

Coll of Wm & Mary Columbia U CompX

General Atomics

Johns Hopkins U

FIU

INL

LANL LLNL

MIT

Lodestar

Lehigh U Nova Photonics

ORNL

PPPL

SNL

Old Dominion

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Tennessee

U Washington

U Wisconsin X Science LLC

U Illinois

U Tulsa

UCLA

UCSD

Supported by

XP 1514: Correlation of SOL Turbulence with Heat Flux Width

T.K. Gray, S. Zweben, CS Chang, R. Hager, M. Jaworski, SH Ku, S. Kubota. C. Lau, R. Maqueda, J Myra, D Russell, F. Scotti, D. Smith

DivSOL TSG Review July 8, 2015

Culham Sci Ct York Chubu Fukui Hiroshima Hyogo Kyoto Kvushu Kyushu Tokai NIF Niidata U Tokv JAF Inst for Nucl Res, Kie loffe Ins TRINIT Chonbuk Natl NFR **KAIS** POSTECI Seoul Natl ASIP CIEMA FOM Inst DIFFER **ENEA**, Frasca CEA. Cadarach IPP. Jülic IPP, Garchine ASCR. Czech Rei

Office of

Science

Overview and Goals

- Confirm that the reduction in λ_q measured in NSTX
- Assumed that I_p Scaling data for NSTX-U will be obtained in "piggy-back" during XP 1520 and 1512
- Correlate turbulence measurements at midplane (GPI, BES, reflectometry) with divertor turbulence measurements (perpendicular and tangential visible imaging and probes) and comparison with measured λ_q
- Experimental inputs and constraints for modeling
 - SOLT
 - XGC1

ONSTX-U

- SOLPS
- Quantify effects on SOL transport via modeling

Theoretical Justification

- Measurements on NSTX showed the contraction of the small ELM-averaged λ_q with the addition of evaporative Li coatings
- Modeling with the SOLT code suggests this is due to relaxation of pedestal ∇n_e and subsequent reduction in interchange turbulence
- However, it was comparing 2 shots with different P_{NBI}
 - P_{NBI} was reduced with high Li evaporation amounts due to β_N limits
- Still open questions of the role between neoclassical physics vs. turbulence in setting λ_q

ONSTX-U

Diagnostic Needs

- GPI interferes with CHERS background view
 - Dedicated shots with midplane GPI puffs
 - Both SOLT and XGC1 need T_i and n_C profiles
- Turbulence Diagnostics
 - Reflectometers
 - UCLA fixed frequency system not available until later in the run
 - BES
 - View optimized for SOL
 - GPI

ONSTX-U

- ▶ Requires I_p [MA] / B_T [T] = 2 for optimal viewing angle
- Fast Framing Visible Cameras
 - Tangential/X-point and divertor viewing
- Divertor Langmuir Probes

CAK RIDGE National Laboratory

- Shots with GPI: Constant bias voltage into isat to obtain turbulence data
- Shots without GPI: Swept bias voltage for divertor n_e and T_e
- Fast Dual-band Infrared Divertor camera

Discharge Characteristics with optimal GPI view

Ip (MA)	Вт (Т)
0.9	0.45
1.1	0.55
1.3	0.65
1.5	0.75

Proposed Shot Plan — Part 1

- 1. Establish low P_{NBI} discharge with little to no pre-discharge Li evaporation (10 50 mg) and the following discharge characteristics (1 shot):
 - a. $I_p = 0.9 \text{ MA}, B_T = 0.45 \text{ T}$
 - b. I_p and B_t may be altered according to Table 2 if machine and administrative limits allow at the time of the experiment.
 - c. No Midplane GPI puffing

ONSTX-U

- 2. Repeat this low power, low Li discharge for repeatability and to obtain GPI data (1 shot).
 - a. Midplane GPI puffing at t = TBD
- 3. Increase beam power to the pre-defined medium power with low Li evaporation and take 2 shots at these conditions (2 shots)
 - a. Maintain GPI puffing on the 2nd shot and follow the same timing as step 2 and follow for all subsequent shots.
- 4. Increase beam power to the pre-defined high power with low Li evaporation and take 2 shots at these conditions (2 shots)
- 5. Increase beam power to the pre-defined highest power with low Li evaporation and take 2 shots at these conditions (2 shots)

Proposed Shot Matrix

	mg Li evaporation		
P _{NBI} (MW)	Low	High	
Low Power	2	2 - 4*	
Medium Power	2	2	
High Power	2	2	
Highest Power	2	2?	

^{*} Adjust Centerstack fueling as needed

Proposed Shot Plan — Part 2

- 6. Repeats steps 1 4 with a large amount (~ 300 mg) of pre-discharge Li evaporation (8 10 shots)
 - a. Allow 2 4 shots to adjust centerstack fueling when the Li evaporation is first increased
 - b. At the highest beam powers, disruptions due to β_N limits are likely and should be reserved for the end of the day or contingency

Shot	PNBI	CHERS	GPI	SOL Refl.	Probes
1	Low	Х		Swept	Swept
2	Low		Х	Fixed Freq.	İ _{sat}
3	Medium	Х		Swept	Swept
4	Medium		Х	Fixed Freq.	İsat
5	High	Х		Swept	Swept
6	High		Х	Fixed Freq.	İ _{sat}
7	Highest	Х		Swept	Swept
8	Highest		Х	Fixed Freq.	İ _{sat}

Summary of Diagnostic Status during each part of the experiment

DivSOL Group XP Review - NSTX SOL Widths, TK Gray (7/8/2015)

WNSTX-U