
Boundary Physics TSG priorities for 2010 and LLD timing are in conflict

- FY2010 Joint Research Milestone: Compare divertor heat flux widths to midplane density and temperature widths and edge turbulence characteristics, and determine the scaling of SOL and divertor heat transport
 - LLD impact: compromise IR camera calibrations
- NSTX Milestone R10-3: Determine the relationship of ELM properties to discharge boundary shape, lithium conditioning, and 3D resonant magnetic perturbations (RMPs), and compare stability of pedestal/ELMs with model calculations
- FY2011 Joint Research Milestone: Understand and develop a predictive capability for the physics mechanisms responsible for the structure of the H-mode pedestal
 - Concern: LLD / lithium changes pedestal MHD stability and ELMs

Divertor heat flux measurements are complicated by lithium coatings

- Instrumental effects:
 - Thermal contact between lithium coating and bulk graphite tile
 - Surface emissivity reduction
- Plasma effects:
 - Much lower P_{SOL}
 - Higher divertor heat flux?

(129061)

No lithium

190 mg Lithium

ational Laboratory

(129013)

Thoughts on start-up planning...

- Boundary Physics TSG would greatly benefit from a no-lithium period
- NSTX 10-year experience: poor plasma performance without boronization (or lithium)
 - GDC alone cannot mitigate the issue
- Questions to NSTX and LLD Managers:
 - If LLD is success, we will be prepared to take advantage of LLD as a tool
 - Planning for LLD failures is important are we prepared to
 - Identify failure modes and their impact on NSTX operations
 - Plan for specific problems and ways to resolve them
- Proposed start-up plan
 - 1. Run without lithium until the no-lithium research agenda is exhausted (~1 week)
 - 2. Run with LLD until the critical LLD experiments are completed (~ 2 weeks)
 - 3. Assess options to continue
 - 4. An administrative decision may move # 2 to # 1 to benefit LLD research

Plan for LLD start-up experiments

- Focus on four main thrusts
 - LLD pumping capability
 - Effect on pedestal and core performance
 - Effect on SOL / divertor transport
 - Divertor heat flux handling
- Start LLD experiments in an as much controlled manner as possible
 - High-triangularity (δ ~0.7-0.8, R_{OSP} ~ 0.4-0.5 m) fiducial 2-4 MW NBI
 - little heating / heat flux on LLD
 - Use LLD at controlled temperature using heaters
 - scan temperature between 150 and 350 C
 - Obtain data to address the four point above
 - Then proceed to medium triangularity shape (δ ~0.5-0.6, R_{OSP} ~ 0.5-0.65 m) but start with cold LLD