on
LLD, even with direct strike point plasma flux)

» Possible issue: rf acceleration and sputtering (no such effect observed on
LLD with HHFW last year, but had limited rf power)

PAC27-17

Brooks
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