

Removal of Core Impurities by Neon Gas Puffing

College W&M

Colorado Sch Mines Columbia U

CompX

General Atomics

INEL

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

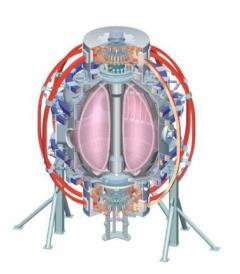
UCLA

UCSD

U Colorado

U Illinois

U Maryland

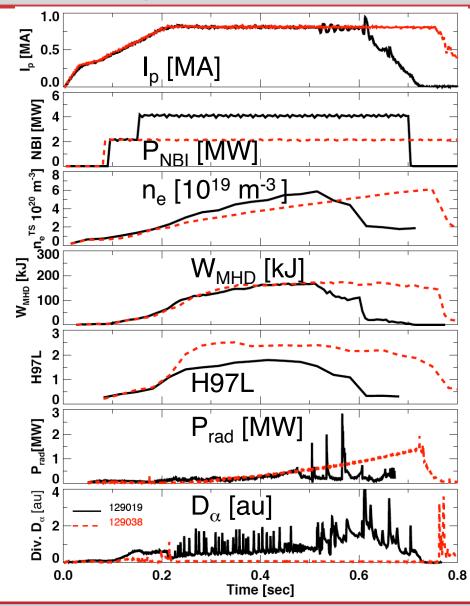

U Rochester

U Washington

U Wisconsin

TK Gray, AG McLean and R Maingi ORNL

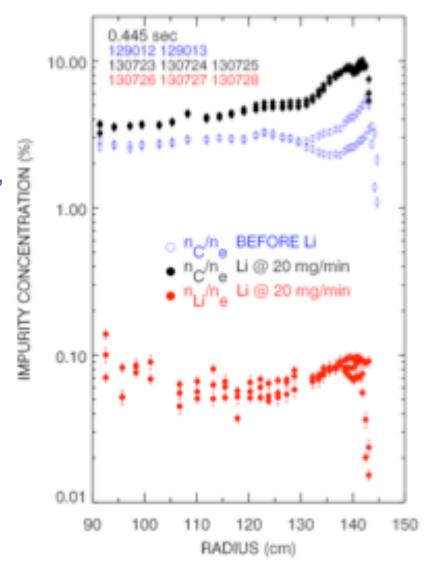
NSTX Research Forum Princeton, NJ December 1—3, 2009



Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP. Jülich IPP, Garching ASCR, Czech Rep

U Quebec

Understand the mechanism by which high Z impurities accumulate in NSTX discharges (R11-3)


- ELM-free NSTX lithium discharges show a large increase in impurity accumulation during the discharge
 - C, O and heavy metals (Fe)
- Multiple mechanisms by which impurities could be accumulating
 - C impurities flow, via neoclassical transport, to the core screening out Li impurities
- Puff in gas with high-Z (neon or argon) to test theory

Diagnostics required to determine impurity content

- Require ELM-free Li enhanced Hmode discharges
 - Propose scan of gas puff pressure, duration and timing
 - Similar work done in the past by JHU, but not in ELM-free discharges
 - L. Delgado-Aparicio, et al., Nucl. Fusion 49 (2009) 085028
- Likely to require:
 - CHERS, Bolometer arrays
 - Monitor C and Li atomic/molecular spectroscopic emissions during gas puff
 - Possible significant increase in physical erosion as measured previously in DIII-D

