An Overview of Possible Auburn University Support for NSTX-Upgrade Spectroscopy and Diagnostics

David Ennis, Stuart Loch, Connor Ballance & Curtis Johnson

Auburn University

PPPL Seminar July 22nd, 2015

High-Z Material Erosion is a Critical Research Priority

- NSTX-U Five Year Plan: "Recent papers have pointed out that wall erosion could result in thousands of kilograms per year of circulating material in a power reactor [P. Stangeby, J. Nucl. Mater. 2011]. The eventual fate of the eroded wall material is unknown at this point and requires further study."
- NSTX-U Program Letter: "To interpret the measurements, knowledge of accurate atomic physics factors, such as ionizations per photon and photon emission coefficients, is needed for common NSTX-U impurities originating from plasma-facing component materials, surface contamination, or those seeded externally."

High-Z Material Erosion is a Critical Research Priority

- NSTX-U will have an impressive suite of spectroscopic diagnostics for measuring edge plasma characteristics (NIR, VIS, UV, VUV, EUV)
- However, many of the atomic calculations needed for correct interpretation of spectroscopic measurements are known to be inaccurate or don't exist
- Example: PISCES B experiment measured Mo I SXB ratios to be different from calculated values by as much as a factor of 5 [Nishijima *et al.* J. Phys. B: At. Mol. Opt. Phys. 2010]
- Impacts line identification, measurements of wall erosion and re-deposition rates

Auburn Proposed Work to Extend NSTX-U Spectroscopy Capabilities

- **Proposed work:** Calculate and benchmark (using CTH experiment at Auburn) SXB ratios for various ionization states of Mo, W, O & Ar for NSTX-U plasma conditions
- **Purpose:** Determine wall erosion & re-deposition rates for high-Z elements of the NSTX-U PFC
- Identify line ratios to be used for temperature diagnostics of NSTX-U edge plasmas

Auburn Proposed Work to Extend NSTX-U Spectroscopy Capabilities

- NSTX-U spectrometers that we aim to support:
 - Two imaging spectrometers with sub-angstrom resolution (250-300 to 1100 nm)
 - VUV spectrometer SPRED with a localized view of the outer divertor leg (200-1650 Å & 100-240 Å)
 - Note: image splitter allows imaging of the same divertor regions at two wavelengths

Proposed work directly addresses NSTX-U priorities in five year plan and diagnostics FOA (Plasma Boundary Interfaces)

- 2 CTH Experiment
- SXB Ratios

Benchmarking SXB Ratios Using the Compact Toroidal Hybrid (CTH)

- CTH designed to study effects of 3D magnetic shaping on disruptions & instabilities
- CTH has a number of different operating regimes:
 - Current-free vs. current-carrying plasmas
 - Significantly vary the amount of externally applied 3D field

$$R_0 = 0.75 \text{ m}$$
 $|B| \le 0.7 \text{ T}$

$$R/a \sim 4$$
 $I_{
m p} \leq 80$ kA

$$n_{
m e} \leq 5 imes 10^{19} \ {
m m}^{-3}$$

 $T_{
m e} \leq 200 \ {
m eV}$

Ramping up CTH Spectroscopic Capabilities

- CTH Survey Spectrometers:
 - StellarNet BlackComet (200 to 1100 nm) Operational
 - StellarNet BlackComet (200 to 600 nm) Operational
 - StellarNet BlueWave (400 to 600 nm) Operational
 - StellarNet EPP2000 (200 to 300 nm) On order \sim 2 weeks
- CTH Higher-Dispersion Spectrometers:
 - McPherson 209 (UV-Vis-IR) Upgrading to UV
 - McPherson 218 (VUV-Vis-IR)

 Emphasis on UV wavelengths to focus on high-Z elements (Mo, W)

Molybdenum Probe Experiments Underway on CTH

- Probe with molybdenum tip inserted from top port to just beyond last closed flux surface
- Spectrometer viewing probe from bottom viewport

Numerous Emission Lines Increase when Mo Probe Inserted into CTH Plasmas

Numerous Emission Lines Increase when Mo Probe Inserted into CTH Plasmas

Ionizations per Photon - SXB Ratios

- The intensity of a spectral line can be related to its influx rate [Behringer PPCF **31** 2059 (1989)]
- The number of 'ionizations per photon' (or SXB) is directly proportional to the impurity influx (Γ)

$$\Gamma = \int_0^\infty N_e N^z S^{z \to z+1} dx$$

Ionizations per Photon - SXB Ratios

- The intensity of a spectral line can be related to its influx rate [Behringer PPCF **31** 2059 (1989)]
- The number of 'ionizations per photon' (or SXB) is directly proportional to the impurity influx (Γ)

$$\Gamma = \int_0^\infty N_e N^z S^{z \to z+1} dx = \int_0^\infty N_e \frac{S^{z \to z+1}}{A_{i \to j} \frac{N_i}{N^z}} \left(A_{i \to j} \frac{N_i}{N^z} \right) N^z dx$$

Ionizations per Photon - SXB Ratios

- The intensity of a spectral line can be related to its influx rate [Behringer PPCF **31** 2059 (1989)]
- The number of 'ionizations per photon' (or SXB) is directly proportional to the impurity influx (Γ)

$$\Gamma = \int_{0}^{\infty} N_{e} N^{z} S^{z \to z+1} dx = \int_{0}^{\infty} N_{e} \frac{S^{z \to z+1}}{A_{i \to j} \frac{N_{i}}{N^{z}}} \left(A_{i \to j} \frac{N_{j}}{N^{z}}\right) N^{z} dx$$
$$= \int_{0}^{\infty} N_{e} S X B_{i \to j}^{z} \left(A_{i \to j} \frac{N_{j}}{N^{z}}\right) N^{z} dx$$

where $SXB_{i \rightarrow j}^{z} = \frac{S^{z \rightarrow z+1}(N_{e}, T_{e})}{A_{i \rightarrow j} \frac{N_{i}}{N^{z}}(N_{e}, T_{e})}$

Perturbation Theory not Accurate for Low Charge States

- Electron-impact ionization (S^{z→z+1}) and excitation data
 - Perturbation theory works well for high charge states (> 5+)
 - Below 5+ requires non-perturbative methods
 - TDCC, *R*-matrix with pseudostates (RMPS), CCC
- Ionization from excited states is very important
- Non-perturbative calculations are very challenging for low charge states of high-Z systems

Previous PFC Erosion Studies

- SXB ratios have been used to determine influx rates for:
 - C using the C I 657.8 nm line [Field et al., Nucl. Fusion (1996)]
 - Li erosion and transport at DIII-D [Allain et al., Nucl. Fusion (2004)]
 - Mo using Mo I 386.4 nm [Lipschultz et al., Nucl. Fusion (2001)]

Previous Mo Erosion Studies

- Phillips et al. Nucl. Fusion (1994) used the Mo I 390.3 nm for TEXTOR studies
- Lipschultz et al., Nucl Fusion (2001)
 - Used Badnell et al. data [J. Phys. B (1996)] and Mo I 386.4 nm line
 - Determined which Mo PFCs at Alcator C-Mod were the dominant sources for Mo influx
- Recently, PISCES-B measurements [Nishijima et al., J. Phys. B (2010)] found up to factors of 2-5 difference with the SXB ratios from Badnell et al. (1996)

New SXBs for Mo II

- We generated new SXBs for Mo II SXBs
 - RMPS data for excitation and ionization
 - Shifted to NIST energies
- 2400 strong lines from 2000-4000 Å
- Filter on this line list, first filter produced 240 lines, second filter produced three unblended

Comparison with Alcator C-Mod Spectrum

Good match with the measured spectrum 300.
 Relative line heights are not strongly Ne dependent, but two of the lines were strongly Te dependent

Comparison with Alcator C-Mod Spectrum

Comparison with Alcator C-Mod Spectrum

Good match with the measured spectrum
 Relative line heights are not strongly Ne dependent, but two of the lines were strongly Te dependent

Temperature Dependence of the Recommended Lines

Comparison with CTH Spectrum

- Initial CTH results look promising with similar lines to Alcator C-Mod
- O V line blended with some of the features

Comparison with CTH Spectrum

- Many lines could be used from Mo II (or Mo I)
- New spectrometer should allow resolution of Mo I and Mo II features

Using Multiple Charge States for Wall Erosion Rate Measurements

- Not previously done: use multiple charge states of a high-Z material to independently measure the erosion rate
- Provides a rigorous influx diagnostic for investigating:
 - Re-deposition rates
 - Whether the Mo or W enters the plasma as a neutral
- Hence our plan to have data for the first three charge states of Mo and W

Details of Proposed Work for NSTX-U

- To determine high-Z PFC wall erosion and re-deposition rates for NSTX-U we plan to:
 - Use existing Mo II data to analyze NSTX-U spectra from granule injection experiments and Mo tiles
 - Generate ionizations per photon for:
 - Mo I & Mo III
 - W I, W II, & W III
 - Benchmark each of these calculations using CTH
- Analyze NSTX-U spectra to identify emission lines for edge temperature diagnostics
- Could also generate O II & Ar SXBs, with benchmarks on CTH

- High-Z elements for PFC present particular challenges for accurate diagnostics of erosion rates requiring accurate atomic calculations and experimental benchmarks
- We propose a set of benchmarks using the Auburn CTH experiment, coupled with new SXB calculations
 - Initial results with Mo II look promising
 - Plan to finish Mo stages (I & III)
 - Calculate and benchmark W (I, II, & III)
- Will improve the accuracy and extend the capability of high-Z PFC diagnostics for NSTX-U

Status of Current Mo I SXBs

- Distorted-wave data was used for the ground state ionization cross sections
- Semi-empirical data was used for the excited state ionization cross sections
- A term-resolved *R*-matrix calculation generated the excitation data, as big as could be done at the time
- The differences found at PISCES-B are not too surprising

Figure taken from Ludlow et al. PRA **75** 32729 (2005)