

Supported by

LLD Related Ideas For The 2010 Run S. P. Gerhardt

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Each Idea has 2 parts:

• "Cold-LLD" portion, with independent programmatic merit, to be proposed in another TSG (MS & ASC).

• "Hot-LLD" portion to be considered for Li TSG.

LLD operational experience will modify these proposals

- Early EFC, Fuelling Schemes, Rep. Rate,...?
- Hot and Cold LLD on the same day?

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

I_P Quench and Halo Current Studies With a Liquid Lithium Surface

- Many new halo current measurements in 2010, including sensors on the LLD grounding posts.
- Questions:
 - How do VDE dynamics change with a recycling/pumping surface.
 - Pump-out during the wall contact phase of VDE changing the dynamics? D₂ vs He?
 - How do halo current dynamics change?
 - Halo T_e changing the halo current magnitude?
 - How do current quench dynamics change (faster or slower) with Li?
- Diagnostics:
 - Triple probe array, USXR, Halo current detectors, fast IR and TCs.
- "Cold LLD" Step (MS TSG)
 - Reproduce low-current VDE scenario from 2008 in D_2 and maybe He.
 - Brief scan over I_P , B_T ?
- "Hot LLD" Step (Lithium TSG?)
 - Repeat one or two reference scenarios in He & D₂ with a hot LLD.
 - 1/2 day.
- Other things to look for:
 - Thermal quench dynamics, timescales.
 - Protective evaporative barrier?

S. P. Gerhardt & M. Jaworski

Improved NBCD and Stability at High-Normalized Current and Low-Collisionality

Develop and understand high-performance operating scenarios utilizing a liquid lithium divertor (LLD) for particle control

- ST-CTF designs typically operate at high-I_N, κ , and β_N , at low f_{GW} in order to increase the NBCD.
- Last years XP-948 took a small step toward meeting needs of the scenario.
 - Close on κ and $\beta_{\text{N}},$ but...
 - ...too rapid q_{min} evolution, bottom-gap tended to zero late in the shot, stability sensitive to input power, *density too high, reducing the NBCD*.
- "Cold LLD" step (ASC TSG):
 - Integrate improved control tools (β-control, X-point height control, improved RWM control) in high- $β_T$ discharges from 2009.
 - Prepare if possible two targets: I_P =1.1 MA / B_T =0.4 T & I_P =0.7 MA / B_T =0.4 T
- "Hot LLD" step (Lithium TSG):
 - Reproduce the target.
 - Adjust fuelling to achieve minimal density consistent with stability.
 - Early EFC, SGI...work these in as necessary.
- 1 day in hot LLD step.
- Points of comparison.
 - Non-inductive current fractions.
 - Confinement.
 - Current profile evolution and core n=1 mode onset.
 - Rotation evolution and ideal stability.

S. P. Gerhardt, et al.

