





# **Pre-Forum Meeting 2**

#### Vlad Soukhanovskii

Joon-Wook Ahn

and the NSTX Research Team

DivSOL TSG Meeting PPPL 21 January 2015



Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA, Cadarache IPP, Jülich

IPP, Garching

ASCR, Czech Rep

Coll of Wm & Mary Columbia U

CompX General Atomics

FIU INL

Johns Hopkins U

LANL

LLNL Lodestar

MIT

Lehigh U

**Nova Photonics** 

ORNL

**PPPL** 

Princeton U

Purdue U

SNL Think Tank. Inc.

UC Davis

**UC Irvine** 

UCLA

UCSD

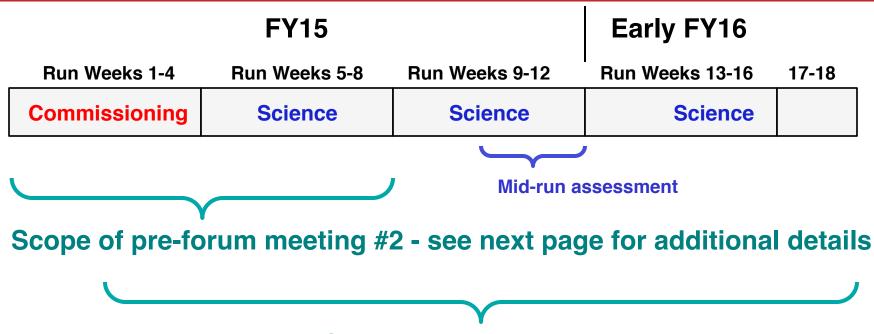
**U** Colorado

**U Illinois** 

**U Maryland** 

U Rochester

U Tennessee


U Tulsa

**U Washington** 

**U Wisconsin** 

X Science LLC

## Run schedule assumptions



### **Scope of Research Forum**

- Pre-forum meeting #2 should emphasize XMP/XP title, goal, author identification to cover first 2 run months (Weeks 1-8)
- Forum should emphasize prioritization of XPs for weeks 3-18, but also document commissioning XMP/XP goals + run-time
- Mid-run (re-)assessment after first 6-8 Science run-weeks



# Assumptions for first 2 run-months to use in identifying XMP/XP titles/goals/authors for Jan 29<sup>th</sup> pre-forum meeting #2

- Machine Commissioning...assume 1 month (run weeks 1-4)
  - Develop basic breakdown, current ramp, shape/position control, diverted plasmas, H-mode access, basic fuelling optimizations.
  - Goal: 1 MA, 0.5 T, NBI-heated H-mode (i.e. ~NSTX fiducial levels)
  - Diagnostic commissioning
  - Boronized PFCs
  - Mostly XMPs
  - What science (aka XPs) can be done during this phase?
- 1st Month of Science Campaign (run weeks 5-8)
  - Boronized PFCs, possibly begin lithium coatings
  - Operations and basic profile diagnostics, neutron rate,...
  - Operation up to 1.4 MA and 0.65 T, 2 seconds
  - 6 beam sources up to 90 kV
  - HHFW available for commissioning
  - What critical XPs can/should be done during this phase?



# DivSOL TSG leads and/or contributes to several milestones in 2015 and 2015

#### FY 2015

- R(15-1): Assess H-mode energy confinement, pedestal, and scrape off layer characteristics with higher B<sub>T</sub>, I<sub>P</sub> and NBI heating power
- R(15-3): Develop the physics and operational tools for obtaining high-performance discharges
- IR(15-1): Develop and assess the snowflake divertor configuration and edge properties

#### FY 2016

- R(16-1): Assess scaling and mitigation of steady-state and transient heat-fluxes with advanced divertor operation at high power density
- R(16-2): Assess high-Z divertor PFC performance and impact on operating scenarios



## Initial XMPs and enabling activities

- Diagnostic and system commissioning and calibrations
  - Calibrate and commission IR thermography
    - During bakeout, compare to thermocouples, evaluate surface layer effects
    - NBI power scan, I<sub>p</sub> scan
  - Commission other SOL and divertor diagnostics (mostly piggy-back)
    - GPI, Langmuir probes, spectroscopy, cameras, bolometers, etc
- Contribute to multi-TSG XMPs
  - Gas injector commissioning, including divertor and SGI (with D<sub>2</sub> and impurity)
  - Calibrate neutral pressure gauges (dedicated shots)
  - Develop fueling scenarios (all LFS, SGI, HFS, divertor, etc)
  - Develop low, medium, high triangularity shapes
    - With X-point and strike point control
  - Develop snowflake divertor configuration with pre-programmed coil currents, and start on feedback control algorithm



### **Considering initial XPs:**

## 1. SOL and divertor characterization (2-3 days)

- Goal: enable dedicated XP development after 2 months, provide input to R15-1 and R15-3 and initial development for R16-1 and R16-2
- Boundary conditions
  - P<sub>NBI</sub> = 1-6 MW and 6-12 MW
  - $I_p = 0.7-1 MA and 1-1.4 MA$
  - $n_e = (0.5 0.8) \times n_G$
  - Boron vs Lithium
  - D<sub>2</sub> and impurity seeding
  - 3D fields
  - High triangularity vs low triangularity

#### Deliverables

- Divertor peak heat flux scaling and initial assessment of power balance, in-out assym.
- ELM type identification and ELM regimes, ELM heat fluxes and profiles
- Initial assessment of SOL and divertor turbulence
- Initial assessment of SOL power width scaling (I<sub>p</sub>, S, L<sub>II</sub>, ...)
- Characterize operating space of partially detached outer strike point
- Initial assessment of impact of 3D fields on divertor asymmetries, SP splitting, etc.
- Assessment of divertor conditions and plasma-surface interactions for R16-2



# Considering initial XPs: 2. Snowflake divertor (with PED, ASC, PCTF)

- Goal: enable initial data and timely development for R16-1
  - Obtain SF configurations with pre-programmed currents
    - Use X-point or SP control from PCS
    - Use NSTX algorithm and ISOLVER modeling with unipolar PF 1A and PF2, bi-polar PF 1C
  - Develop control algorithm of inter-null distance and segment orientation
  - Evaluate pedestal and divertor plasma characteristics as function of inter-null distance when diagnostics are ready
  - Assess SF utility for ELM control
  - Assess impact of 3D fields on SF
  - Assess radiative SF
  - Assess SOL power width with I<sub>p</sub> scaling
  - Etc...

