

XP1000 LLD Results & Next Steps

College W&M
Colorado Sch Mines

Colorado Sch Mine. Columbia U

CompX

General Atomics

INEL

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

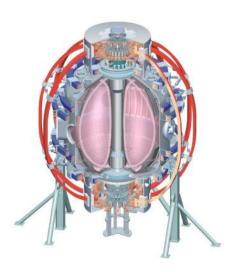
UCSD

U Colorado

U Illinois

U Maryland

U Rochester


U Washington

U Wisconsin

H. W. Kugel

and the NSTX Research Team

LRTSG Meeting B-318, 2PM, April 14, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst TRINITI KBSI** KAIST **POSTECH ASIPP** ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

U Quebec

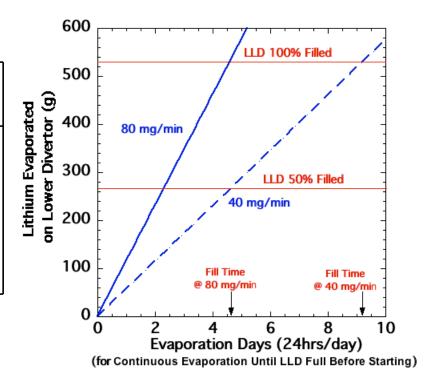
XP1000 Partial Daily Outline

- Fri., 02APR10 started XP1000 Part 1B, R=50cm, LLD 220°C.
 - LLD 220°C, Did IR and Phantom calibrations
 - OSP control development
 - 3 ref at 2, 2MW and 3MW, raised LLD to 250°C
- Mon., 05APR10 returned to 02APR10 conditions, LLD 220°C
 - OSP control development, R=50, 63 cm
 - Reduced Dα relative to 02APR10
- Tue, 06APR10, LLD rm temp, 250°C
 - OSP control development R=50, 63 cm
 - LLD @rm temp. Recovered ELM-free H-modes at R=35cm
 - At R=50cm, improved OSP, increased front-end fuelling, reduced NBI
 - Obtained ELM-fee H-mode flattops
- Wed., 07APR10, LLD 320°C
 - OSP control development, R=50, 63 cm
 - LLD raised to 320°C
 - Little change in core n_e and edge T_e and n_e profiles
 - Less flux consumption early in discharge
- Thu., 08APR10, LLD 320°C
 - OSP control development
 - LLD raised to 320°C, R=63cm , 70-71cm
 - SGI test at 320°C, R=71cm
 - Lowered LLD from 320°C to 220°C

XP1000 Preliminary Partial Summary

- 1. 79.3 g Li deposited on lower divertor region; 5.5 g deposited on LLD.
- 2. Then, lithium depositions on the LLD with temperatures ranging from room temperature to 220°C were started using the LITER system at a rate of 20-40mg/min.
- 3. When the LLD was heated above melting, the outgassing of D increased significantly indicating perhaps the effect of fuel and/or impurity accumulation from previous operations and/or the need for additional conditioning procedures.
- 4. As lithium deposition increased, reproducible, ELM-free, H-mode, flattops were obtained with outer strike points at major radii of R=0.35m (near center stack), R=0.50m (mid inner divertor) and R=0.63m (the outer divertor tile ring just inboard of the LLD and outboard of the CHI gap).
- 5. The ELM-free, H-mode, flattop conditions were obtained using :
 - improvements in the outer strike point control,
 - optimizing fueling in the early discharge,
 - and reducing NB power as lithium deposition increased
- 6. LLD characteristics at temperatures up to 320°C were measured at these radii and in a return to 220°C.
- Although slight reductions were observed in the central and edge densities, no strong pumping due to the LLD was found at temperatures of up to 320°C, with strike points out R=0.70m and the initial LLD surface conditions.
- 8. These ELM-free discharges, however, exhibited noteworthy reproducible energy confinement times of 100 ms and reduced flux consumption early in these discharges.

Filling LLD to 50-100% of Lithium Capacity Gives Highest Probability of Observing Pumping Effectiveness of Liquid Lithium


- Filling LLD to >50% Li capacity decreases the physical to geometric area ratio and by passes or minimizes 5 issues:
 - desorption of deuterium exacerbated by the high surface-area of the porous Mo,
 - mass-limited diffusion into the Li,
 - mass-limited retention,
 - effective range uncertainty.
 - Li to impurity ratio higher
- Filling LLD >50% using LITER requires many work shifts (next slide).
- - Fill 50% @220°C
 - Cool to RmTemp (RT)
 - Keep LITER on
 - Do controls tuning
 - Degas to 320°C, then cool to RT
 - Do R=70cm
 - Do Tile + LLD pumping
 - Turnoff Tile pumping and test duration of LLD pumping

- Fill 50% @220°C.
- Keep at 220°C
- Keep LITER on
- Do controls tuning
- Degas to 320°C, then cool to 220°C
- Do R=70cm
- Do Tile + LLD pumping
- Turnoff Tile pumping and test duration of LLD pumping

LLD Fill Times for Next Step

- LLD Li capacity = 37 g.
- Required LITER deposition for fill =527 g (using 7% efficiency)
- 160g per LITER refill cycle (@80g/per unit)

%Fill	Hours	Rate (mg/min)	2 Shifts per day	3 Shifts per day
50	110	40	6.9	4.6
	55	80	3.4	2.3
100	220	40	13.8	9.2
	110	80	6.9	4.6

Pros and Cons of Two LLD 50% Fill Scenarios

• Fill 50% @220°C	• Fill 50% @220°C.	Issues
• Cool to RmTemp	• Keep at 220°C	
• LITER on	• LITER on	
• Do controls tuning	Do controls tuning	
• Degas to 320°C; cool to RT	• Degas to 320°C; cool to 220°C	
• Do R=70cm	• Do R=70cm	
• Do Tile + LLD pumping	• Do Tile + LLD pumping	
Turnoff Tile pumping and	• Turnoff Tile pumping and test	
test duration of LLD pumping	duration of LLD pumping	
• Saturate before ready. Need	• Need to raise to 320°C to degas	• Finite N _{li}
to raise to 320°C to degas and	& cooldown for 220°C case Start	Impurities on surface
cooldown for Rm temp case.	taking R=70cm immediately	Li to impurity ratio
 Carbon and oxygen. 	after controls tuning.	
Physical erosion of Li lower	Sputter yield of Li (and	• Using OSP sputtering to expedite
at Rm temp. This may slow	possibly impurities) increases	cleanup after controls tuning.
impurity removal?	with temperature.	
Could require considerable	• No layer to dissolve. Surface	Diffusion time to dissolve LiD
time to dissolve sat. layers	ready for the XP faster.	at 300°C
acquired during entrls tuning.		• Estimates vary by ~x10 ⁵
Need extra cycle.	• 220+320/320+220+cold	Schedule and efficiency
cold+320+cold+220+320+cold		